Two Posts to Fill On School Board

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Two Posts to Fill On School Board"

Transcription

1 Y Y qz 86 x : ( ) z Y x 4 z z x x Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83 ; ;»4 & 8 ; 44 6 : 3 85 : : q x Z Y } : : q : : ; ; ; q ; ) x ; x» ( 3? > 876 x] > 4 q x? 8 > x 43»» q (4) 6 9 x 4 7 : x x ; z 35 q 99 5 ( ; z 85 4 ; 7358 ; 4 ; ; q x 4 z 3 ; ;(x z» x x x : 6: 5 : x 887 x 5: q 3 x 75 ] 6 9 [ Q q 8»? ) x 6 6 ( ) 8578 x ( ) 4 x 4 x 8 8 x x 4 6:3 4 x > x ) x q x q : q x Q q Y X x ; q x ; x 56 x ; 5 ; 87 z q 7 Y q q z x 8 ~ 7? x : Z» 6 x Q 4 6 [ Q 3586 x Q #

2 Y / : \ / ( ) 4 96 Y»» 93 97; < <» Y Y 65? 6 q 8 : Y: q x z 3 ( 8» ) 4 47 ; < Z 5: 8 8 x # 49 z x z Y : / x x Y Y # z z q // q 5 q 8 Y z 963 Y x Y ; ( ) x z 8 Z Y 4 z q x z q : z 8 z ( ; 8 Y < q 8 ;?? 4:8 ( x 8 : 7 8 ><<? ; & Y ( ) 9 : z Y z q x Y Y z x z Z ; z z? # q z? z x» ; z 8 x x q? Z ; z x z q / x»\ q z 5 x ( ) x q x z z» ; ; z z q 6 z ( x 886 x 6 69 x 7 q x ; / 6 / 6 / Y q [ ] Y 6 Y 5 x q Q 58 X 75 :3 7: 64 Q & 7 6 Q q 5 66 ; x x x ] q : ; q ; x; 3 ; z » Q 5:3 6: 6 Y [ q 43 Y z q % ? Y / z q 5 8 q z x Z 7 3 Q 9 9 x 5 3 x q Z / Y x z 4 Y 6 5 9: : % Y 6 6 x x z X Y x () () Y z q Y x 4 z & X Q Y»4 Y Y Y x 389 % 94 X z Q ( ; : x ; 6 Y» 3> ; 94» ( 8 Y < 94 Y : 8 : Q Y q q Y 8 94 Y : 8: 6: 3: 5 94 Y

3 X Y Y ; ( x ( ( ) z 4 Y 94» ( 4787 x Q : 8 : (3) & q (9) ; :? # (4) q x (8) : ; () : 7 94 x x : ; 4 q 3 84 z q > < >» >4 } >: >? ) 8 < # = z x 94 :3 ; q # q : ( ) q () q ( ) q 8 4 ) < / (8 3) (45) q x ( ) q (3) q ( z ( ) q () (5%) 4 (3) ( 9 ) (5) x qx x 3 94 x x : : q x 4 Q ;» ; < : : ; ;» x» > x : z ) Q x () 8 9 : \ : 8» 4 ( : q ( ) ( ( ) ) 8 : x 5 Y ; Y : q : Q () z Q ( ) 5 ( 7) (4) ( 7 ) 94 () : : 8 3 Y 6 7 # 5 Y Y Y x Q > Y Y Y Y Y 94 ; 3 x : x Z :5? Y 55 6 xx Y Y 3 q Y 6 98 ( \ q x x Y? x 3 ( 9? 6 xx Y z 5 8 Y 4 94 x x x x Z ; z 5 x z x > x : % z X Y z 6 x ( ) z x Y q z ( x ) : 4 x 4 < ( ; ( ) 8 ; > 8 5 Y x z :?? 7 5 :? z? z 8? x x 3 x q & z 4 x : z x 47? Y 4 9 9: :3 x z z ? : ; / Y Y Y z 3 ) Y 6:45 5 7:3 7:45 x 7 4 )

4 5 \ Y X> Y 6 ( ) Y ( ) 94 ) 8? 9 q Y» z z Y z 8[) z z: Y / z ; z x : Y x Y? z x 8 x : [ ; ; ; : z ; } Z» Q 8 x 8 9 q» x < # / x : 8 x / <? 8 >? > z / 8 :> /< < 8 88 x q :» ~ Y 8 <>< ( 4) < ] Y? x x x Y 8 q > x \ > Y x X ~8 : (5 9) 8 ~? 4% \» 7 4% 69 3/4 44? z Z / % ; 8 7 Y zz Y x 5 5 ( ) # q 7 56 ( ) : ( x x & 3 5 :? ( ) 7 x q x 85 8 ; 3 x : Q 8 % 9 8 Q» 9 ] z? 3? 5 [ 4? x 5 7 x x [»» ( 7) ( q 3 YY x 4 6 z 7» 5 Z 8 x Y 4 > ( 8) [ x x 3 3 x < z ( (94) z x x 94 [ Y Qz Q ( 6) <> 5 Y Y % Y 65 Y 69 Z & : 3: ;3 : X) x 4 :45 Z : : 678 7:5 Y 8: Z 8: : : Y 6:45 X Y 7:45 : 7:45 : Y 8: x : : x z : : Y : () : X ( )» 6 Z 87 3% x q# 9 9 x ( ) :3 x 8:4? 3 x ( 4:3) : z z Y x 8 : z 35 3 : z 94 (9 Q ) ( 57 6 ( 9:): ) ; x z q z 5 : z : 95): 6 z :5 :5 Y 845 Y x :3 x :3 : : : z Y : (»? 4 : 7:3 5 8: Y Y 53 8 q Y q { z ~ 5 5 7:45 ( : 5 x : 8 & z Y x x 3 x x : q 4 ): Y 48 q x x 8:3 : x : :5 4 Y x :3 : x z : ; 47 q :3 :8 7:8 : ] 3 8:3 5 < 35 5 x» 6 () Y 5 : 8 & : x ( 8 8 x ; Y 6 Y Y zz /? [ Y? Y 5 8 q q ( q z) 48 7

5 7 Y q & 9 > & & q & 7 \\ 8z & & 4 q x 3 7 x 3 x & 7 Q \ & 9 5 4z XY x Y 6 5 q» () ( ) ( )» > Y Q Q x Y Y Y Y 6? x) z z 4: ( )?? Y Z x x \ z ] z ( 7 6? : 85 ; 5 ; x 788 x 9648 Y Z & x 98: »>» & : 56 x x 7: :8 7% 6 z \ > : : Y Y Y ( Y z Y 4 Y z : Y 5% 8 q Q q Z : ; ; x 5 Y ; x 4 ; 5 : Y 8 / % 386 : ; x q z Q 6 z x z ; 3 q [ 7 7 : 76 q : : z z Y Y ; 4479 : ; Y z 34

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

County Council Named for Kent

County Council Named for Kent \ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n. - - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,. ? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>

More information

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.

r/lt.i Ml s. ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died. $ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -

More information

LOWHLL #WEEKLY JOURNAL.

LOWHLL #WEEKLY JOURNAL. # F 7 F --) 2 9 Q - Q - - F - x $ 2 F? F \ F q - x q - - - - )< - -? - F - - Q z 2 Q - x -- - - - 3 - % 3 3 - - ) F x - \ - - - - - q - q - - - - -z- < F 7-7- - Q F 2 F - F \x -? - - - - - z - x z F -

More information

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our

oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2

More information

PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >

PanHomc'r I'rui;* :.>r '.a'' W»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 > 5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos" l u T H I S COMMl'NiTY IN Wilcox

A L T O SOLO LOWCLL. MICHIGAN, THURSDAY. DECEMBER 10,1931. ritt. Mich., to T h e Heights. Bos l u T H I S COMMl'NiTY IN Wilcox G 093 < 87 G 9 G 4 4 / - G G 3 -!! - # -G G G : 49 q» - 43 8 40 - q - z 4 >» «9 0-9 - - q 00! - - q q!! ) 5 / : \ 0 5 - Z : 9 [ -?! : ) 5 - - > - 8 70 / q - - - X!! - [ 48 - -!

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G q G Y Y 29 8 $ 29 G 6 q )

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >

More information

Governor Green Triumphs Over Mudslinging

Governor Green Triumphs Over Mudslinging ; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;

More information

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday

ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday $ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL : Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital. G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -

More information

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday 1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F

More information

THE I Establiifrad June, 1893

THE I Establiifrad June, 1893 89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j

More information

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation ) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q

More information

LOWELL WEEKI.Y JOURINAL

LOWELL WEEKI.Y JOURINAL / $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»

More information

( ) y 2! 4. ( )( y! 2)

( ) y 2! 4. ( )( y! 2) 1. Dividing: 4x3! 8x 2 + 6x 2x 5.7 Division of Polynomials = 4x3 2x! 8x2 2x + 6x 2x = 2x2! 4 3. Dividing: 1x4 + 15x 3! 2x 2!5x 2 = 1x4!5x 2 + 15x3!5x 2! 2x2!5x 2 =!2x2! 3x + 4 5. Dividing: 8y5 + 1y 3!

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

Chapter 2: Heat Conduction Equation

Chapter 2: Heat Conduction Equation -1 General Relation for Fourier s Law of Heat Conduction - Heat Conduction Equation -3 Boundary Conditions and Initial Conditions -1 General Relation for Fourier s Law of Heat Conduction (1) The rate of

More information

' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru

' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &

More information

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding - G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8

More information

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA

Crew of25 Men Start Monday On Showboat. Many Permanent Improvements To Be Made;Project Under WPA U G G G U 2 93 YX Y q 25 3 < : z? 0 (? 8 0 G 936 x z x z? \ 9 7500 00? 5 q 938 27? 60 & 69? 937 q? G x? 937 69 58 } x? 88 G # x 8 > x G 0 G 0 x 8 x 0 U 93 6 ( 2 x : X 7 8 G G G q x U> x 0 > x < x G U 5

More information

.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,

.1 patedl-righl timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal, J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL W WY R G «( 5 R 5 Y q YG R ««W G WY Y 7 W \(\ 5 R ( W R R W ) W «W W W W< W ) W 53 R R Y 4 RR \ \ ( q ) W W X R R RY \ 73 «\ 2 «W R RG ( «q ) )[ 5 7 G ««R q ] 6 ) X 5 5 x / ( 2 3 4 W «(«\Y W Q RY G G )

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870.

M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870. 5 L V 8 5 x - L : L Q ) L - \ \ Q Q - V 84 z < L L 4 Y z ( (

More information

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017

Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017 Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still

More information

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X

More information

The minus sign indicates that the centroid is located below point E. We will relocate the axis as shown in Figure (1) and take discard the sign:

The minus sign indicates that the centroid is located below point E. We will relocate the axis as shown in Figure (1) and take discard the sign: AOE 304: Thin Walled Structures Solutions to Consider a cantilever beam as shown in the attached figure. At the tip of the beam, a bending moment M = 1000 N-m is applied at an angle θ with respect to the

More information

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]

More information

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. MATH 45 SAMPLE 3 SOLUTIONS May 3, 06. (0 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic. Because f is holomorphic, u and v satisfy the Cauchy-Riemann equations:

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in

and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in 5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\

More information

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM MA6-A Calculus III 6 Fall Midterm Solutions /8/6 8:AM ~9:5AM. Find the it xy cos y (x;y)(;) 3x + y, if it exists, or show that the it does not exist. Assume that x. The it becomes (;y)(;) y cos y 3 + y

More information

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7 Maxima and Minima Marius Ionescu November 5, 2012 Marius Ionescu () Maxima and Minima November 5, 2012 1 / 7 Second Derivative Test Fact Suppose the second partial derivatives of f are continuous on a

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

Lecture # 31. Questions of Marks 3. Question: Solution:

Lecture # 31. Questions of Marks 3. Question: Solution: Lecture # 31 Given XY = 400, X = 5, Y = 4, S = 4, S = 3, n = 15. Compute the coefficient of correlation between XX and YY. r =0.55 X Y Determine whether two variables XX and YY are correlated or uncorrelated

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

Lesson 24: Using the Quadratic Formula,

Lesson 24: Using the Quadratic Formula, , b ± b 4ac x = a Opening Exercise 1. Examine the two equation below and discuss what is the most efficient way to solve each one. A. 4xx + 5xx + 3 = xx 3xx B. cc 14 = 5cc. Solve each equation with the

More information

ACHD Roadways to Bikeways Update June Hills Gate Dr. Ec ho Summit Pl. Star Ridge Ln. Sunrise View Ln. Eagle Pointe Pl.

ACHD Roadways to Bikeways Update June Hills Gate Dr. Ec ho Summit Pl. Star Ridge Ln. Sunrise View Ln. Eagle Pointe Pl. v U v G G q G G z j v Q v v v v v v G v U v v v z K K z v J v v v G v v 16 z z v q v G v J J K:\_j\20\20987 - U\\ 1-4_24. - - 3:46 6/2/2017 O ( O) O z O O v v v v J J J G v O G J v z zz G v v Q zz / /

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. Y k p p Y < 5 # X < k < kk

More information

" W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. :

 W I T H M: A. L I G E T O ' W ^ P L D IST O ISTE -A-IsTD G H! A-I^IT Y IPO PL A.LI-i. : : D D! Y : V Y JY 4 96 J z z Y &! 0 6 4 J 6 4 0 D q & J D J» Y j D J & D & Y = x D D DZ Z # D D D D D D V X D DD X D \ J D V & Q D D Y D V D D? q ; J j j \V ; q» 0 0 j \\ j! ; \?) j: ; : x DD D J J j ;

More information

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by

and u and v are orthogonal if and only if u v = 0. u v = x1x2 + y1y2 + z1z2. 1. In R 3 the dot product is defined by Linear Algebra [] 4.2 The Dot Product and Projections. In R 3 the dot product is defined by u v = u v cos θ. 2. For u = (x, y, z) and v = (x2, y2, z2), we have u v = xx2 + yy2 + zz2. 3. cos θ = u v u v,

More information

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method

446 CHAP. 8 NUMERICAL OPTIMIZATION. Newton's Search for a Minimum of f(x,y) Newton s Method 446 CHAP. 8 NUMERICAL OPTIMIZATION Newton's Search for a Minimum of f(xy) Newton s Method The quadratic approximation method of Section 8.1 generated a sequence of seconddegree Lagrange polynomials. It

More information

Spring Nikos Apostolakis

Spring Nikos Apostolakis Spring 07 Nikos Apostolakis Review of fractions Rational expressions are fractions with numerator and denominator polynomials. We need to remember how we work with fractions (a.k.a. rational numbers) before

More information

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50 Sherif Khalifa Sherif Khalifa () Optimization 1 / 50 Y f(x 0 ) Y=f(X) X 0 X Sherif Khalifa () Optimization 2 / 50 Y Y=f(X) f(x 0 ) X 0 X Sherif Khalifa () Optimization 3 / 50 A necessary condition for

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

Chapter 6: Momentum Analysis

Chapter 6: Momentum Analysis 6-1 Introduction 6-2Newton s Law and Conservation of Momentum 6-3 Choosing a Control Volume 6-4 Forces Acting on a Control Volume 6-5Linear Momentum Equation 6-6 Angular Momentum 6-7 The Second Law of

More information

Math 10 - Unit 5 Final Review - Polynomials

Math 10 - Unit 5 Final Review - Polynomials Class: Date: Math 10 - Unit 5 Final Review - Polynomials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Factor the binomial 44a + 99a 2. a. a(44 + 99a)

More information

Quadratic Equations 6 QUESTIONS. Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6

Quadratic Equations 6 QUESTIONS. Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6 Quadratic Equations 6 QUESTIONS Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6 Questions www.tutornext.com Page 2 of 11 Q1. The factors of 2x² - 7x

More information

M5 Simple Beam Theory (continued)

M5 Simple Beam Theory (continued) M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

ELECTRIC SUN NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST :30-5:30 DAILY SAT. 10>00-5:30 OPEN TILL 9:00 P.M. THURS. "A Unisex Boutique*'

ELECTRIC SUN NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST :30-5:30 DAILY SAT. 10>00-5:30 OPEN TILL 9:00 P.M. THURS. A Unisex Boutique*' G Y Y 9 ] v- j $ G - v $ F v F v v - v G / $ v z - -! v - )v - v ( -! - - j---- - - - v v- - - - -! / j v - v G -

More information

MATH 19520/51 Class 5

MATH 19520/51 Class 5 MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential

More information

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form.

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Valentin Stockholm University October 2016 Revision: CNF and DNF of propositional

More information

" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.

 W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ;  * Jm MVERSEO IT. P Y V V 9 G G G -PP - P V P- P P G P -- P P P Y Y? P P < PG! P3 ZZ P? P? G X VP P P X G - V G & X V P P P V P» Y & V Q V V Y G G G? Y P P Y P V3»! V G G G G G # G G G - G V- G - +- - G G - G - G - - G

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

THE ERROR ELLIPSE. 2S x. 2S x and 2S y define the dimension of the standard error rectangle. S and S show estimated error in station in direction of

THE ERROR ELLIPSE. 2S x. 2S x and 2S y define the dimension of the standard error rectangle. S and S show estimated error in station in direction of THE ERROR ELLIPSE Y B 2Sy 2S x A X 2S x and 2S y define the dimension of the standard error rectangle. S and S show estimated error in station in direction of x y coordinate axes. However, position of

More information

Section A (not in the text) Which of the following are statements? Explain. 3. The President of the United States in 2089 will be a woman.

Section A (not in the text) Which of the following are statements? Explain. 3. The President of the United States in 2089 will be a woman. Math 299 Homework Assignment, Chapter 2 Section 2.1 2.A (not in the text) Which of the following are statements? Explain. 1. Let x be a positive integer. Then x is rational. 2. Mathematics is fun. 3. The

More information

Math 0320 Final Exam Review

Math 0320 Final Exam Review Math 0320 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Factor out the GCF using the Distributive Property. 1) 6x 3 + 9x 1) Objective:

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o V ()\\ ))? K K Y 6 96 Y - Y Y V 5 Z ( z x z \ - \ - - z - q q x x - x 5 9 Q \ V - - Y x 59 7 x x - Y - x - - x z - z x - ( 7 x V 9 z q &? - 9 - V ( x - - - V- [ Z x z - -x > -) - - > X Z z ( V V V

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS NON-LINEAR LINEAR (in y) LINEAR W/ CST COEFFs (in y) FIRST- ORDER 4(y ) 2 +x cos y = x 2 4x 2 y + y cos x = x 2 4y + 3y = cos x ORDINARY DIFF EQs SECOND- ORDER

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

The Finite Element Method

The Finite Element Method The Finite Element Method 3D Problems Heat Transfer and Elasticity Read: Chapter 14 CONTENTS Finite element models of 3-D Heat Transfer Finite element model of 3-D Elasticity Typical 3-D Finite Elements

More information

LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am, " 16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa

LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am,  16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa 4/X6 X 896 & # 98 # 4 $2 q $ 8 8 $ 8 6 8 2 8 8 2 2 4 2 4 X q q!< Q 48 8 8 X 4 # 8 & q 4 ) / X & & & Q!! & & )! 2 ) & / / ;) Q & & 8 )

More information

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7. Homework 8 Solutions, November 007. (1 We calculate some derivatives: f x = f y = x (x + y + 1 y (x + y + 1 x = (x + y + 1 4x (x + y + 1 4 y = (x + y + 1 4y (x + y + 1 4 x y = 4xy (x + y + 1 4 Substituting

More information

Wayfarer Traveler. The. Laura. Most of us enjoy. Family and multi-generational travel. The Luxury of Togetherness. Happy Traveling, Owner s

Wayfarer Traveler. The. Laura. Most of us enjoy. Family and multi-generational travel. The Luxury of Togetherness. Happy Traveling, Owner s 6, z j Kw x w 8- x - w w w; x w w z, K, x -, w w w, w! x w j w w x z w w J w w w, w w w x w w w w 6, w q, w x, w x x, w Q, w 3-, w,, -w 6 ;, w x w w-- w j -, -, x, - -,, -,, w,, w w w, w w w, - w, w,,

More information