SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 Observation of unconventional edge states in photonic graphene Yonatan Plotnik 1 *, Mikael C. Rechtsman 1 *, Daohong Song 2 *, Matthias Heinrich 3, Julia M. Zeuner 3, Stefan Nolte 3, Yaakov Lumer 1, Natalia Malkova 4, Jingjun Xu 2, Alexander Szameit 3, Zhigang Chen 2,4, Mordechai Segev 1 1 Technion - Israel Institute of Technology, Technion City 32000, Haifa, Israel 2 The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education and TEDA Applied Physical School, Nankai University, Tianjin , China 3 Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, Jena, Germany 4 Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA CONTENTS Experimental Setup... 2 Optically-induced photonic honeycomb lattices... 2 Photonic honeycomb lattices fabricated via femtosecond direct laser writing... 4 Extended tight binding derivation and the origin of the novel edge states... 5 Derivation of additional terms in coupled mode theory (tight-binding)... 5 Implementing the extended tight-binding model to understand the origin of the newly found edge state... 7 Relation to edge states in photonic crystals... 8 Bibliography... 9 NATURE MATERIALS 1

2 EXPERIMENTAL SETUP Optically-induced photonic honeycomb lattices Our first experimental setup (see Fig. S1) relies on the optical induction method 1,2 which is used to create a honeycomb waveguide array in a photorefractive strontium barium niobate (SBN) crystal. We examine the edge states by launching a tightly focused probe beam along the surface of the photonic lattice, and monitor its transverse intensity pattern exiting the lattice. To do that, we use a beam from an argon-ion laser operating at 488nm wavelength and split it into two beams, one for writing the waveguide array pattern into the crystal, and the other for probing the written structure. The writing beam passes through a rotating diffuser, turning into partially spatial incoherent, before it is sent through a specially designed amplitude mask 3. The mask generates three interfering beams that together generate a triangular lattice interference pattern. Such a pattern remains invariant during linear propagation through the crystal, except for slight deformation and diffraction at the edge of the lattice. To generate a honeycomb lattice with the desired edge structure, as illustrated in Fig. 2(a), we employ self-defocusing nonlinearity on the triangular intensity pattern 4 (Fig. 2(a), bright spots). Specifically, we apply a DC electric field parallel to the crystalline c-axis of the ferroelectric crystal in the direction perpendicular to the propagation axis, and set the polarity of the bias voltage such that it gives rise to a selfdefocusing nonlinearity 4. Under these conditions, the refractive index is lowered in regions where the intensity is high, and consequently the triangular interference pattern is transformed into its "negative": a honeycomb pattern of waveguides 4 (Fig. 2(a), blue spots), in the same structure as the insert in Fig. S1. In this way, we establish an array of waveguides residing in the gaps between regions of high intensity, a honeycomb lattice with sharp edges that remain invariant during propagation throughout the crystal. The probe beam is affected by the induced refractive index pattern (lattice) and propagates under the influence thereof. In the experiment, the probe beam is cylindrically focused into a narrow stripe beam along edge of the lattice, and is launched onto the edge waveguides. This method allows us to probe the armchair and the zigzag edges of the induced honeycomb lattice. 2 NATURE MATERIALS

3 SUPPLEMENTARY INFORMATION Figure S1: Experimental setup for generating the optically-induced honeycomb photonic lattice (top-right insert), and for probing the lattice edges with an appropriately oriented stripe beam. NATURE MATERIALS 3

4 Photonic honeycomb lattices fabricated via femtosecond direct laser writing Our second experimental setup (Fig. S2) relies on employing a honeycomb arrangement of waveguides written using the femtosecond direct laser writing technique in fused silica 5. This technique facilitates very sharp edges, which are crucial specifically for testing the dispersion properties of the edge states (Fig. 1(c) in the paper). To probe the edge states and their dependence on the launch angle (transverse momentum), we launch a beam on both zigzag and bearded edges, while controlling the incident angle of the probe beam launched onto the input facet of the array. For probing both the zigzag and the bearded edges, we use an array that has one of each kind of edge on opposite sides of the array. We shape the probe beam using an adjustable rectangular slit, and image its Fourier transform (with appropriate demagnification) on a rotatable mirror. Using a 4-f system (two identical lenses at a distance of 2f from one another), we image the beam from the face of the mirror onto the face of the fused silica sample. This allows us to control the input angle of the beam by rotating the mirror, while maintaining its shape. By controlling the input angle, we control the transverse wavevector, k x, of the input beam and are able to scan the through transverse wavevector in search of edge confinement due to the existence of edge states. Figure S2: Experimental setup for probing the dispersion properties of edge states in the honeycomb photonic lattice written in fused silica 4 NATURE MATERIALS

5 SUPPLEMENTARY INFORMATION EXTENDED TIGHT BINDING DERIVATION AND THE ORIGIN OF THE NOVEL EDGE STATES Derivation of additional terms in coupled mode theory (tight-binding) In this Appendix, we elaborate on the derivation of the additional terms in the tight-binding scheme and investigate their origin. The tight-binding scheme enables writing a Hamiltonian of a system in a basis composed of the bound states of individual potential wells, which in a photonic lattice correspond to optical waveguides. For the case described in our paper, the system is a laser beam propagating paraxially in a waveguide array, but our analysis also applies to electrons (where spin is neglected) in an array of potential wells (like the potentials generated by nuclei in a solid). We start by defining to be the potential well of site n, and as the ground state eigenmode of the Schrödinger equation within that potential, i.e. (S1) Where is the spatial Laplacian in two dimensions. The wavefunctions will be the basis functions for our Hamiltonian matrix, so let us define. By limiting ourselves to this basis, we are making the first approximation of the tight binding model. In most cases, this is an excellent approximation, as is the case considered here. Our goal is to find the matrix operator that determines the time evolution of the coefficients in the subspace spanned by this limited basis. The Schrödinger equation describing the whole lattice of potential wells is: (S2) Substituting the definition of into equation (S1), and using equation (S2), we find. (S3) We multiply (S3) from the left with and get (S4) NATURE MATERIALS 5

6 We can write this in matrix form: (S5) Where we used the definition. Finally, we multiply on the left by : (S6) Let us now interpret the different terms as labeled in (S4) and consider reasonable approximations that can be made. The matrix S is the overlap matrix between the different basis modes. The diagonal entries of this matrix are each unity, as the modes are normalized. In general, the off-diagonal terms are non-zero since the modes are not orthogonal, but they are significantly smaller than one, and thus can be neglected at first order and S becomes the identity matrix. The terms in C are the well-known coupling terms. The first approximation to these terms is made by taking into account only the on-site potential in calculating, and thus it becomes. A second approximation is to assume that is small for nonneighboring sites and thus can be taken to be zero for sites far enough away from each other. The last term to discuss is, which is the correction to the on-site energy due to the potential of the neighboring sites. The terms of this diagonal matrix are usually much smaller than the terms in the coupling matrix, and are thus usually neglected. Moreover, in a periodic or infinite lattice system, all the elements of are equal, and thus, if S is taken to be unity, can be taken to be zero (as it only shifts the energy of all the modes equally). In the cases where the system is a finite lattice, (namely, our system) the elements of representing the lattice edge sites may be significantly different than the lattice bulk sites, as they have a different number of neighbors. Specifically, the sites on the bearded edge of a honeycomb lattice have only 1 neighbor and, thus are significantly different than the bulk sites which have 3 neighbors, creating an effective defect on the lattice edge. 6 NATURE MATERIALS

7 SUPPLEMENTARY INFORMATION Implementing the extended tight-binding model to understand the origin of the newly found edge state Implementing this extended tight binding model in our honeycomb lattice, and going beyond the first order approximations, we find that while the overlap term S and non-nearest-neighbor couplings in C only distort the band structure but do not add new features to it, the diagonal term may add additional features. In infinite crystals or purely periodic structures, all the elements in are identical and can usually be ignored, but in a finite system, the elements of the edge sites are different than those of the bulk. This means that an effective-defect is formed at the array edge, and can cause a Tamm-like edge state to appear at k x =π/a. The issue of why the edge state appears at exactly k x =π/a merits further discussion. It has been shown rigorously 6 that very small edge perturbations (such as defects or dilations of the bond length) can cause edge states to emerge at points in the edge Brillouin zone with zero dispersion in the direction transverse to the edge (i.e., the values of k x for which ), where represents the bulk band structure. This is indeed the case at k x =π/a. It follows 6 that the total lack of dispersion perpendicular to the edge (due to this degeneracy) causes any edge perturbation to localize energy on the edge, rather than allowing it to disperse into the bulk. It can therefore be argued that the edge itself is acting as a sufficient perturbation to induce the edge state, but only near the van Hove singularity at k x =π/a, where the spatial dispersion perpendicular to the edge is extremely low. In other words, because the effective-defect is usually very small (compared to the coupling constants C), it significantly affects the band structure only at points where C does not, namely, at the van-hove singularities, where all modes are degenerate. At these points any slight edge defect affects the spectrum of the eigenmodes and gives rise to Tamm-like edge states. Numerical simulations of the extended tight binding model support this finding, because when a term is added to the tight binding Hamiltonian, the edge modes appear, and have the same features seen in the continuum simulations as shown in Fig. 4(i). NATURE MATERIALS 7

8 RELATION TO EDGE STATES IN PHOTONIC CRYSTALS Our experiments in 'photonic graphene' (honeycomb lattices of optical waveguides) call for an explanation on the relation to edge states in photonic crystals and photonic crystal slabs. Surface and edge physics in photonic systems have been studied previously in the context of photonic crystals 7 and lattices 8,9. Theoretical work has predicted edge states in photonic graphene 10,11,12 that terminate at Dirac cones, and experiments in the microwave regime have observed edge states in macroscopic graphene-like structures 13,14. However, those microwave experiments did not have momentum resolution, meaning the states could not be classified by their location in the Brillouin zone, hence many questions remained open and many assertions remained untested. In the current work, we address such questions, and most importantly we find a new type of edge state that has not been observed nor predicted as of yet. An additional point to be emphasized, as explained in the paper, is that the propagation of electromagnetic waves in paraxial photonic lattices is described by the paraxial wave equation, which is analogous to the Schrödinger equation. As such, there are significant differences between them and photonic crystals, which do not conform to the paraxial wave equation but to the full Maxwell equations. For example, in the context of waves in graphene-like structures, honeycomb photonic lattices display Dirac points just like carbon-based graphene does, with analogous features, whereas three-dimensional photonic crystals display Weyl points with very different properties 15. Likewise, the edge states in photonic crystals and photonic crystal slabs are different than those in 'photonic graphene' and of electronic carbon-based graphene, as they are not strictly confined to the lattice and radiate away since photonic crystal modes are never bound. To conclude, the effects measured in photonic crystal systems, while interesting, have little to do with the current work, and the differences between photonic crystals and waveguide arrays mean that physical effects of photonic crystal edge states cannot be carried over to electronic systems (e.g., graphene) because their behavior is governed by a different wave equation, while the results measured in a waveguide array system can be easily carried over to electronic systems as they are both governed by the Schrödinger equation. 8 NATURE MATERIALS

9 SUPPLEMENTARY INFORMATION BIBLIOGRAPHY 1. Efremidis, N. K., Sears, S., Christodoulides, D. N., Fleischer, J. W. & Segev, M. Discrete solitons in photorefractive optically induced photonic lattices. Phys. Rev. E 66, (2002). 2. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, (2003). 3. Martin, H., Eugenieva, E. D., Chen, Z. & Christodoulides, D. N. Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices. Phys. Rev. Lett. 92, (2004). 4. Peleg, O. et al. Conical Diffraction and Gap Solitons in Honeycomb Photonic Lattices. Phys. Rev. Lett. 98, (2007). 5. Szameit, A. et al. Discrete Nonlinear Localization in Femtosecond Laser Written Waveguides in Fused Silica. Opt. Express 13, (2005). 6. Mattis, D. C. Electron states near surfaces of solids. Annals of Physics 113, (1978). 7. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Second Edition). (Princeton University Press, 2011). 8. Makris, K. G., Suntsov, S., Christodoulides, D. N., Stegeman, G. I. & Hache, A. Discrete surface solitons. Opt. Lett. 30, (2005). 9. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, (2009). 10. Ochiai, T. & Onoda, M. Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B 80, (2009). 11. Ochiai, T. Topological properties of bulk and edge states in honeycomb lattice photonic crystals: the case of TE polarization. J. Phys.: Condens. Matter 22, (2010). 12. Jukić, D., Buljan, H., Lee, D.-H., Joannopoulos, J. D. & Soljačić, M. Flat photonic surface bands pinned between Dirac points. Opt. Lett. 37, (2012). 13. Bittner, S. et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Phys. Rev. B 82, (2010). 14. Kuhl, U. et al. Dirac point and edge states in a microwave realization of tight-binding graphene-like structures. Phys. Rev. B 82, (2010). 15. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat Photon 7, (2013). NATURE MATERIALS 9

Brillouin-zone spectroscopy of nonlinear photonic lattices

Brillouin-zone spectroscopy of nonlinear photonic lattices Brillouin-zone spectroscopy of nonlinear photonic lattices Guy Bartal, 1 Oren Cohen, 1 Hrvoje Buljan, 1,2 Jason W. Fleischer, 1,3 Ofer Manela, 1 Mordechai Segev 1 1Physics Department, Technion - Israel

More information

Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice

Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice University of Massachusetts Amherst From the SelectedWorks of Panos Kevrekidis March 15, 2010 Self-trapping of optical vortices at the surface of an induced semi-infinite photonic lattice DH Song CB Lou

More information

Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport

Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport Amorphous Photonic Lattices: Band Gaps, Effective Mass and Suppressed Transport Mikael Rechtsman 1, Alexander Szameit 1, Felix Dreisow 2, Matthias Heinrich 2, Robert Keil 2, Stefan Nolte 2, and Mordechai

More information

arxiv: v1 [physics.optics] 12 Feb 2014

arxiv: v1 [physics.optics] 12 Feb 2014 Experimental observation of bulk and edge transport in photonic Lieb lattices arxiv:1402.2830v1 [physics.optics] 12 Feb 2014 D. Guzmán-Silva 1, C. Mejía-Cortés 1, M.A. Bandres 2, M.C. Rechtsman 2, S. Weimann

More information

Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity

Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity University of Massachusetts Amherst From the SelectedWorks of Panos Kevrekidis July 8, 2008 Self-trapping of optical vortices in waveguide lattices with a self-defocusing nonlinearity DH Song CB Lou LQ

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Photonic Floquet Topological Insulators

Photonic Floquet Topological Insulators Photonic Floquet Topological Insulators Mikael C. Rechtsman* 1, Julia M. Zeuner* 2, Yonatan Plotnik* 1, Yaakov Lumer 1, Stefan Nolte 2, Mordechai Segev 1, and Alexander Szameit 2 1 Technion Israel Institute

More information

Probing topological invariants in the bulk of a non-hermitian optical system

Probing topological invariants in the bulk of a non-hermitian optical system Probing topological invariants in the bulk of a non-hermitian optical system Julia M. Zeuner 1, Mikael C. Rechtsman 2, Yonatan Plotnik 2, Yaakov Lumer 2, Mark S. Rudner 3, Mordechai Segev 2, and Alexander

More information

Optically-induced reconfigurable photonic lattices for linear and nonlinear control of light

Optically-induced reconfigurable photonic lattices for linear and nonlinear control of light Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Nonlinear Optics and Applications, 2007: 103-149 ISBN: 978-81-308-0173-5 Editors: Hossin A. Abdeldayem and Donald O. Frazier 5

More information

Localized waves supported by the rotating waveguide array

Localized waves supported by the rotating waveguide array Localized waves supported by the rotating waveguide array XIAO ZHANG, 1 FANGWEI YE, 1,* YAROSLAV V.KARTASHOV, 2,3 VICTOR A. VYS- LOUKH, 4 AND XIANFENG CHEN 1 1 Key Laboratory for Laser Plasma (Ministry

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures

Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Nonlinear Optics and Gap Solitons in Periodic Photonic Structures Yuri Kivshar Nonlinear Physics Centre Research School of Physical Sciences and Engineering Australian National University Perspectives

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Dark and bright blocker soliton interaction in defocusing waveguide arrays

Dark and bright blocker soliton interaction in defocusing waveguide arrays Dark and bright blocker soliton interaction in defocusing waveguide arrays Eugene Smirnov, Christian E. Rüter, ilutin Stepić, Vladimir Shandarov, and Detlef Kip Institute of Physics and Physical Technologies,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

Edge states in coupled periodic dielectric waveguides induced by long-range interaction

Edge states in coupled periodic dielectric waveguides induced by long-range interaction NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (6), P. 716 723 Edge states in coupled periodic dielectric waveguides induced by long-range interaction R. S. Savelev ITMO University, St. Petersburg

More information

Discrete solitons in photorefractive optically induced photonic lattices

Discrete solitons in photorefractive optically induced photonic lattices Discrete solitons in photorefractive optically induced photonic lattices Nikos K. Efremidis, Suzanne Sears, and Demetrios N. Christodoulides Department of Electrical and Computer Engineering, Lehigh University,

More information

Coriolis Force Induced Quantum Hall Effect for Phonons

Coriolis Force Induced Quantum Hall Effect for Phonons Coriolis Force Induced Quantum Hall Effect for Phonons Yao-Ting Wang 1, Pi-Gang Luan 2, and Shuang Zhang 1* 1 School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom

More information

Band structure of honeycomb photonic crystal slabs

Band structure of honeycomb photonic crystal slabs JOURNAL OF APPLIED PHYSICS 99, 093102 2006 Band structure of honeycomb photonic crystal slabs Tai-I Weng and G. Y. Guo a Department of Physics, National Taiwan University, Taipei, Taiwan 106, Republic

More information

Effective theory of quadratic degeneracies

Effective theory of quadratic degeneracies Effective theory of quadratic degeneracies Y. D. Chong,* Xiao-Gang Wen, and Marin Soljačić Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Received 28

More information

Self-trapped leaky waves in lattices: discrete and Bragg. soleakons

Self-trapped leaky waves in lattices: discrete and Bragg. soleakons Self-trapped leaky waves in lattices: discrete and Bragg soleakons Maxim Kozlov, Ofer Kfir and Oren Cohen Solid state institute and physics department, Technion, Haifa, Israel 3000 We propose lattice soleakons:

More information

Observation of discrete quadratic surface solitons

Observation of discrete quadratic surface solitons Observation of discrete quadratic surface solitons Georgios A. Siviloglou, Konstantinos G. Makris, Robert Iwanow, Roland Schiek, Demetrios N. Christodoulides and George I. Stegeman College of Optics and

More information

Observation of photonic anomalous Floquet Topological Insulators

Observation of photonic anomalous Floquet Topological Insulators Observation of photonic anomalous Floquet Topological Insulators Lukas J. Maczewsky*, Julia M. Zeuner*, Stefan Nolte, and Alexander Szameit Institute of Applied Physics, Abbe Center of Photonics, Friedrich

More information

Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium

Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium Buljan et al. Vol. 1, No. /February 004/J. Opt. Soc. Am. B 397 Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium Hrvoje Buljan,* Tal Schwartz, and Mordechai

More information

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Canalization of Sub-wavelength Images by Electromagnetic Crystals Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 37 Canalization of Sub-wavelength Images by Electromagnetic Crystals P. A. Belov 1 and C. R. Simovski 2 1 Queen Mary

More information

Photonic crystals: a novel class of functional materials

Photonic crystals: a novel class of functional materials Materials Science-Poland, Vol. 23, No. 4, 2005 Photonic crystals: a novel class of functional materials A. MODINOS 1, N. STEFANOU 2* 1 Department of Physics, National Technical University of Athens, Zografou

More information

Honeycomb Schroedinger Operators in the Strong Binding Regime

Honeycomb Schroedinger Operators in the Strong Binding Regime Honeycomb Schroedinger Operators in the Strong Binding Regime Michael I. Weinstein Columbia University QMath 13: Mathematical Results in Quantum Physics October 8-11, 2016 Georgia Tech Collaborators Joint

More information

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples

Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples Russian Forum of Young Scientists Volume 2018 Conference Paper Channel Optical Waveguides with Spatial Longitudinal Modulation of Their Parameters Induced in Photorefractive Lithium Niobate Samples A D

More information

Review Article Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices

Review Article Experiments on Linear and Nonlinear Localization of Optical Vortices in Optically Induced Photonic Lattices Hindawi Publishing Corporation International Journal of Optics Volume 2012, Article ID 273857, 10 pages doi:10.1155/2012/273857 Review Article Eperiments on Linear and Nonlinear Localization of Optical

More information

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems

Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Lecture 3 Part 1: Fano resonances Part 2: Airy beams Part 3: Parity-time symmetric systems Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/

More information

PROOF COPY [57713] JOB

PROOF COPY [57713] JOB Chen et al. Vol. 22, No. 7 /July 2005 /J. Opt. Soc. Am. B 1 Experiments on Gaussian beams and vortices in optically induced photonic lattices Zhigang Chen, Hector Martin, and Anna Bezryadina Department

More information

Weyl points in photonic-crystal superlattices. Abstract

Weyl points in photonic-crystal superlattices. Abstract Weyl points in photonic-crystal superlattices Jorge Bravo-Abad, 1 Ling Lu, 2 Liang Fu, 2 Hrvoje Buljan, 3 and Marin Soljačić 2 1 Departamento de Física Teórica de la Materia Condensada and Condensed Matter

More information

Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams

Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios N. Christodoulides (5)

More information

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice Chapter 5 Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice In chapter 3 and 4, we have demonstrated that the deformed rods, rotational rods and perturbation

More information

Waves in Honeycomb Structures

Waves in Honeycomb Structures Waves in Honeycomb Structures Michael I. Weinstein Columbia University Nonlinear Schrödinger Equations: Theory and Applications Heraklion, Crete / Greece May 20-24, 2013 Joint work with C.L. Fefferman

More information

Guided and defect modes in periodic dielectric waveguides

Guided and defect modes in periodic dielectric waveguides Fan et al. Vol. 12, No. 7/July 1995/J. Opt. Soc. Am. B 1267 Guided and defect modes in periodic dielectric waveguides Shanhui Fan, Joshua N. Winn, Adrian Devenyi, J. C. Chen, Robert D. Meade, and J. D.

More information

Grating-mediated wave guiding and holographic solitons

Grating-mediated wave guiding and holographic solitons Freedman et al. Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. B 1349 Grating-mediated wave guiding and holographic solitons Barak Freedman, Oren Cohen, Ofer Manela, and Mordechai Segev Department of Physics

More information

Simulation of two dimensional photonic band gaps

Simulation of two dimensional photonic band gaps Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 5 (214) 58-88 ISSN 2299-3843 Simulation of two dimensional photonic band gaps S. E. Dissanayake, K. A. I. L. Wijewardena

More information

Solitons in Nonlinear Photonic Lattices

Solitons in Nonlinear Photonic Lattices Solitons in Nonlinear Photonic Lattices Moti Segev Physics Department, Technion Israel Institute of Technology Jason W. Fleischer (now @ Princeton) Oren Cohen (now @ Univ. of Colorado) Hrvoje Buljan (now

More information

Defect-based Photonic Crystal Cavity for Silicon Laser

Defect-based Photonic Crystal Cavity for Silicon Laser Defect-based Photonic Crystal Cavity for Silicon Laser Final Term Paper for Nonlinear Optics PHYC/ECE 568 Arezou Khoshakhlagh Instructor: Prof. M. Sheikh-Bahae University of New Mexico karezou@unm.edu

More information

Two-dimensional nonlinear optically-induced photonic lattices in photorefractive crystals

Two-dimensional nonlinear optically-induced photonic lattices in photorefractive crystals Two-dimensional nonlinear optically-induced photonic lattices in photorefractive crystals Anton S. Desyatnikova, Dragornir N. Nesheva, Robert Fischera, Wieslaw Krolikowskib, Nina Sagemertenc, Denis Tragerc,

More information

Cascaded induced lattices in quadratic nonlinear medium

Cascaded induced lattices in quadratic nonlinear medium Cascaded induced lattices in quadratic noinear medium Olga V. Borovkova* a, Valery E. Lobanov a, natoly P. Sukhorukov a, and nna K. Sukhorukova b a Faculty of Physics, Lomonosov Moscow State University,

More information

Photonic band gap engineering in 2D photonic crystals

Photonic band gap engineering in 2D photonic crystals PRAMANA c Indian Academy of Sciences Vol. 67, No. 6 journal of December 2006 physics pp. 1155 1164 Photonic band gap engineering in 2D photonic crystals YOGITA KALRA and R K SINHA TIFAC-Center of Relevance

More information

Stability of vortex solitons in a photorefractive optical lattice

Stability of vortex solitons in a photorefractive optical lattice Stability of vortex solitons in a photorefractive optical lattice Jianke Yang Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA E-mail: jyang@emba.uvm.edu New Journal

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1. Projected band structures for different coupling strengths. (a) The non-dispersive quasi-energy diagrams and (b) projected band structures for constant coupling

More information

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n. University of Groningen Wave Propagation through Photonic Crystal Slabs Shen, Chuanjian IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it.

More information

Nonlinear switching of low-index defect modes in photonic lattices

Nonlinear switching of low-index defect modes in photonic lattices Nonlinear switching of low-index defect modes in photonic lattices Fangwei Ye 1, Yaroslav V. Kartashov 1, Victor A. Vysloukh 2, and Lluis Torner 1 1 ICFO-Institut de Ciencies Fotoniques, and Universitat

More information

Review Article Experiments on Linear and Nonlinear Localization of Optical Vorticesin OpticallyInduced Photonic Lattices

Review Article Experiments on Linear and Nonlinear Localization of Optical Vorticesin OpticallyInduced Photonic Lattices Hindawi Publishing Corporation International Journal of Optics Volume 2012, Article ID 273857, 10 pages doi:10.1155/2012/273857 Review Article Eperiments on Linear and Nonlinear Localization of Optical

More information

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals

Modelling and design of complete photonic band gaps in two-dimensional photonic crystals PRAMANA c Indian Academy of Sciences Vol. 70, No. 1 journal of January 2008 physics pp. 153 161 Modelling and design of complete photonic band gaps in two-dimensional photonic crystals YOGITA KALRA and

More information

Photonic band gaps with layer-by-layer double-etched structures

Photonic band gaps with layer-by-layer double-etched structures Photonic band gaps with layer-by-layer double-etched structures R. Biswas a) Microelectronics Research Center, Ames Laboratory USDOE and Department of Physics and Astronomy, Iowa State University, Ames,

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

Probing the orbital angular momentum of light with a multipoint interferometer

Probing the orbital angular momentum of light with a multipoint interferometer CHAPTER 2 Probing the orbital angular momentum of light with a multipoint interferometer We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes.

More information

Spontaneous emission rate of an electric dipole in a general microcavity

Spontaneous emission rate of an electric dipole in a general microcavity PHYSICAL REVIEW B VOLUME 60, NUMBER 7 15 AUGUST 1999-I Spontaneous emission rate of an electric dipole in a general microcavity Jeong-Ki Hwang, Han-Youl Ryu, and Yong-Hee Lee Department of Physics, Korea

More information

Polarization control of defect modes in threedimensional woodpile photonic crystals

Polarization control of defect modes in threedimensional woodpile photonic crystals Polarization control of defect modes in threedimensional woodpile photonic crystals Michael James Ventura and Min Gu* Centre for Micro-Photonics and Centre for Ultrahigh-bandwidth Devices for Optical Systems,

More information

Nonlinear spatial beam dynamics in optical NLS systems

Nonlinear spatial beam dynamics in optical NLS systems Nonlinear spatial beam dynamics in optical NLS systems Zhigang Chen San Francisco State University, USA Nankai University, China Introduction: What do we do with light? Spatial solitons & dynamics Photonic

More information

Experimental characterization of optical-gap solitons in a one-dimensional photonic crystal made of a corrugated semiconductor planar waveguide

Experimental characterization of optical-gap solitons in a one-dimensional photonic crystal made of a corrugated semiconductor planar waveguide Experimental characterization of optical-gap solitons in a one-dimensional photonic crystal made of a corrugated semiconductor planar waveguide S.-P. Gorza, 1 D. Taillaert, 2 R. Baets, 2 B. Maes, 2 Ph.

More information

Introduction to solitons in photonic lattices

Introduction to solitons in photonic lattices Introduction to solitons in photonic lattices Nikolaos K. Efremidis 1, Jason W. Fleischer 2, Guy Bartal 3, Oren Cohen 3, Hrvoje Buljan 4, Demetrios N. Christodoulides 5, and Mordechai Segev 3 1 Department

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

arxiv:physics/ v1 [physics.optics] 7 Jan 2006

arxiv:physics/ v1 [physics.optics] 7 Jan 2006 Nonlinear Bloch modes in two-dimensional photonic lattices arxiv:physics/0601037v1 [physics.optics] 7 Jan 2006 Denis Träger 1,2, Robert Fischer 1, Dragomir N. Neshev 1, Andrey A. Sukhorukov 1, Cornelia

More information

Partially Coherent Waves in Nonlinear Periodic Lattices

Partially Coherent Waves in Nonlinear Periodic Lattices Partially Coherent Waves in Nonlinear Periodic Lattices By H. Buljan, G. Bartal, O. Cohen, T. Schwartz, O. Manela, T. Carmon, M. Segev, J. W. Fleischer, and D. N. Christodoulides We study the propagation

More information

Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures:

Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures: CLEO, May 7-12, 7 2000, San Francisco Propagation of Photons Through Localized Coupled Cavity Modes in Photonic Band Gap Structures: A New Type of Waveguiding Mechanism Mehmet Bayındır Burak Temelkuran

More information

Discrete diffraction in an optically induced lattice in photorefractive media with a quadratic electro-optic effect

Discrete diffraction in an optically induced lattice in photorefractive media with a quadratic electro-optic effect OPTO-ELECTRONICS REVIEW 13(2), 93 102 7 th International Workshop on Nonlinear Optics Applications Discrete diffraction in an optically induced lattice in photorefractive media with a quadratic electro-optic

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Density of modes maps for design of photonic crystal devices

Density of modes maps for design of photonic crystal devices RESEARCH Revista Mexicana de Física 62 (2016) 193 198 MAY-JUNE 2016 Density of modes maps for design of photonic crystal devices I. Guryev, I. Sukhoivanov, R.I. Mata Chavez, N. Gurieva, J.A. Andrade Lucio,

More information

Cross-Phase-Modulation Nonlinearities and Holographic Solitons in Periodically-Poled Photovoltaic Photorefractives.

Cross-Phase-Modulation Nonlinearities and Holographic Solitons in Periodically-Poled Photovoltaic Photorefractives. Cross-Phase-Modulation Nonlinearities and Holographic Solitons in Periodically-Poled Photovoltaic Photorefractives. Oren Cohen, Margaret M. Murnane, and Henry C. Kapteyn JILA and Department of Physics,

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

arxiv:physics/ v1 [physics.optics] 8 Apr 2004

arxiv:physics/ v1 [physics.optics] 8 Apr 2004 Conditions for waveguide decoupling in square-lattice photonic crystals T. Koponen 1, A. Huttunen 2 and P. Törmä 1 arxiv:physics/4445v1 [physics.optics] 8 Apr 24 1 Department of Physics, University of

More information

Vector mixed-gap surface solitons

Vector mixed-gap surface solitons Vector mixed-gap surface solitons Yaroslav V. Kartashov, Fangwei Ye, and Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Universitat Politecnica de Catalunya, Mediterranean Technology Park, 08860

More information

Large omnidirectional band gaps in metallodielectric photonic crystals

Large omnidirectional band gaps in metallodielectric photonic crystals PHYSICAL REVIEW B VOLUME, NUMBER 16 15 OCTOBER 1996-II Large omnidirectional band gaps in metallodielectric photonic crystals Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos Department of Physics,

More information

Quantum transport through graphene nanostructures

Quantum transport through graphene nanostructures Quantum transport through graphene nanostructures S. Rotter, F. Libisch, L. Wirtz, C. Stampfer, F. Aigner, I. Březinová, and J. Burgdörfer Institute for Theoretical Physics/E136 December 9, 2009 Graphene

More information

Effective area of photonic crystal fibers

Effective area of photonic crystal fibers Effective area of photonic crystal fibers Niels Asger Mortensen Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød, Denmark nam@crystal-fibre.com http://www.crystal-fibre.com Abstract: We consider the effective

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Photonic band structure in periodic dielectric structures

Photonic band structure in periodic dielectric structures Photonic band structure in periodic dielectric structures Mustafa Muhammad Department of Physics University of Cincinnati Cincinnati, Ohio 45221 December 4, 2001 Abstract Recent experiments have found

More information

Photonic crystal fiber with a hybrid honeycomb cladding

Photonic crystal fiber with a hybrid honeycomb cladding Photonic crystal fiber with a hybrid honeycomb cladding Niels Asger Mortensen asger@mailaps.org Martin Dybendal Nielsen COM, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark Jacob Riis

More information

Airy beam induced optical routing

Airy beam induced optical routing Airy beam induced optical routing Patrick Rose, Falko Diebel, Martin Boguslawski, and Cornelia Denz Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT3520 PHOTONIC TOPOLOGICAL INSULATORS Supplement A: Plane Wave Expansion Method and the Low-Energy Hamiltonian In a bi-anisotropic medium with the following form

More information

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties

Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Beautiful Graphene, Photonic Crystals, Schrödinger and Dirac Billiards and Their Spectral Properties Cocoyoc 2012 Something about graphene and microwave billiards Dirac spectrum in a photonic crystal Experimental

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information I. Schematic representation of the zero- n superlattices Schematic representation of a superlattice with 3 superperiods is shown in Fig. S1. The superlattice

More information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 551 Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Y. Y. Li, P. F. Gu, M. Y. Li,

More information

Jahn-Teller effect in two-dimensional photonic crystals

Jahn-Teller effect in two-dimensional photonic crystals PHYSICAL REVIEW 68, 045105 2003 Jahn-Teller effect in two-dimensional photonic crystals N. Malkova, S. Kim, and V. Gopalan Materials Research Institute, Pennsylvania State University, University Park,

More information

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks Zhigang Chen, Xu Li, Allen Taflove, and Vadim Backman We report what we believe to be a novel backscattering

More information

Nematic liquid crystal waveguide arrays

Nematic liquid crystal waveguide arrays OPTO-ELECTRONICS REVIEW 13(2), 107 112 7 th International Workshop on Nonlinear Optics Applications Nematic liquid crystal waveguide arrays K.A. BRZD KIEWICZ *1, M.A. KARPIERZ 1, A. FRATALOCCHI 2, G. ASSANTO

More information

PHYSICAL REVIEW B 71,

PHYSICAL REVIEW B 71, Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect H. Liu, S. N. Zhu, Z. G. Dong, Y. Y. Zhu, Y. F. Chen,

More information

Periodic microstructures fabricated by multiplex interfering femtosecond laser beams on graphene sheet

Periodic microstructures fabricated by multiplex interfering femtosecond laser beams on graphene sheet Int. J. Nanomanufacturing, Vol. 8, No. 3, 2012 221 Periodic microstructures fabricated by multiplex interfering femtosecond laser beams on graphene sheet Yan Li TEDA Applied Physics School, Nankai University,

More information

Behavior of light at photonic crystal interfaces

Behavior of light at photonic crystal interfaces Behavior of light at photonic crystal interfaces Emanuel Istrate, Alexander A. Green, and Edward H. Sargent Department of Electrical and Computer Engineering, University of Toronto, 10 King s College Road,

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Nondifractive propagation of light in photonic crystals

Nondifractive propagation of light in photonic crystals Nondifractive propagation of light in photonic crystals Kestutis Staliunas (1) and Ramon Herrero () (1) ICREA, Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11,

More information

Airy beam induced optical routing

Airy beam induced optical routing Airy beam induced optical routing Patrick Rose, Falko Diebel, Martin Boguslawski, and Cornelia Denz Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität

More information

Modeling of Kerr non-linear photonic components with mode expansion

Modeling of Kerr non-linear photonic components with mode expansion Modeling of Kerr non-linear photonic components with mode expansion Björn Maes (bjorn.maes@intec.ugent.be), Peter Bienstman and Roel Baets Department of Information Technology, Ghent University IMEC, St.-Pietersnieuwstraat

More information

Why Kastner analysis does not apply to a modified Afshar experiment. Eduardo Flores and Ernst Knoesel

Why Kastner analysis does not apply to a modified Afshar experiment. Eduardo Flores and Ernst Knoesel Why Kastner analysis does not apply to a modified Afshar experiment Eduardo Flores and Ernst Knoesel Department of Physics & Astronomy, Rowan University, Glassboro, NJ 08028 In an analysis of the Afshar

More information

arxiv: v2 [physics.optics] 22 Oct 2015

arxiv: v2 [physics.optics] 22 Oct 2015 Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice arxiv:59.8445v2 [physics.optics] 22 Oct 25 Sebabrata Mukherjee, and Robert R. Thomson SUPA, Institute of Photonics

More information

Resonantly Trapped Bound State in the Continuum Laser Abstract

Resonantly Trapped Bound State in the Continuum Laser Abstract Resonantly Trapped Bound State in the Continuum Laser T. Lepetit*, Q. Gu*, A. Kodigala*, B. Bahari, Y. Fainman, B. Kanté Department of Electrical and Computer Engineering, University of California San

More information

Photonic Crystals. (or how to slow, trap, bend, split, and do other funky things to light) Uday Khankhoje, EEL207

Photonic Crystals. (or how to slow, trap, bend, split, and do other funky things to light) Uday Khankhoje, EEL207 Photonic Crystals (or how to slow, trap, bend, split, and do other funky things to light) Uday Khankhoje, EEL207 [Based on material made generous made available by S G Johnson, MIT, at http://ab-initio.mit.edu/photons/

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Progress In Electromagnetics Research Letters, Vol. 75, 47 52, 2018 Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides Haibin Chen 1, Zhongjiao He 2,andWeiWang

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Topological Interface Modes in Graphene Multilayer Arrays

Topological Interface Modes in Graphene Multilayer Arrays Topological Interface Modes in Graphene Multilayer Arrays Feng Wang a,b, Shaolin Ke c, Chengzhi Qin a, Bing Wang a *, Hua Long a, Kai Wang a, Peiiang Lu a, c a School of Physics and Wuhan National Laboratory

More information