Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes

Size: px
Start display at page:

Download "Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes"

Transcription

1 Precise electronic and valleytronic nanodevices based on strain engineering in graphene and carbon nanotubes European Graphene Forum 2017, Paris Nikodem Szpak Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto de Ciencias Físicas Universidad Nacional Autónoma de México PROJECT (DFG): Curvature, Defects, Geometry in Graphene and Optical Lattices

2 Efficient model of electronic transport in deformed graphene Why? in 1μm 2 : over 10 7 atoms! ( ab initio) regular graphene: extrapolate microscopic calculations; irregular??? Idea: Quantum currents in elastically deformed graphene Waves propagating in curved space continuous limit field equations Source: NASA Motivation: tailor-made mesoscopic structures special properties nano-devices... better understanding of structural perturbations

3 Graphene Tight-binding Hamiltonian: Linear dispersion arround K points:

4 Graphene at low energies Tight-binding Hamiltonian: Linear dispersion arround K points: long wave regime (low energy excitations) Dirac Hamiltonian:

5 Graphene deformation Tight-binding Hamiltonian: Surface deformation h(x,y) e.g. height function: Position-dependent hopping:

6 Graphene deformation Tight-binding Hamiltonian: Surface deformation h(x,y) e.g. height function: Position-dependent hopping: Cones (locally) shifted and deformed! shift pseudo-magnetic potential deformation metric and spin connection

7 Dirac equation in curved space Dirac Hamiltonian: Local frame vectors: Effective metric: g ij ij ij ( x) ( x) Effective magnetic potential: s s s K ( x) K ( 1) xx ( x) yy ( x), 2 xy ( x) 2 Effective magnetic field: B( x) 2 ( x) ( x) ( x) x xy y xx y yy

8 Geometrical optics: waves trajectories Dirac Hamiltonian: Eikonal approximation geodesics:

9 Current flow vs geodesics Effect of both, curvature and pseudo-magnetic field: Continuous space approximation Lattice simulation (NEGF)

10 E = 0.2 t 0, r 0 = 200 d 0, h 0 = 1.00 r 0 E = 0.3 t 0, r 0 = 200 d 0, h 0 = 1.25 r 0 N. Szpak, Univ. Duisburg-Essen Current flow paths in deformed graphene... Current flow vs geodesics Waves propagate along classical trajectories for the curved space! Varying bump height: E = 0.2 t 0 r 0 = 150 d 0, h 0 = 0.50 r 0 r 0 = 150 d 0, h 0 = 0.75 r 0 r 0 = 150 d 0, h 0 = 1.00 r 0 Crossing of trajectories focusing of waves:

11 Geometrical lensing of the current flow Maxwell lense: effectively position dependent refraction index n(x,y) Continuous model prediction

12 Geometrical lensing of the current flow Lattice simulations (NEGF)

13 Geometrical lensing of the current flow Maxwell lense: position dependent refraction index n(x,y) Now: both charge signs both valleys Continuous model prediction

14 Geometrical valley separation K left & right Valley separation: K left & right, K center K center Injection at K Injection at K+K Injection at K Lattice simulations (NEGF)

15 Geometrical lensing pressure nanosensor Bump height

16 Bent nanotubes Strain induced metric and pseudo-magnetic field: Effective metric: g ij g 0 0 ( R cos) 0 Pseudo-magnetic vector potential: A i g 2 cos R 0 Pseudo-magnetic field: 0 B B 0 sin Surface parameterization by pair of angles (θ,φ)

17 Bent nanotubes: Dirac equation on torus Dirac Mathieu equation Mathieu f s: Analytical current: (m=0 mode) Numerical current (NEGF):

18 Conclusions Current flow in deformed graphene Hˆ = <n, m> T + n m aˆ n aˆ, m + n V n aˆ + n aˆ n Dirac eq. + pseudomagnetic field in continuous curved space T. Stegmann and N.S., Current flow paths in deformed graphene, New J. Phys. 18 (2016) PROJECT: Curvature, Defects, Geometry in Graphene and Optical Lattices

19 Conclusions: deformation curvature, pseudo-b Perturbed lattice QFT in curved space Hˆ = <n, m> T + n m aˆ n aˆ, m + n V n aˆ + n aˆ n T. Stegmann and N.S., Current flow paths in deformed graphene, New J. Phys. 18 (2016) PROJECT: Curvature, Defects, Geometry in Graphene and Optical Lattices

20 Particles (E>0) and antiparticles (E<0) K vs K valleys Two types of valleys: K K K K K K Magnetic field B at different valleys!

21 Stationary current NEGF method Tight-binding Hamiltonian: Green's function: Self energy: Local current: Correlation function: at boundary to emulate infinite surface discretization of Dirac current and Green s funct. representation of solutions with source (x ) Inscattering function:

22 Current flow vs geodesics Waves propagate along classical trajectories for the curved space! Varying bump height: E = 0.2 t 0 r 0 = 150 d 0, h 0 = 0.50 r 0 r 0 = 150 d 0, h 0 = 0.75 r 0 r 0 = 150 d 0, h 0 = 1.00 r 0

23 Geometrical valley separation Two (or more) bumps even stronger K / K separation...

Current flow paths in deformed graphene and carbon nanotubes

Current flow paths in deformed graphene and carbon nanotubes Current flow paths in deformed graphene and carbon nanotubes DPG Tagung 2017, Dresden Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto

More information

Current flow paths in deformed graphene and carbon nanotubes

Current flow paths in deformed graphene and carbon nanotubes Current flow paths in deformed graphene and carbon nanotubes Cuernavaca, September 2017 Nikodem Szpak Erik Kleinherbers Ralf Schützhold Fakultät für Physik Universität Duisburg-Essen Thomas Stegmann Instituto

More information

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC

KAVLI v F. Curved graphene revisited. María A. H. Vozmediano. Instituto de Ciencia de Materiales de Madrid CSIC KAVLI 2012 v F Curved graphene revisited María A. H. Vozmediano Instituto de Ciencia de Materiales de Madrid CSIC Collaborators ICMM(Graphene group) http://www.icmm.csic.es/gtg/ A. Cano E. V. Castro J.

More information

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS J. A. Galvis, L. C., I. Guillamon, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, F. Guinea Laboratorio

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson

Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Electronic structure and properties of a few-layer black phosphorus Mikhail Katsnelson Main collaborators: Sasha Rudenko Shengjun Yuan Rafa Roldan Milton Pereira Sergey Brener Motivation Plenty of 2D materials

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice mismatch between graphene (0.246 nm) and Rh (111) (0.269 nm) leads to hexagonal moiré superstructures with the expected

More information

& Dirac Fermion confinement Zahra Khatibi

& Dirac Fermion confinement Zahra Khatibi Graphene & Dirac Fermion confinement Zahra Khatibi 1 Outline: What is so special about Graphene? applications What is Graphene? Structure Transport properties Dirac fermions confinement Necessity External

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

Graphene: Quantum Transport via Evanescent Waves

Graphene: Quantum Transport via Evanescent Waves Graphene: Quantum Transport via Evanescent Waves Milan Holzäpfel 6 May 203 (slides from the talk with additional notes added in some places /7 Overview Quantum Transport: Landauer Formula Graphene: Introduction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12186 S1. WANNIER DIAGRAM B 1 1 a φ/φ O 1/2 1/3 1/4 1/5 1 E φ/φ O n/n O 1 FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square periodic lattice.

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

Supersymmetry and Quantum Hall effect in graphene

Supersymmetry and Quantum Hall effect in graphene Supersymmetry and Quantum Hall effect in graphene Ervand Kandelaki Lehrstuhl für Theoretische Festköperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 14, 007 1 Introduction

More information

Project Report: Band Structure of GaAs using k.p-theory

Project Report: Band Structure of GaAs using k.p-theory Proect Report: Band Structure of GaAs using k.p-theory Austin Irish Mikael Thorström December 12th 2017 1 Introduction The obective of the proect was to calculate the band structure of both strained and

More information

Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions

Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions Graphene-like microwave billiards: Van-Hove singularities and Excited-State Quantum Phase Transitions Michal Macek Sloane Physics Laboratory, Yale University in collaboration with: Francesco Iachello (Yale)

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect

Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect Pulse shape dependence in the dynamically assisted Sauter-Schwinger effect Joachim Sicking, Nikodem Szpak, Ralf Schützhold Fakultät für Physik, Universität Duisburg-Essen 20 March 2014, DPG Tagung Berlin

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures S. Rotter, F. Libisch, L. Wirtz, C. Stampfer, F. Aigner, I. Březinová, and J. Burgdörfer Institute for Theoretical Physics/E136 December 9, 2009 Graphene

More information

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University

Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene. Philip Kim. Physics Department, Columbia University Bloch, Landau, and Dirac: Hofstadter s Butterfly in Graphene Philip Kim Physics Department, Columbia University Acknowledgment Prof. Cory Dean (now at CUNY) Lei Wang Patrick Maher Fereshte Ghahari Carlos

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 3: (Crash course in) Theory of optical activity Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10941 1. Motivation and summary of results. In this work we combine a central tenet of condensed matter physics how electronic band structure emerges from a periodic potential in a crystal

More information

arxiv: v1 [quant-ph] 25 Oct 2018

arxiv: v1 [quant-ph] 25 Oct 2018 The measure of PBR s reality Sánchez-Kuntz, Natalia 1 and Nahmad-Achar, Eduardo 1 Institut für Theoretische Physik Universität Heidelberg Philosophenweg 16, D-6910 Heidelberg Instituto de Ciencias Nucleares

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

The square lattice Ising model on the rectangle

The square lattice Ising model on the rectangle The square lattice Ising model on the rectangle Fred Hucht, Theoretische Physik, Universität Duisburg-Essen, 47048 Duisburg Introduction Connection to Casimir forces Free energy contributions Analytical

More information

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study

S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study S. Bellucci, A. Sindona, D. Mencarelli, L. Pierantoni Electrical conductivity of graphene: a timedependent density functional theory study INFN Laboratori Nazionali Frascati (LNF), Italy Univ. Calabria,

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Molecular Electronics

Molecular Electronics Molecular Electronics An Introduction to Theory and Experiment Juan Carlos Cuevas Universidad Autönoma de Madrid, Spain Elke Scheer Universität Konstanz, Germany 1>World Scientific NEW JERSEY LONDON SINGAPORE

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Manipulation of Dirac cones in artificial graphenes

Manipulation of Dirac cones in artificial graphenes Manipulation of Dirac cones in artificial graphenes Gilles Montambaux Laboratoire de Physique des Solides, Orsay CNRS, Université Paris-Sud, France - Berry phase Berry phase K K -p Graphene electronic

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Amitesh Maiti, 1, Alexei Svizhenko, 2, and M. P. Anantram 2 1 Accelrys Inc., 9685 Scranton Road, San

More information

Theory and numerical implementations

Theory and numerical implementations Theory and numerical implementations COMPUTE 2012 Daniel Karlsson Mathematical Physics, Lund University Solid State Theory: Other groups: Claudio Verdozzi (COMPUTE contact) Carl-Olof Almbladh Ulf von Barth

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1463 Observation of Van Hove singularities in twisted graphene layers Guohong Li 1, A. Luican 1, J.M. B. Lopes dos Santos 2, A. H. Castro Neto 3, Alfonso Reina

More information

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich)

Lattice Monte Carlo for carbon nanostructures. Timo A. Lähde. In collaboration with Thomas Luu (FZ Jülich) Lattice Monte Carlo for carbon nanostructures Timo A. Lähde In collaboration with Thomas Luu (FZ Jülich) Institute for Advanced Simulation and Institut für Kernphysik Forschungszentrum Jülich GmbH, D-52425

More information

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance

Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Tilted Dirac cones in 2D and 3D Weyl semimetals implications of pseudo-relativistic covariance Mark O. Goerbig J. Sári, C. Tőke (Pécs, Budapest); J.-N. Fuchs, G. Montambaux, F. Piéchon ; S. Tchoumakov,

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet Copyright 05 Tech Science Press CMC, vol.8, no., pp.03-7, 05 Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet G. Q. Xie, J. P. Wang, Q. L. Zhang Abstract: Small-scale effect on the

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Coupling of spin and orbital motion of electrons in carbon nanotubes

Coupling of spin and orbital motion of electrons in carbon nanotubes Coupling of spin and orbital motion of electrons in carbon nanotubes Kuemmeth, Ferdinand, et al. "Coupling of spin and orbital motion of electrons in carbon nanotubes." Nature 452.7186 (2008): 448. Ivan

More information

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Shuichi Murakami Department of Physics, Tokyo Institute of Technology EQPCM, ISSP, U. Tokyo June, 2013 Berry curvature and topological phases for magnons Shuichi Murakami Department of Physics, Tokyo Institute of Technology Collaborators: R. Shindou (Tokyo Tech. Peking Univ.)

More information

Semiclassical Electron Transport

Semiclassical Electron Transport Semiclassical Electron Transport Branislav K. Niolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bniolic/teaching/phys64/phys64.html

More information

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES 1) Berry curvature in superlattice bands 2) Energy scales for Moire superlattices 3) Spin-Hall effect in graphene Leonid Levitov (MIT) @ ISSP U Tokyo MIT Manchester

More information

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene

Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene NPSMP2015 Symposium 2015/6/11 Valley Hall effect in electrically spatial inversion symmetry broken bilayer graphene Yuya Shimazaki 1, Michihisa Yamamoto 1, 2, Ivan V. Borzenets 1, Kenji Watanabe 3, Takashi

More information

Theory of Quantum Transport in Graphene and Nanotubes II

Theory of Quantum Transport in Graphene and Nanotubes II CARGESE7B.OHP (August 26, 27) Theory of Quantum Transport in Graphene and Nanotubes II 1. Introduction Weyl s equation for neutrino 2. Berry s phase and topological anomaly Absence of backscattering in

More information

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México

GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES. Marat Reyes. Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México GENERALIZED PATH DEPENDENT REPRESENTATIONS FOR GAUGE THEORIES Marat Reyes Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México LOOPS 07 MORELIA, MEXICO PLAN OF THE TALK INTRODUCTION:

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Low Bias Transport in Graphene: An Introduction

Low Bias Transport in Graphene: An Introduction Lecture Notes on Low Bias Transport in Graphene: An Introduction Dionisis Berdebes, Tony Low, and Mark Lundstrom Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University West

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Cluster Extensions to the Dynamical Mean-Field Theory

Cluster Extensions to the Dynamical Mean-Field Theory Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? Thomas Pruschke Institut für Theoretische Physik Universität

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

arxiv: v1 [cond-mat.mes-hall] 16 Nov 2007

arxiv: v1 [cond-mat.mes-hall] 16 Nov 2007 Transport properties of graphene nanoribbon arxiv:7.6v [cond-mat.mes-hall] 6 Nov 7 heterostructures L. Rosales a,, P. Orellana b, Z. Barticevic a, M.Pacheco a a Departamento de Física, Universidad Técnica

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Wavelength Stabilized High-Power Quantum Dot Lasers

Wavelength Stabilized High-Power Quantum Dot Lasers Wavelength Stabilized High-Power Quantum Dot Lasers Johann Peter Reithmaier Technische Physik, Institute of Nanostructure Technologies & Analytics () Universität Kassel, Germany W. Kaiser, R. Debusmann,

More information

Basic Semiconductor Physics

Basic Semiconductor Physics Chihiro Hamaguchi Basic Semiconductor Physics With 177 Figures and 25 Tables Springer 1. Energy Band Structures of Semiconductors 1 1.1 Free-Electron Model 1 1.2 Bloch Theorem 3 1.3 Nearly Free Electron

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Heavy quarks within electroweak multiplet

Heavy quarks within electroweak multiplet Heavy quarks within electroweak multiplet Jaime Besprosvany En colaboración: Ricardo Romero Instituto de Física Universidad Nacional Autónoma de México Instituto de Ciencias Nucleares, UNAM, 15 de marzo

More information

Black phosphorus: A new bandgap tuning knob

Black phosphorus: A new bandgap tuning knob Black phosphorus: A new bandgap tuning knob Rafael Roldán and Andres Castellanos-Gomez Modern electronics rely on devices whose functionality can be adjusted by the end-user with an external knob. A new

More information

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress Mathematica Aeterna, Vol. 4, 4, no. 8, 877-93 Reflection of SV- Waves from the Free Surface of a Magneto-Thermoelastic Isotropic Elastic Half-Space under Initial Stress Rajneesh Kakar Faculty of Engineering

More information

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model

Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Wu and Childs Nanoscale es Lett, 6:6 http://www.nanoscalereslett.com/content/6//6 NANO EXPE Open Access Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model Y Wu, PA Childs * Abstract

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Quantum Tunneling and

Quantum Tunneling and BEIJING SHANGHAI Quantum Tunneling and Field Electron Emission Theories Shi-Dong Liang Sun Yat-Sen University, China World Scientific NEW JERSEY LONDON SINGAPORE HONG KONG TAIPEI CHENNAI Contents Preface

More information

Analog quantum gravity effects in dielectrics. Carlos H. G. Bessa (UFPB-Brazil) ICTP-SAIFR April 2017

Analog quantum gravity effects in dielectrics. Carlos H. G. Bessa (UFPB-Brazil) ICTP-SAIFR April 2017 Analog quantum gravity effects in dielectrics Carlos H. G. Bessa (UFPB-Brazil) In collaboration with V. A. De Lorenci (UNIFEI-Brazil), L. H. Ford (TUFTS-USA), C. C. H. Ribeiro (USP-Brazil) and N. F. Svaiter

More information

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD

Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Rotor Spectra, Berry Phases, and Monopole Fields: From Antiferromagnets to QCD Uwe-Jens Wiese Bern University LATTICE08, Williamsburg, July 14, 008 S. Chandrasekharan (Duke University) F.-J. Jiang, F.

More information

Quantum transport of 2D Dirac fermions: the case for a topological metal

Quantum transport of 2D Dirac fermions: the case for a topological metal Quantum transport of 2D Dirac fermions: the case for a topological metal Christopher Mudry 1 Shinsei Ryu 2 Akira Furusaki 3 Hideaki Obuse 3,4 1 Paul Scherrer Institut, Switzerland 2 University of California

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Topological defects in graphene nanostructures

Topological defects in graphene nanostructures J. Smotlacha International Conference and Exhibition on Mesoscopic & Condensed Matter Physics June 22-24, 2015, Boston, USA Jan Smotlacha (BLTP JINR, Dubna, Russia) Topological defects in graphene nanostructures

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

From Graphene to Nanotubes

From Graphene to Nanotubes From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure Christian Krumnow Freie Universität Berlin May 6, 011 Christian Krumnow (FU Berlin) From

More information

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons.

Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S1 Definition of the wave vector components: Parallel and perpendicular wave vector of the exciton and of the emitted photons. Supplementary Figure S2 The calculated temperature dependence

More information

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions

Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Lattice simulation of tight-binding theory of graphene with partially screened Coulomb interactions Dominik Smith Lorenz von Smekal smith@theorie.ikp.physik.tu-darmstadt.de 1. August 2013 IKP TUD / SFB

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information