Mechanical Quantum Systems

Size: px
Start display at page:

Download "Mechanical Quantum Systems"

Transcription

1 Mechanical Quantum Systems Matt LaHaye Syracuse University 09 Nov. 2013

2 Outline My field: Mechanical Quantum Systems - What are these systems? - Why are they interesting? What are some of the experimental aspects & challenges of studying these systems? Work we re doing at SU to develop mechanical quantum systems

3 Mechanical Systems in the Quantum Regime Develop and study mechanical quantum devices; devices which under ordinary conditions are perfectly well-described by classical laws of physics Devices like: Microtoroid Resonators Nanomechanical Beams Cleland & Roukes Kippenberg Just a small subset of types of devices being explored. *See M.Poot & H.S. van der Zant, Physics Reports 2012, for a recent and comprehensive review of devices* LIGO Macroscopic Mirrors

4 Mechanical Systems in the Quantum Regime Develop and study mechanical quantum devices; devices which under ordinary conditions are perfectly well-described by classical laws of physics Devices like: Microtoroid Resonators Nanomechanical Beams Cleland & Roukes Kippenberg Vibrational modes normally ring as one would expect for a classical simple harmonic oscillator e.g. well-defined xx and pp as determined by Newton s 2 nd Law; Also continuous energy spectra LIGO Macroscopic Mirrors

5 Mechanical Systems in the Quantum Regime No reason that we know of why the motion of such objects shouldn t exhibit characteristics of quantum S.H.O. (under the right conditions) Roukes Cantilever in a quantum superposition of spatially-separated states From Schwab & Roukes, Phys. Today 2005 EE nn = ħωω(nn ) ωω = kk/mm m k x Discrete Energy Levels Zero-point fluctuations

6 What do We Hope to Accomplish With These Studies? Fundamental studies of quantum mechanics - Shed light on the measurement problem (i.e. quantum-classical boundary ). Think of the Schrodinger Cat Paradox. - Better understanding of fundamental limits of measurement Development of new technologies - For quantum information - For bio-sensing and imaging - For gravitational wave detection - Energy transfer/dissipation at nanoscale e.g. Single-Nuclei Magnetic Imaging e.g. e.g. Long-distance quantum communication Gravitational Wave Detection LIGO interferometer Rabl, Lukin et al. Rugar et al.

7 What are some of the experimental challenges we face in preparing structures in the quantum regime? *For more information/general overview, see: Schwab and Roukes,Physics Today, July 2005.*

8 Thermal Noise EE Energy Spectrum The Environment: (e.g. charge fluctuations ; phonons from substrate, EM radiation, etc) Energy levels only account Roukes for KE and PE due to restoring force PE ħωω 0 Oscillator Embedded in an environment HH = 1 2 kk 0χχ pp 0 2 2mm 0 KE NN = 3 NN = 2 NN = 1 NN = 0 xx EE = ħωω 0 NN Environment is Source of random fluctuations that kick And damp resonator. Nanoresonator as S.H.O. mm kk xx Environment Temp. TT

9 Thermal Noise EE Energy Spectrum ħωω Rule of Thumb: Need kk BBTT ħωω < 1 to see quantum effects The Environment: (e.g. charge fluctuations ; phonons from substrate, EM radiation, etc) Energy levels only account Roukes for KE and PE due to ωωrestoring force Oscillator Embedded in an environment PE ~ MMMMMM 2222 HH = 1 2 kk 0χχ pp 0 2 2mm 0 Need KE TT~ mmmm! In equilibrium: Average Energy EE ~kk BB TT NN = 1 NN = 0 NN = 3 NN = 2 xx Environment is Source of random fluctuations that kick And damp resonator. Fluctuations wash out discrete levels Nanoresonator as S.H.O. mm kk xx Environment Temp. TT

10 Approaching the Ground State of Mechanical Structures Cleland et al., Nature, 2010 ωω/2ππ = 6 GHz TT = 20 mk Teufel et al. Nature 2011 Micro drum head KK BB TT/ħωω =.34 Achieved KK BB TT/ħωω =.1 Painter et al. Nature 2011 Also observed evidence of Energy quantization of the mode Observation of zero-point fluctuations Painter et al. PRL 2012 KK BB TT/ħωω =.85

11 Now that mechanical structures have been cooled near the ground state, how do you prepare and measure quantum states of these structures?

12 Inspiration: Cavity Quantum Electrodynamics (CQED) Measurements of the number state of an EM cavity mode (part of last year s Nobel Physics award) Atom state atom mirror N=1 N=0 State N=0 microwave cavity Electromagnetic Simple Harmonic Oscillator Death of 1 photon Birth of new photon S. Gleyzes et al. Nature 446, (2007) Two internal states (-) and (+)of an atom after passing thru cavity serve as proxies for the 0 and 1 number states of a cavity mode

13 Inspiration: Cavity Quantum Electrodynamics (CQED) Measurements of the number state of an EM cavity mode (part of last year s Nobel Physics award) Atom state N=1 N=0 State N=0 microwave cavity atom or Death of 1 photon Birth of new photon S. Gleyzes et al. Nature 446, (2007) Two internal states (-) and (+) of an atom after passing thru cavity serve as proxies for the 0 and 1 number states of a cavity mode

14 Inspiration from CQED Preparation and measurement of superposition states of an EM cavity mode (part of last year s Nobel Physics award) Prepare the atom in a superposition states before entering the cavity Single atom + The atom and cavity become Entangled in a Schrodinger Cat state Refractive index of cavity depends on state of the atom microwave cavity Cavity evolves into superposition Of states oscillating at different frequencies Raimond et al. Review of Modern Physics, Vol. 73, 565 (2001)

15 Is there some analogous device in solid-state physics that we could use for quantum measurement and manipulation of a nanoresonator?

16 Qubit-Coupled Nanoresonator Analogous to an Atom & Cavity First realized by A. Armour, M. Blencowe & K. Schwab: PRL 88 (2002) & Physica B 316 (2002). Qubit-Coupled Nanoresonator Superconducting Quantum Bit (Qubit) Analogous to Atom-Coupled Electromagnetic Resonator (Cavity) 2 μμmm Nanoresonator In principle, could use superconducting qubits as tools to explore quantum properties of mechanical resonators (including superposition states!) just as atoms have been used for studying quantum properties of electromagnetic resonators in CQED Dozens of theoretical proposals have been put forth to do this, but we have only begun to develop this tool experimentally

17 First Demonstrations of Qubit-Coupled Nanoresonators Nature, 2009 (2010) Cleland et al. demonstrate qubit-based detection of energy quantization in a NR Nature, 2010 (2009) LaHaye et al. demonstrate qubit exerts state-dependent force on NR Coherent swapping of a quantum of energy between NR and qubit NR Nature, 2013 Qubit Just a handful of results. Need to develop further! (2013) Sillanpaa et al. demonstrate mechanical Stark shift of qubit (a prerequisite for many theory proposals to engineer Various quantum states of mechanics)

18 Qubit-Coupled Nanoresonator Research at SU LaHaye Cryogenics Lab Microwave Equipment Experiments at temp. < 3333 mmmm! Funding: NSF-DMR Career Award: # NSF-DMR Materials World Network Award: # Devices made using nanofabrication equipment at SU & Cornell Nanoscale Fabrication Facility (CNF) Research Team Theory Collaborators: Fred Brito (Sao Carlos Institute of Physics) Amir Caldeira (University of Campinas) Postdoc Francisco Rouxinol Visiting Scientist Seung-Bo Shim Grad Student Hugo Hao

19 Conclusions - Mechanics has become a new quantum technology with many possible applications and potential for addressing fundamental questions in quantum mechanics - Qubit-coupled NR will serve as an important test-bed for mechanical quantum systems. Analogous to what CQED has been for studying quantum properties of light. - At SU, we are further developing qubit-coupled NR and in a position to make important contributions to this field

From trapped ions to macroscopic quantum systems

From trapped ions to macroscopic quantum systems 7th International Summer School of the SFB/TRR21 "Control of Quantum Correlations in Tailored Matter 21-13 July 2014 From trapped ions to macroscopic quantum systems Peter Rabl Yesterday... Trapped ions:

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology Nanomechanics II Why vibrating beams become interesting at the nanoscale Andreas Isacsson Department of Physics Chalmers University of Technology Continuum mechanics Continuum mechanics deals with deformation

More information

Matthew D. LaHaye, Ph.D.

Matthew D. LaHaye, Ph.D. Matthew D. LaHaye, Ph.D. CONTACT Physics Building 209 Phone: 626-660-5108, 315-443-2564 INFORMATION Department of Physics Fax: 315-443-9103 E-mail: mlahaye@syr.edu Syracuse, NY 13244 Website: http://lahayelab.syr.edu

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System 2445-03 Advanced Workshop on Nanomechanics 9-13 September 2013 Quantum Measurement in an Optomechanical System Tom Purdy JILA - NIST & University of Colorado U.S.A. Tom Purdy, JILA NIST & University it

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Cavity optomechanics: interactions between light and nanomechanical motion

Cavity optomechanics: interactions between light and nanomechanical motion Cavity optomechanics: interactions between light and nanomechanical motion Florian Marquardt University of Erlangen-Nuremberg, Germany, and Max-Planck Institute for the Physics of Light (Erlangen) DARPA

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Resonantly Enhanced Microwave Photonics

Resonantly Enhanced Microwave Photonics Resonantly Enhanced Microwave Photonics Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://www.ece.nus.edu.sg/stfpage/tmk/

More information

Mechanical quantum resonators

Mechanical quantum resonators Mechanical quantum resonators A. N. Cleland and M. R. Geller Department of Physics, University of California, Santa Barbara CA 93106 USA Department of Physics and Astronomy, University of Georgia, Athens,

More information

Cavity Optomechanics:

Cavity Optomechanics: Cavity Cavity Optomechanics: Optomechanics: Toward TowardQuantum QuantumControl Controlof ofmacroscopic MacroscopicDevices Devices GDR-IQFA 2012 / Grenoble (28-29-30 / 11 / 2012) Aurélien G. Kuhn, A. Heidmann

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

Sensing the quantum motion of nanomechanical oscillators

Sensing the quantum motion of nanomechanical oscillators Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki Joseph Kerckhoff Collaborators John Teufel Cindy Regal Ray Simmonds Kent Irwin Graduate students Jennifer

More information

Qubit-Coupled Nanomechanics

Qubit-Coupled Nanomechanics Qubit-Coupled Nanomechanics Matt LaHaye Syracuse University experiments performed at caltech with: junho suh, michael roukes - caltech keith schwab - caltech & cornell pierre echternach - j p l Quantum

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June 5, Supported by NSF and ARL

Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June 5, Supported by NSF and ARL Resolved--sideband cooling of an optomechanical Resolved resonator in a cryogenic environment Young-Shin Park and Hailin Wang Dept. of Physics and Oregon Center for Optics, Univ. of Oregon CLEO/IQEC, June

More information

Optical Coatings and Thermal Noise in Precision Measurements

Optical Coatings and Thermal Noise in Precision Measurements Optical Coatings and Thermal Noise in Precision Measurements Embry-Riddle Aeronautical University Physics Colloquium October 25, 2011 Gregory Harry American University LIGO-G1101150 Thermal Noise Random

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum optics and optomechanics

Quantum optics and optomechanics Quantum optics and optomechanics 740nm optomechanical crystals LIGO mirror AMO: Alligator nanophotonic waveguide quantum electro-mechanics Oskar Painter, Jeff Kimble, Keith Schwab, Rana Adhikari, Yanbei

More information

Quantum acoustics with superconducting qubits

Quantum acoustics with superconducting qubits R ES E A RC H RE P O RT QUANTUM SYSTEMS Quantum acoustics with superconducting qubits Yiwen Chu,*1,2 Prashanta Kharel,1,2 William H. Renninger,1,2 Luke D. Burkhart,1,2 Luigi Frunzio,1,2 Peter T. Rakich,1,2

More information

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1 CQED

More information

Cavity optomechanics in new regimes and with new devices

Cavity optomechanics in new regimes and with new devices Cavity optomechanics in new regimes and with new devices Andreas Nunnenkamp University of Basel 1. What? Why? How? 2. Single-photon regime 3. Dissipative coupling Introduction Cavity optomechanics radiation

More information

Cavity optomechanics: Introduction to Dynamical Backaction

Cavity optomechanics: Introduction to Dynamical Backaction Cavity optomechanics: Introduction to Dynamical Backaction Tobias J. Kippenberg Collaborators EPFL-CMI K. Lister J. (EPFL) P. Kotthaus J. P. Kotthaus (LMU) W. Zwerger W. Zwerger (TUM) I. Wilson-Rae (TUM)

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Quantum Microwave Photonics:

Quantum Microwave Photonics: Quantum Microwave Photonics:Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators p. 1/16 Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum

More information

Nanomechanics II Andreas Isacsson

Nanomechanics II Andreas Isacsson Nanomechanics II Andreas Isacsson Condensed Matter Theory Department of Applied Physics Chalmers University of Technology A. Isacsson, MCC026, 2012-11-13 Outline A brief overview Mechanics, micromechanics,

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Quantum Effects in Optomechanics

Quantum Effects in Optomechanics Centre for Quantum Engineering and Space-Time Research Quantum Effects in Optomechanics Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational Physics

More information

Cavity optomechanics: manipulating mechanical resonators with light

Cavity optomechanics: manipulating mechanical resonators with light Cavity optomechanics: manipulating mechanical resonators with light David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy in collaboration with M. Abdi, Sh. Barzanjeh,

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Magnetic Resonance at the quantum limit and beyond

Magnetic Resonance at the quantum limit and beyond Magnetic Resonance at the quantum limit and beyond Audrey BIENFAIT, Sebastian PROBST, Xin ZHOU, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA-Saclay, France Jarryd J. Pla, Cheuk

More information

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics

Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics Multiparticle Entanglement and Interference in Cavity Quantum Electrodynamics A THESIS SUBMITTED TO GUJARAT UNIVERSITY for the degree of Doctor of Philosophy in Physics BY Pradyumna Kumar Pathak Quantum

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Quantum cavity optomechanics with nanomembranes

Quantum cavity optomechanics with nanomembranes Quantum cavity optomechanics with nanomembranes David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy, in collaboration with: M. Karuza, C. Biancofiore, G. Di Giuseppe,

More information

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors

Advanced Workshop on Nanomechanics September Optomechanics with micro and nano-mirrors 2445-09 Advanced Workshop on Nanomechanics 9-13 September 2013 Optomechanics with micro and nano-mirrors Samuel Deléglise Laboratoire Kastler Brossel Universite P. et M. Curie Optomechanics with micro

More information

Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe

Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe Tongcang Li 1. Department of Physics and Astronomy 2. School of Electrical and Computer Engineering 3. Birck Nanotechnology

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Optics. Manipulation of «simple» quantum systems Quantum Optics Manipulation of «simple» quantum systems Antoine Browaeys Institut d Optique, Palaiseau, France Quantum optics = interaction atom + quantum field e g ~ 1960: R. Glauber (P. Nobel. 2005),

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

4-3 New Regime of Circuit Quantum Electro Dynamics

4-3 New Regime of Circuit Quantum Electro Dynamics 4-3 New Regime of Circuit Quantum Electro Dynamics Kouichi SEMBA, Fumiki YOSHIHARA, Tomoko FUSE, Sahel ASHHAB, Kosuke KAKUYANAGI, and Shiro SAITO Researchers at the National Institute of Information and

More information

Quantum-noise reduction techniques in a gravitational-wave detector

Quantum-noise reduction techniques in a gravitational-wave detector Quantum-noise reduction techniques in a gravitational-wave detector AQIS11 satellite session@kias Aug. 2011 Tokyo Inst of Technology Kentaro Somiya Contents Gravitational-wave detector Quantum non-demolition

More information

Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics

Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics Quantum Noise Interference and Backaction Cooling in Cavity Nanomechanics Florian Elste, 1 S. M. Girvin, 2 and A. A. Clerk 1 1 Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8

More information

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps QuAMP 2013 Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps Kim Lake University of Sussex Talk Outline Ion Trapping and Ytterbium

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory

PHYSICS (PHYS) Physics (PHYS) 1. PHYS 5880 Astrophysics Laboratory Physics (PHYS) 1 PHYSICS (PHYS) PHYS 5210 Theoretical Mechanics Kinematics and dynamics of particles and rigid bodies. Lagrangian and Hamiltonian equations of motion. PHYS 5230 Classical Electricity And

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Integrated Optomechanical (and Superconducting) Quantum Circuits

Integrated Optomechanical (and Superconducting) Quantum Circuits KITP Program on Synthetic Quantum Matter October 4, 2016 Integrated Optomechanical (and Superconducting) Quantum Circuits Oskar Painter Institute for Quantum Information and Matter, Thomas J. Watson, Sr.,

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Quantum Noise and Quantum Measurement

Quantum Noise and Quantum Measurement Quantum Noise and Quantum Measurement (APS Tutorial on Quantum Measurement)!F(t) Aashish Clerk McGill University (With thanks to S. Girvin, F. Marquardt, M. Devoret) t Use quantum noise to understand quantum

More information

Teaching Nanoscale Transport Phenomena

Teaching Nanoscale Transport Phenomena Teaching Nanoscale Transport Phenomena Pamela Norris Professor Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville, VA 22902 VIRGINIA 1 UVa MAE 612 Microscale Heat

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Introduction to Nanomechanics: Magnetic resonance imaging with nanomechanics

Introduction to Nanomechanics: Magnetic resonance imaging with nanomechanics Introduction to Nanomechanics: Magnetic resonance imaging with nanomechanics Martino Poggio Swiss Nanoscience Institute Department of Physics University of Basel Switzerland Nano I, Herbstsemester 2009

More information

SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments

SCI403: Physics. Course length: Two semesters. Materials: Physics: Problems and Solutions; materials for laboratory experiments SCI403: Physics This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum, energy, thermodynamics, waves, electricity, and magnetism, and

More information

Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 7 Light-Matter Interaction Part 1 Basic excitation and coupling EECS 598-00 Winter 006 Nanophotonics and Nano-scale Fabrication P.C.Ku What we have learned? Nanophotonics studies the interaction

More information

July 2012 Physics Today 29

July 2012 Physics Today 29 VIENNA CENTER FOR QUANTUM SCIENCE AND TECHNOLOGY AND ARKITEK STUDIOS Quantum optomechanics Markus Aspelmeyer, Pierre Meystre, and Keith Schwab Aided by optical cavities and superconducting circuits, researchers

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Optomechanics: Hybrid Systems and Quantum Effects

Optomechanics: Hybrid Systems and Quantum Effects Centre for Quantum Engineering and Space-Time Research Optomechanics: Hybrid Systems and Quantum Effects Klemens Hammerer Leibniz University Hannover Institute for Theoretical Physics Institute for Gravitational

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Cavity Quantum Electrodynamics Lecture 1

Cavity Quantum Electrodynamics Lecture 1 DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture 1 Michel BRUNE Les Houches 2003 1 Quantum information and Cavity QED Principle of

More information

Algorithms, Logic and Complexity. Quantum computation. basic explanations! &! survey of progress

Algorithms, Logic and Complexity. Quantum computation. basic explanations! &! survey of progress Algorithms, Logic and Complexity Quantum computation basic explanations! &! survey of progress Index Why Quantum Computation?! Quantum mechanics! D-wave! Quantum programming «If you think you understand

More information

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime September 2010

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime September 2010 2164-12 Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime 6-10 September 2010 A Phonon-Tunneling Approach to Support-Induced Dissipation of Nanomechanical Resonators Ignacio

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Physics Courses. Courses. Physics Courses 1

Physics Courses. Courses. Physics Courses 1 Physics Courses 1 Physics Courses Courses PHYS 1403. General Physics I (C). General Physics I (3-2) A non-calculus treatment of mechanics and heat. Laboratory experience is an essential component of this

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer

Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer Building Blocks for Quantum Computing Part V Operation of the Trapped Ion Quantum Computer CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And Operation of the Trapped

More information

High School Curriculum Standards: Physics

High School Curriculum Standards: Physics High School Curriculum Standards: Physics Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical

More information

NANO/MICROSCALE HEAT TRANSFER

NANO/MICROSCALE HEAT TRANSFER NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Measured Transmitted Intensity. Intensity 1. Hair

Measured Transmitted Intensity. Intensity 1. Hair in Radiation pressure optical cavities Measured Transmitted Intensity Intensity 1 1 t t Hair Experimental setup Observes oscillations Physical intuition Model Relation to: Other nonlinearities, quantum

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03 Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.

More information

Modified Physics Course Descriptions Old

Modified Physics Course Descriptions Old Modified Physics Course Descriptions Old New PHYS 122, General Physics II, 4 cr, 3 cl hrs, 2 recitation hrs Prerequisite: PHYS 121 Corequisites: MATH 132; PHYS 122L Continuation of PHYS 121 including electricity

More information