3.14. The model of Haldane on a honeycomb lattice

Size: px
Start display at page:

Download "3.14. The model of Haldane on a honeycomb lattice"

Transcription

1 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity. C=0..9. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity. C=0..0. the top and? The top and has the opposite Chern numer C C. In fact, one can prove that for any tight-inding models, the total Chern numer for all the ands is always 0. So here, we have C C Summary This model has four phases. Two topological phases with C=+ and two trivial insulator phase with C=0. A topological phase and the trivial insulator phase are separated y a phase transition point, which is known as a topological phase transition. Across the topological phase transition, the topological index changes its value Across a topological transition, the insulating gap closes and then reopens (generically true) This is actually a generic statement: A and can only change its Chern numer y crossing with another and. i.e. At the topological transition point, the system must e a metal or a semi-metal (with no insulating gap). Gap closing is a necessary condition for a topological transition, ut it is not a sufficient one. One may close and reopen the gap without changing the topological index. e.g. the =0 point here..4. The model of Haldane on a honeycom lattice.4.. Honeycom lattice (graphene) Two sites per unit cell (two sulattices) a and (red and lack respectively). The green arrow indicates the lattice vectors v and v. If we shift the lattices y m v n v with m and n eing integers, the lattice is invariant. Vr Vr m v n v (.07) Define a to the length of the nearest-neighor (NN) onds, v a, 0 and v a, a If we only consider hoppings etween the nearest-neighor (NN) sites, the Hamiltonian is H t i, j a i j t i, j i a j (.08) where i,j means nearest neighors.

2 Phys60.n Band structures There are three type of NN onds: () along the y axis with =/, () along =/+/=7/6, () along =/+4/=/6. We need to write them out separately. with H t a i r i rie e 0, a t a i r i rie t a i r i rie h.c. (.09) (.0) e a, a (.) e a, a (.) Here the sum i sums over all unit cells (or say all red sites). Go to the momentum space using a D Fourier transformation a k N i a i k r (.) a i N k a k k r (.4) k N i a i k r (.5) i N k a k k r (.6) The first term in the Hamiltonian t i a ri rie t N i k k' t k k' a k k' k' e N i k r a k k i k' rie k' k' r i t k a k' k k' k' e k,k' t k a k k k' e (.7) This is generically true. By going to the k space, one just need to change a ri rie into a k k and change i (sum over all unit cells) into k (sum over all momentum points), and the coefficient is t exp k r a r with r a and r eing the coordinates of site a and. H t i a ri rie t i a ri rie t i a ri rie h.c. e t a k k k k ke k k a k k 0 k k 0 e a k k t k k a k k e k e k e (.8) k texp k e exp k e exp k e (.9) k k texp k e exp k e exp k e (.0)

3 44 Phys60.n The kernel of the Hamiltonian: k 0 k k 0 (.) The eigenvalues of (k) gives the dispersion relation. k k t cos k x a 4 cos k x a Cos k y a (.) The contour plot of the energy dispersion for the lower and ( as a function of k x and k y ). The red dash lines mark the first BZ, which is a hexagon. The dispersion is a periodic function of k space (the hexagon repeats itself in the figure shown aove). For the lower and, its energy minimum is located at k 0. The maximum of is reached at the corners of the BZ. The first BZ is a hexagon. It has six corners. However, due to the periodic structure in k-space, the three corner points with =0, =/ and =4/ are the same point (their momenta differ y precisely one periodicity). Similarly, the three corners with =, =+/ and =+4/ are the same points. Therefore, there are only two different corner points and they are known as the K and K points, where K 4, 0 a (.) and K ' 4, 0 a (.4) For most momentum points, one of the two ands has positive energy 0 and the other one has negative energy 0. However at the corner of the BZ, K and K, the two ands are degenerate 0.

4 Phys60.n 45 K K t cos k x a 4 cos k x a Cos k y a t cos 4 a 4 cos a 4 a Cos a 0 t cos 4 4 cos t 4 0 Two ands have the same energy at K and K : and crossing points. The energy dispersion for oth ands ( as a function of k x and k y ) in the first BZ (within the red dash lines mark in the figure aove). Near K or K points, the dispersion for the two ands are linear k K. To see this, we expand k near k K and k K ' k K q t cos 4 q x a a 4 cos 4 q x a Cos a q y a (.6) t a q x q y Oq t a q Oq k K ' q t a q Oq (.7) Zoom in near the K points. Q: Fermions with linear dispersion k, what is that? A: A Massless Dirac fermion.

5 46 Phys60.n k K q t a 0 q x q y q x q y 0 Oq t a q x x q y y c q (.8) k K ' q t a 0 q x q y q x q y 0 Oq t a q x x q y y c q x x (.9) where c is the speed of light. Each of them is a Weyl fermion. These two Weyl fermions with opposite chirality forms a Dirac fermion. Dirac fermions we learned in quantum mechanics: t 0 c q c q 0 (.0) If one make an unitary transformation (changing the asis, which doesn t change any physics) ' (.) The equation turns into t ' c q x x 0 0 c q ' (.) The Dirac point (and crossing points) in a honeycom lattice is stale as long as the space inversion symmetry r r and the time reversal symmetry t t are preserved. We will come ack to this point latter. No matter how one pertur the systems (e.g. adding longer-range hoppings), the Dirac point is always there as long as the two symmetries mentioned aove are preserved. For graphene, the lower and is filled and the upper and is empty, which is known as half-filling. The half here means that the numer of electrons N e over the numer of sites N s is N e N S. However, it is worthwhile to notice that the ratio etween N e and the numer of unit cells N is, ecause there are two sites in each unit cell. So one of the two ands are totally filled. By gating, one can turn the energy level slightly away from the middle point..4.. Aharonov Bohm effect and complex hopping Q: Can hopping strength t e complex? A: Yes, and the phase can come from the Aharonov Bohm effect in the presence of a magnetic field or spin-orital couplings. The Aharonov Bohm effect:if one moves a particle around a closed contour. The phase difference etween the final and initial states is proportional to the magnetic flux enclosed y the contour e B S e A. l Discrete version on a lattice: Consider three sites a, and c. The hopping strength etween these three sites are t a t c and t ca respectively. If a particle hops from a to and then to c, the hopping strength around this loop is: t a t c t ca t a a t c c t ca ca t a t c t ca acca The phase picked up y the electron is: (.) a c ca e B S (.4) If B is nonzero inside the triangle formed y these three sites, the phase for these hoppings are nonzero. Please notice that: t a and t a has opposite phase, due to the Hermitian condition (One can also prove this using the Fermi s golden rule, which says that the tunneling amplitude from the state f> to i> is the complex conjugate of the tuning amplitude from i> to f>). t a t a (.5)

6 Phys60.n 47 The individual phases for t a, t c and t ca have no physical meaning and they are in fact gauge dependent. Only the total phase on a loop has physical meanings. a e a A l (.6) Underage transformation: A A a a ' e a A l e a A l e a l a a e (.7) Oviously, a is not a physical oservales, since it relies on the gauge choice. However, the total phase around a loop is different. It is a loop integral of A, which is gauge independent and the physics meaning of this Integral is the magnetic flux. a c ca e A l a ' c ' ca ' e A l e A l e l e A l a c ca (.8) The complex hopping strength induced y B fields reaks the time-reversal symmetry ecause B B under time reversal. (in other words, under time-reversal one need to flip the sign of all these phases) Complex next-nearest-neighor (NNN) hoppings (reaking T-symmetry using B fields) Ref: F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the Parity Anomaly, Phys. Rev. Lett. 6, (988). Now let us add some NNN hoppings and assume their hopping amplitudes are complex. For simplicity, we choose the amplitude and the complex phase to e the same for all NNN onds. If the hopping is along the arrows marked in the figure, the phase of the hopping strength is. If one hops in the opposite direction, the phase is -. This complex phases can e realized (in theory) y applying a staggered B field, which is positive near the center of each hexagon and negative near the edges. The NNN hoppings are from an a-site to an a-site (and from a -site to a -site). For a-to-a hoppings, there are three different types of NNN onds, along =0, / and 4/. Same is true for -to- hoppings. So the Hamiltonian is: H NNN t ' i a ri a riv t ' i a riv a riv t ' i a riv a ri h.c.a and (.9) Here, v and v are marked on the first figure of this section with v a, 0 and v a, a. v a, a

7 48 Phys60.n H NNN t ' i a ri a riv t ' i a riv a riv t ' i a riv a ri h.c.a and t ' k a k a k kv kv kv h.c. a and t ' k a k a k cosk v cosk v cosk v (.40) t ' k k k cosk v cosk v cosk v H H NN H NNN k a k k k k k k a k k (.4) k t k' e k' e k' e (.4) k k t k' e k' e k' e k t ' cosk v cosk v cosk v k t ' cosk v cosk v cosk v (.4) (.44) (.45) If one computes the eigenvalues of (k), one find that the two ands never cross with each other for any k (if t is non-zero and is NOT an integer times ). The energy dispersion for oth ands ( as a function of k x and k y ) in the first BZ (within the red dash lines mark in the figure aove). Using Pauli matrices: 0 k I x k x y k y z k z 0 k k t ' cos cosk v cosk v cosk v z k k t ' sin sink v sink v sink v x Re k tcosk e cosk e cosk e (.46) (.47) (.48) (.49) y Im k tsink e sink e sink e (.50) The energy dispersions: k 0 k x k y k z k (.5) Without the complex NNN hoppings, 0 z 0, so the dispersion k x k y k (.5)

8 Phys60.n 49 At K and K, x y 0, so the two ands degenerate (without the complex NNN hoppings) k 0 (.5) which gives the Dirac points. Now, with these complex NNN hoppings, At K and K points, x y 0, ut z 0. The gap etween the two ands: k k x k y k z k (.54) At K or K, the gap is: k k x k y k z k z k K 6 t ' sin (.55) In fact, at the K point, z at the K point z t ' sin t ' sin (.56) (.57) They have opposite signs (as long as is not n ). Based on what we learned last time, this means that one cannot define the wavefunction in the whole BZ. We need to cut the systems into two regions. The region I contains the K point, the region II contains the K points. And we need to use different eigenvectors for these two regions. Using the same method we learned in the last lecture, one finds that the Chern numer here is ±. If one choose the oundary etween region I and II to e very close to the K or K points, one find that: k z k xk yk z k x k y k x k y k q x q y q x q y (.58) xk yk.4.5. Potential energy (reaking inversion symmetry) Let s keep NNN hoppings to e zero for now and add some potential energy to the Hamiltonian to see whether we can open a gap to get an insulator. H Potential V M i a i a i V M i i i V N M i a i a i M i i i (.59) The V part (average potential etween a and sites) just adds a constant term to the energy, since the total particle numer N is conserved. So we can drop the V term and only consider the difference etween the potential energies at a and sites (M). In k-space H Potential M i a i a i M i i i M k a k a k M k k k k a k k M z a k k (.60) It adds a z component to the Hamiltonian. Same as the NNN complex hopping, this term also opens a gap at the Dirac point. If we add this term to the Hamiltonian without the complex NNN hoppings, the gap is M at K and K, and the system is a trivia insulator at half-filling. Q: What will happen if we have oth H Potential and H NNN? A: We just need to look at the signs of z at K and K points. If they have the same sign, we can use one wavefunction to cover the whole BZ, so C=0 (trivial insulator). If they have opposite signs, the system is a topological insulator with C=± At the K point, z M at the K point t ' sin (.6)

9 50 Phys60.n z M t ' sin (.6) Therefore, as long as M t ' sin, the system is an topological insulator ( z flips sign). If M t ' sin, z is always positive (or negative) and thus the system is topologically trivial. The marginal case M t ' sin is a topological transition. Here, z 0 at either the K point or the K point. Because x y 0 at these two points, the gap must e zero at one of the two points. So there is a and crossing in the system (either at K o K, depending on the sign of M ant t sin ) and the system is not an insulator. The insulating gap is closed at the topological transition point. Remarks: The model of Haldane is the first example of a topological insulator eyond quantum Hall effect. It demonstrates that topological insulator is a generic concept, which may appear in any insulating systems (NOT just quantum Hall). It also demonstrates that as long as the topological index is nonzero, one will oserve all the topological phenomena expected for a quantum Hall state, including the quantized Hall conductivity and the existence of the edge states. The key differences etween the model of Haldane and the quantum Hall effects are () the B field is on average zero in the model of Haldane while the QHE has a uniform B field and () there is a very strong lattice ackground in the model of Haldane while the QHE requires weak lattice potential. Systems similar to the Haldane s model are known as topological Chern insulators or Chern insulators (average B is 0 and have a strong lattice potential). But sometimes, Chern insulator are also used to refer to the quantum Hall effect. The model of Haldane is also the foundation to explore more complicated and exotic topological states. For example, the time-reversal invariant topological insulators was first proposed using a modified Haldane s models, which we will study latter in the semester.

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Tight-binding models tight-binding models. Phys540.nb Example 1: a one-band model

Tight-binding models tight-binding models. Phys540.nb Example 1: a one-band model Phys540.nb 77 6 Tight-binding models 6.. tight-binding models Tight-binding models are effective tools to describe the motion of electrons in solids. Here, we assume that the system is a discrete lattice

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models

Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Two Dimensional Chern Insulators, the Qi-Wu-Zhang and Haldane Models Matthew Brooks, Introduction to Topological Insulators Seminar, Universität Konstanz Contents QWZ Model of Chern Insulators Haldane

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Reference: Bernevig Topological Insulators and Topological Superconductors Tutorials:

More information

ĝ r = {R v} r = R r + v.

ĝ r = {R v} r = R r + v. SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS134 Topological semimetal in a fermionic optical lattice Kai Sun, 1 W. Vincent Liu,, 3, 4 Andreas Hemmerich, 5 and S. Das Sarma 1 1 Condensed Matter Theory Center

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Topological insulators. Pavel Buividovich (Regensburg)

Topological insulators. Pavel Buividovich (Regensburg) Topological insulators Pavel Buividovich (Regensburg) Hall effect Classical treatment Dissipative motion for point-like particles (Drude theory) Steady motion Classical Hall effect Cyclotron frequency

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Topological Properties of Quantum States of Condensed Matter: some recent surprises. Topological Properties of Quantum States of Condensed Matter: some recent surprises. F. D. M. Haldane Princeton University and Instituut Lorentz 1. Berry phases, zero-field Hall effect, and one-way light

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013 Berry phase and the unconventional quantum Hall effect in graphene Jiamin Xue Microelectronic Research Center, The University arxiv:1309.6714v1 [cond-mat.mes-hall] 26 Sep 2013 of Texas at Austin, Austin,

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by

where a is the lattice constant of the triangular Bravais lattice. reciprocal space is spanned by Contents 5 Topological States of Matter 1 5.1 Intro.......................................... 1 5.2 Integer Quantum Hall Effect..................... 1 5.3 Graphene......................................

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

Gapless Fermions and Quantum Order

Gapless Fermions and Quantum Order Gapless Fermions and Quantum Order X. G. Wen 1,3 & A. Zee 2,3 1 Department of Physics, Massachusetts Institute of Technology Cambridge, Massachusetts 02139, USA http://dao.mit.edu/ wen 2 Institute for

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012

arxiv: v2 [cond-mat.mes-hall] 27 Dec 2012 Topological protection of bound states against the hybridization Bohm-Jung Yang, 1 Mohammad Saeed Bahramy, 1 and Naoto Nagaosa 1,2,3 1 Correlated Electron Research Group (CERG), RIKEN-ASI, Wako, Saitama

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Spin Peierls Effect in Spin Polarization of Fractional Quantum Hall States. Surface Science (2) P.1040-P.1046

Spin Peierls Effect in Spin Polarization of Fractional Quantum Hall States. Surface Science (2) P.1040-P.1046 Title Author(s) Spin Peierls Effect in Spin of Fractional Quantum Hall States Sasaki, Shosuke Citation Surface Science. 566-568(2) P.1040-P.1046 Issue Date 2004-09-20 Text Version author URL http://hdl.handle.net/11094/27149

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

physics Documentation

physics Documentation physics Documentation Release 0.1 bczhu October 16, 2014 Contents 1 Classical Mechanics: 3 1.1 Phase space Lagrangian......................................... 3 2 Topological Insulator: 5 2.1 Berry s

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m. Fractionalization of charge and statistics in graphene and related structures M. Franz University of British Columbia franz@physics.ubc.ca January 5, 2008 In collaboration with: C. Weeks, G. Rosenberg,

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

ASHVIN VISHWANATH HARVARD UNIVERSITY, USA.

ASHVIN VISHWANATH HARVARD UNIVERSITY, USA. BOULDER SUMMER SCHOOL LECTURE NOTES TOPOLOGICAL SEMIMETALS AND SYMMETRY PROTECTED TOPOLOGICAL PHASES ASHVIN VISHWANATH HARVARD UNIVERSITY, USA. In the previous lectures you have heard about topological

More information

Weyl fermions and the Anomalous Hall Effect

Weyl fermions and the Anomalous Hall Effect Weyl fermions and the Anomalous Hall Effect Anton Burkov CAP congress, Montreal, May 29, 2013 Outline Introduction: Weyl fermions in condensed matter, Weyl semimetals. Anomalous Hall Effect in ferromagnets

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

SSH Model. Alessandro David. November 3, 2016

SSH Model. Alessandro David. November 3, 2016 SSH Model Alessandro David November 3, 2016 Adapted from Lecture Notes at: https://arxiv.org/abs/1509.02295 and from article: Nature Physics 9, 795 (2013) Motivations SSH = Su-Schrieffer-Heeger Polyacetylene

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Integer quantum Hall effect for bosons: A physical realization

Integer quantum Hall effect for bosons: A physical realization Integer quantum Hall effect for bosons: A physical realization T. Senthil (MIT) and Michael Levin (UMCP). (arxiv:1206.1604) Thanks: Xie Chen, Zhengchen Liu, Zhengcheng Gu, Xiao-gang Wen, and Ashvin Vishwanath.

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Dirac and Weyl fermions in condensed matter systems: an introduction

Dirac and Weyl fermions in condensed matter systems: an introduction Dirac and Weyl fermions in condensed matter systems: an introduction Fa Wang ( 王垡 ) ICQM, Peking University 第二届理论物理研讨会 Preamble: Dirac/Weyl fermions Dirac equation: reconciliation of special relativity

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Magnetic fields and lattice systems

Magnetic fields and lattice systems Magnetic fields and lattice systems Harper-Hofstadter Hamiltonian Landau gauge A = (0, B x, 0) (homogeneous B-field). Transition amplitude along x gains y-dependence: J x J x e i a2 B e y = J x e i Φy

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Floquet Topological Insulator:

Floquet Topological Insulator: Floquet Topological Insulator: Understanding Floquet topological insulator in semiconductor quantum wells by Lindner et al. Condensed Matter Journal Club Caltech February 12 2014 Motivation Motivation

More information

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Disordered topological insulators with time-reversal symmetry: Z 2 invariants Keio Topo. Science (2016/11/18) Disordered topological insulators with time-reversal symmetry: Z 2 invariants Hosho Katsura Department of Physics, UTokyo Collaborators: Yutaka Akagi (UTokyo) Tohru Koma

More information

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101 Phys463.nb 101 10 Supercondcutor 10.1. Experimental phenomena 10.1.1. zero resistivity The resistivity of some metals drops down to zero when the temperature is reduced below some critical value T C. Such

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son (University of Chicago) Cold atoms meet QFT, 2015 Ref.: 1502.03446 Plan Plan Composite fermion: quasiparticle of Fractional Quantum Hall Effect (FQHE)

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

doi: /PhysRevB

doi: /PhysRevB doi: 10.1103/PhysRevB.70.05450 PHYSICAL REVIEW B 70, 05450 (004) Superconductivity and Abelian chiral anomalies Y. Hatsugai* and S. Ryu Department of Applied Physics, University of Tokyo, 7-3-1, Hongo,

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

10 Lorentz Group and Special Relativity

10 Lorentz Group and Special Relativity Physics 129 Lecture 16 Caltech, 02/27/18 Reference: Jones, Groups, Representations, and Physics, Chapter 10. 10 Lorentz Group and Special Relativity Special relativity says, physics laws should look the

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Outline of Talk. Chern Number in a Band Structure. Contents. November 7, Single Dirac Cone 2

Outline of Talk. Chern Number in a Band Structure. Contents. November 7, Single Dirac Cone 2 Chern Number in a Band Structure November 7, 06 Contents Single Dirac Cone QAHE in TI. SS Hamiltonian in thick limit..................................... SS Hamiltonians with coupling...................................

More information

Interband effects and orbital suceptibility of multiband tight-binding models

Interband effects and orbital suceptibility of multiband tight-binding models Interband effects and orbital suceptibility of multiband tight-binding models Frédéric Piéchon LPS (Orsay) with A. Raoux, J-N. Fuchs and G. Montambaux Orbital suceptibility Berry curvature ky? kx GDR Modmat,

More information

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation V Contents Preface XI Physical Constants, Units, Mathematical Signs and Symbols 1 Introduction 1 1.1 Carbon Nanotubes 1 1.2 Theoretical Background 4 1.2.1 Metals and Conduction Electrons 4 1.2.2 Quantum

More information

Impurity States in Chern Insulators by

Impurity States in Chern Insulators by UNIVERSITY COLLEGE UTRECHT Impurity States in Chern Insulators by Bram Boomsma (3991989) Under the supervision of Dr. Lars Fritz Research Thesis (UCSCIRES32) 30 June 2015 Abstract This thesis examines

More information

Fermi liquids and fractional statistics in one dimension

Fermi liquids and fractional statistics in one dimension UiO, 26. april 2017 Fermi liquids and fractional statistics in one dimension Jon Magne Leinaas Department of Physics University of Oslo JML Phys. Rev. B (April, 2017) Related publications: M Horsdal, M

More information

Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z2 topological order

Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z2 topological order Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z topological order The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Luttinger Liquid at the Edge of a Graphene Vacuum

Luttinger Liquid at the Edge of a Graphene Vacuum Luttinger Liquid at the Edge of a Graphene Vacuum H.A. Fertig, Indiana University Luis Brey, CSIC, Madrid I. Introduction: Graphene Edge States (Non-Interacting) II. III. Quantum Hall Ferromagnetism and

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids Kai Sun Collaborator: Eduardo Fradkin Spontaneous Time-Reversal Symmetry Breaking Ferromagnetic T Non-ferromagnetic?

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Phase transition and spontaneous symmetry breaking

Phase transition and spontaneous symmetry breaking Phys60.nb 111 8 Phase transition and spontaneous symmetry breaking 8.1. Questions: Q1: Symmetry: if a the Hamiltonian of a system has certain symmetry, can the system have a lower symmetry? Q: Analyticity:

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Exploring topological states with synthetic matter Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE,

More information

Floquet theory of photo-induced topological phase transitions: Application to graphene

Floquet theory of photo-induced topological phase transitions: Application to graphene Floquet theory of photo-induced topological phase transitions: Application to graphene Takashi Oka (University of Tokyo) T. Kitagawa (Harvard) L. Fu (Harvard) E. Demler (Harvard) A. Brataas (Norweigian

More information

Antiferromagnetic topological insulators

Antiferromagnetic topological insulators Antiferromagnetic topological insulators Roger S. K. Mong, Andrew M. Essin, and Joel E. Moore, Department of Physics, University of California, Berkeley, California 9470, USA Materials Sciences Division,

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Classification of Symmetry Protected Topological Phases in Interacting Systems

Classification of Symmetry Protected Topological Phases in Interacting Systems Classification of Symmetry Protected Topological Phases in Interacting Systems Zhengcheng Gu (PI) Collaborators: Prof. Xiao-Gang ang Wen (PI/ PI/MIT) Prof. M. Levin (U. of Chicago) Dr. Xie Chen(UC Berkeley)

More information

hep-lat/ Dec 94

hep-lat/ Dec 94 IASSNS-HEP-xx/xx RU-94-99 Two dimensional twisted chiral fermions on the lattice. Rajamani Narayanan and Herbert Neuberger * School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton,

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

Tutorial: Berry phase and Berry curvature in solids

Tutorial: Berry phase and Berry curvature in solids Tutorial: Berry phase and Berry curvature in solids Justin Song Division of Physics, Nanyang Technological University (Singapore) & Institute of High Performance Computing (Singapore) Funding: (Singapore)

More information

Distribution of Chern number by Landau level broadening in Hofstadter butterfly

Distribution of Chern number by Landau level broadening in Hofstadter butterfly Journal of Physics: Conference Series PAPER OPEN ACCESS Distribution of Chern number by Landau level broadening in Hofstadter butterfly To cite this article: Nobuyuki Yoshioka et al 205 J. Phys.: Conf.

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Topological Semimetals

Topological Semimetals Chapter Topological Semimetals *Short summary for online In a lattice model for a d dimensional topological insulator, transitions between topological and trivial regimes can be induced by tuning some

More information

Majorana Fermions in Superconducting Chains

Majorana Fermions in Superconducting Chains 16 th December 2015 Majorana Fermions in Superconducting Chains Matilda Peruzzo Fermions (I) Quantum many-body theory: Fermions Bosons Fermions (II) Properties Pauli exclusion principle Fermions (II)

More information

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms

Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Manipulation of Artificial Gauge Fields for Ultra-cold Atoms Shi-Liang Zhu ( 朱诗亮 ) slzhu@scnu.edu.cn Laboratory of Quantum Information Technology and School of Physics South China Normal University, Guangzhou,

More information

arxiv: v2 [cond-mat.str-el] 22 Oct 2018

arxiv: v2 [cond-mat.str-el] 22 Oct 2018 Pseudo topological insulators C. Yuce Department of Physics, Anadolu University, Turkey Department of Physics, Eskisehir Technical University, Turkey (Dated: October 23, 2018) arxiv:1808.07862v2 [cond-mat.str-el]

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information