Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Size: px
Start display at page:

Download "Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates"

Transcription

1 DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture : entanglement engineering with quantum gates Michel BRUNE Les Houches 003 1

2 CQED with Rydberg atoms and quantum information e> > 1> g> Atom qubit 0> Field qubit Vacuum Rabi oscillation: strongly couples two qubits achieves quantum gates: Quantum phase gate, CNOT gate allows for step by step preparation of complex entangled states: Les Houches 003

3 Vacuum Rabi oscillation and quantum gates 1,0 0,8 g,1 e P g (50 circ) 0,6 0,4 0, e,0 Ω 0 =47 khz T Rabi =0µs e ω ge = ω cav g e - 0, π interaction time (µs) π Phase gate, QND detection of a single photon Atom-field state exchange EPR pair preparation Les Houches 003 3

4 outline 1. Cavity qubit as a quantum memory. Quantum phase gate (QPG) and CNOT gate 3. CNOT as QND detection of one photon 4. Step by step preparation of a GHZ triplet Les Houches 003 4

5 1. Cavity qubit as a quantum memory Les Houches 003 5

6 Vacuum Rabi oscillation: the field as a quantum memory 1,0 0,8 g,1 e P g (50 circ) 0,6 0,4 0, 0,0 e, π interaction time (µs) Atom-field state exchange: Writing: Reading: Ω 0 =47 khz T Rabi =0µs e ω ge = ω cav g ( c e + c g ) 0 g ( ic 1 + c 0 ) e g e g ( c e + c g ) 0 g ( ic 1 + c 0 ) e g e g e - X. Maître et al. PRL 79, 769(1997) EPR pair preparation Les Houches 003 6

7 Quantum memory: experimental realization writing and reading the field state: e> ω R ω at g> S R g e pulse R 1 pulse R e g Probe atom: Reader Source atom: Writer R 1 : preparation of arbitrary e-g superpositions R : analysis of arbitrary e-g superpositions Exp 1: no pulse R1 : writing and reading field energy Exp : pulse R 1 on, storing a superposition state Les Houches 003 7

8 Quantum memory: storing energy 1,0 Quantum memory, X. Maître et al. PRL 79, 769(1997) conditional probability Π e/g1 0,8 0,6 0,4 0, 0, T/T r Measurement of the cavity damping time with 1 injected photon! Les Houches 003 8

9 . Quantum phase gate (QPG) and CNOT gate Les Houches

10 Single photon induced Rabi oscillation 1,0 0,8 g,1 e P g (50 circ) 0,6 0,4 0, e,0 Ω 0 =47 khz T Rabi =0µs e ω ge = ω cav g e - 0, interaction time (µs) π Phase gate, C-Not gate: e,0 e,0 π Atom-field state exchange EPR pair preparation A. Rauschenbeutel et al., PRL 83, 5166 (1999) Les Houches 003 1

11 Principle of the Quantum Phase Gate (QPG) uses three level atoms: e : 51c g : 50c i : 49c ω cav ω R e : ancillary level qubit 1: atom qubit 1 = g 0 = i qubit : field qubit 1 : one photon 0 : cavity vacuum Truth table of a π pulse in C: i,0 i,0 i,1 i,1 g,0 g,0 g,1 iπ e g,1 0,0 0,0 0,1 0,1 1, 0 1, 0 e π i 1,1 1,1 π phase shift if control and target =1 Les Houches

12 From QPG to CNOT gate Position (cm) D π Atom π 4 π QPG in C Time 0 Classical pulse = Hadamar transform D Detection Two pulses: Ramsey interferometer on the g-i transition Les Houches

13 QPG as a CNOT The field sate controls the phase of Ramsey fringes: π e Ramsey interferometer g g g i i i Les Houches P i (ω R ) 1,0 0,8 0,6 0,4 0, 0,0 Ramsey fringes: C-Not operation: the photon number controls the final atomic state. N=1 N=0 φ R For a proper choice of the phase of the interferometer: 0, i 0, i 0, g 0, g 1, i 1, g 1, g 1, i

14 CNOT as QND detection of one photon The field sate controls the phase of Ramsey fringes: π e g g g i i i P i (ω R ) 1,0 0,8 0,6 0,4 0, 0,0 Ramsey fringes: For a proper choice of the phase of the interferometer the atom state is perfectly correlated to the photon number 0 or 1 N=1 N=0 φ R Ramsey interferometer 0, g 0, g 1, g 1, i QND detection of one photon Les Houches

15 3. CNOT as QND detection of one photon Les Houches

16 Input-output characterization of the QND measurement 1 Signal: atom detected in g or i Input: 0 ou 1 photon QND measurement Output: 0 ou 1 photon 3 Les Houches

17 QND detection of one photon: experimental timing Position (cm) D D π π 4 Atom # 1 Atom # 0 Initial field state: N=0, prepared with a bunch of atoms in g. (Cavity Cooling ) atom # 1 prepares one photon atom # performs a QND detection How good is the fidelity of the QND measurement? Les Houches

18 QND detection of one photon: Ramsey fringes signal 1,0 0,9 Probability P i 0,8 0,7 0,6 0,5 0,4 0,3 0, 0,1 0,0 0 photon 1 photon frequency (ω R -ω gi )/π (khz) G. Nogues et al., Nature 400, 39 (1999) A. Rauschenbeutel et al., PRL 83, 5166 (1999) Les Houches 003 0

19 Input-output characterization of the QND measurement 1 Signal: atom detected in g or i Input: 0 ou 1 photon QND measurement Output: 0 ou 1 photon 3 Les Houches 003 1

20 QND detection: the photon is still there Position (cm) D D Atom # 1: g π π 4 Atom # : g 0 Atom # 1 detects a small blackbody field in C: n th =0.5 photon Atom # prepared in g checks the result by absorbing the field lock at two atom correlation to check if the QND detected photon is still there Les Houches 003

21 QND detection: Checking the result i 1 1 photon 0,45 0,40 P(e if i 1 ) Probability 0,35 0,30 0,5 0,0 i 1 0 photon 0,15 0, Frequency ω R (khz) The absorption rate of atom is modulated depending whether Detection of atom 1 in i 1 corresponds to 0 or 1 photon in C The photon is still here! Les Houches 003 3

22 Input-output characterization of the QND measurement 1 Signal: atom detected in g or i Input: 0 ou 1 photon QND measurement Output: 0 ou 1 photon 3 Les Houches 003 4

23 QND measurement: field input-output correlation Position (cm) D D D Atom # 1 Atom # π π 4 Atom # 3 0 Time Depending on the detected state of atom # 1, 0 or 1 photon is prepared in C atom # performs the QND measurement atom #3 checks the final state of the field Les Houches 003 5

24 Input-output correlation without QND meter Position (cm) D D D Atom # 1 Atom # π π 4 Atom # 3 0 Time Depending on the detected state of atom # 1, 0 or 1 photon is prepared in C atom # is not prepared atom #3 checks the final state of the field Les Houches 003 6

25 Input-output correlation without QND meter Atom#1 - atom#3 correlation 1 photon 0 photon 0.5 e1g3 0.4 Probability g1g3 g1e3 e1e3 no atom # 0 atom #1 and #3 coincidence Les Houches 003 7

26 Input-output correlation with QND meter Atom#1 - atom#3 correlation 1 photon 0 photon 0.5 e1g3 Probability g1g3 g1e3 g g e1e3 i atom # detected in g atom # detected in i no atom # 0 i atom #1 and #3 coincidence Easy quantitative analysis of performances: absorption rate of atom : 10% fidelity of QND measurement: 80% Les Houches 003 8

27 Factor of merit of the QND detection detection fidelity η 1,0 0,8 0,6 0,4 0, Ideal QND QND classical 0,0 0,0 0, 0,4 0,6 0,8 1,0 absoption rate ε Les Houches 003 9

28 4. Step by step preparation of a GHZ triplet Les Houches

29 Three qubits entanglement : experimental sequence V e - Position (cm) field Atom # 1 Atom # π entanglement D D Atome# 1 e, 0 ( e, 0 g, 1 ) Time EPR Pair preparation 1 g i + g 1 C-Not e 1, 0 i + g + g 1, 1 i g gate Atome # ( ) π ( ) ( ) Les Houches

30 The "GHZ" state" prepared state: In term of qubits: 1, 0 1 e g 1 In termofspin 1/: 1 ( i + g ) +, ( i g ) 1 1 ( 0,0,0 + 1,1,1 ) ( +, +, + +, ) 1 c 1, " GHZ triplet " (Greenberger Horne Zeilinger) c Les Houches 003 3

31 Caracterization of the prepared state idealcase: Density matrix of the prepared state: ρ triplet 1 ψ triplet = * *. * * *.... =.... * * *. * * ( +,, + +,, ) 1 c 1 performed measurements: * measurement of σ z1. σ z. σ z3 * measurement of σ x1. σ x. σ x3 c Les Houches

32 Measurement of σ z1. σ z. σ z3 : practical realization Step 1:transfer of the field state to a third atom performing a π absorption pulse in C: 1 e ( ) ( ) 1, 0 g + i + g1, 1 g i g3 1 e ( ) ( ) 1 g + i g3 + g1 g i e 3 1 ( + ) 1, +, ,, 3 0 step : detection of each atom for measuring σ z1. σ z. σ z3 - atoms 1 et 3 : direct measurement of energy - atome : measurement of energy after applucation of an external pulse: 1 ( g + i ) i 1 1,, 3 1,, 3 e i g + g g e ( ) 1 ( ) g i g Les Houches

33 Full set of operations for measurement of σ z1. σ z. σ z3 Position (cm) D D D Atom # 1 Atom # π π 4 Atom # 3 0 θ Rabi oscillation in C Time State before detection: D Detection Classical p/ pulse 1 e i g + g g e (,,,, ) Les Houches

34 Measurement results: measurement of σ z1. σ z. σ z3 P long =P eig + P gge = 0.58 (0.0) ,-, ,+, Pgig Pgie Pggg Pgge Peig Peie Pegg Pege Rauschenbeutel et al., Science 88, 04 (000) Les Houches

35 Full set of operations for measurement of σ x1. σ x. σ x3 Position (cm) D D D Atom # 1 Atom # π π 4 θ D Time Rabi oscillation in C Detection Atom # 3 Classical p/ pulses, phase of detection pulses adjusted to measure σ x1 and s x3 0 Les Houches

36 Fidelity of preparation of the GHZ state measurement of σ z1. σ z. σ z3 P long =P eig + P gge = 0.58 (0.0) measurement ofσ x1. σ x. σ x3 A= σ x1. σ x. σ x3 = -0.8 (0.03) fidelity: F ψ ρ ψ = = triplet triplet 0.54 (0.03) F > 0.3 garanties non-separability see also: Sacket et al. Science 88, 04 (000) preparation of a 4 ions GHZ state in one step Les Houches

37 Engineered versus "spontaneous" entanglement first experiments on Bell inequalities: use of "spontaneous" entanglement relying on a symetry of the system atomic cascade Aspect, Grangier σ σ + σ + σ Parametric down conversion: Mandel, Zeilinger Gisin cavity QED: provide many tools for step by step entanglement engineering Nonlinear cristal the most complex sequence of gates applied on individually addressable and measurable qubits Position (cm) Atom # 1 Atom # Atom # 3 π π D D D Time Where is the limit? answer not clear..but there are still interesting things to do! Les Houches

38 References (1) QND measurement in microwave CQED experiments: M. Brune, S. Haroche, V. Lefevre-Seguin, J.M. Raimond and N. Zagury: "Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase sensitive detection", Phys. Rev. Lett. 65, 976 (1990). M.Brune, S. Haroche, J.M. Raimond,L. Davidovich and N. Zagury. "Manipulation of photons in a cavity by dispersive atom-field coupling: QND measurement and generation of "Schrödinger cat"states". Phys Rev A45, 5193, (199). S. Haroche, M. Brune and J.M. Raimond. "Manipulation of optical fields by atomic interferometry: quantum variations on a theme by Young".Appl. Phys. B, 54, 355, (199). S. Haroche, M. Brune and J.M. Raimond. "Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure". Journal de Physique II Les Houches

39 References () Gates: QPG or C-Not, algorithm: M. Brune et al., Phys. Rev. Lett, 7, 3339(1994). Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995). C. Monroe et al., Phys. Rev. Lett. 75, 4714 (1995). A. Reuschenbeutel et al., PRL. G. Nogues et al. Nature 400, 39 (1999). S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond and S. Haroche, Phys. Rev. Lett. 87, (001) F. Yamaguchi, P. Milman, M. Brune, J-M. Raimond, S. Haroche: "Quantum search with two-atom collisions in cavity QED", PRA 66, (00). Q. memory: X. Maître et al., Phys. Rev. Lett. 79, 769 (1997). Atom EPR pairs: CQED: E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997). Ions: Q.A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998). Les Houches

40 4. Non-resonant gate entanglement directly generated by a two atom "collision" catalyzed by the cavity application to a non-resonant phase gate Les Houches

41 Two atoms and one mode Non-resonant coupling Zheng et al PRL (000) One photon coupling eg,,0 ge,,0 eg,,0 Ω0 Ω R = δ Ω R ge,,0 gg,,1 ν at ν cav δ = ν ν cav at Atoms can exchange energy by virtually emitting a photon in C. Two atom EPR state preparation for a "Raman" pulse: gg,,0 1 ψ EPR = ( eg, + ge, ) 0 Les Houches

42 eg,,0 Advantage of non-resonant method of entanglement: Sensitivity to cavity damping Ω0 Ω R = δ Ω R ge,,0 gg,,1 effect of cavity damping: projection on g,g,0> Full loss of entanglement probability of error: P col err Ω δ Γ cav. T int Ω. = π T R int gg,,0 δ Γ cav Resonant case: P res err Γ cav. T res error rate reduced as: P P col err res err int Ω δ res Ω. T = π int efficient with slower atoms Les Houches

43 Advantage of non-resonant method of entanglement: Sensitivity to blackbody radiation coupling in the presence of N photons: egn,, Ω N + 1 een,, 1 Ω R Ω N gen,, Due to destructive interference between two probability amplitudes, the effective coupling is to first order independent of N: ggn+,, 1 ( ) Ω 0. N + 1 Ω0. N Ω0 ΩR = δ δ δ The method works even in the presence of blackbody radiation Similar to "hot" gate for ions: Moelmer et al PRL (000) Les Houches

44 Principle of the experiment Two atoms with different velocity "collide" in C. Position atom #1 atom # δ,θ entanglement cavity center Time Les Houches

45 Cavity assisted "collision": experimental signal pulse: preparation of: 1 ψ EPR = ( eg, + ge, ) 0 1,0 0,8 Pe 1 -g Pg 1 -e Probability 0,6 0,4 0, 0, η (x10-6 ) Osnaghi et al., PRL 87, (001) Solid line: second order coupling doted line: numerical integration Les Houches

46 Measuring the EPR entanglement: 1,0 Tranverse EPR correlation 0,5 σ 1,x σ,φ 0,0-0,5-1,0 φ/π Fidelity of the EPR state: 0,79 Les Houches

47 Quantum phase gate using a cavity assisted collision Definition of logical qubits: e : 51c g : 50c ω cav 1 0 i : 49c ω gi 0 1 atom 1 atom result of a π two atom "Raman" pulse (taking into account light shift of levels: ig, ig, ii, ii, eg, i, g iπ ei, e ei, 0,0 0,0 0,1 0,1 1, 0 1, 0 e π i 1,1 1,1 Application to Grover algorithm: F. Yamaguchi, et al. "Quantum search with two-atom collisions in cavity QED", PRA 66, (00) The cavity field is not affected Les Houches

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004 A very active research field: Code information in simple systems (atoms, photons..) and use

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Cavity Quantum Electrodynamics Lecture 1

Cavity Quantum Electrodynamics Lecture 1 DÉPARTEMENT DE PHYSIQUE DE L ÉCOLE NORMALE SUPÉRIEURE LABORATOIRE KASTLER BROSSEL Cavity Quantum Electrodynamics Lecture 1 Michel BRUNE Les Houches 2003 1 Quantum information and Cavity QED Principle of

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Preparation of a GHZ state

Preparation of a GHZ state Preparation of a GHZ state Cavity QED Gilles Nogues Experimental realization A first atom in e 1 performs a π/2 pulse ψ 1 = 1 2 ( e 1, 0 + g 1, 1 ) A second atom in 1/ 2( i 2 + g 2 ) performs a QPG gate

More information

Chapter 6. Exploring Decoherence in Cavity QED

Chapter 6. Exploring Decoherence in Cavity QED Chapter 6 Exploring Decoherence in Cavity QED Serge Haroche, Igor Dotsenko, Sébastien Gleyzes, Michel Brune, and Jean-Michel Raimond Laboratoire Kastler Brossel de l Ecole Normale Supérieure, 24 rue Lhomond

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

arxiv:quant-ph/ v1 4 Mar 2005

arxiv:quant-ph/ v1 4 Mar 2005 Quantum Information Processing using coherent states in cavity QED Ming Yang 1, and Zhuo-Liang Cao 1, 1 School of Physics & Material Science, Anhui University, Hefei, 230039, PRChina Using the highly detuned

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state

Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state Vol 6 No, January 007 c 007 Chin. Phys. Soc. 009-963/007/6(0)/08-05 Chinese Physics and IOP Publishing Ltd Teleportation of an n-bit one-photon and vacuum entangled GHZ cavity-field state Lai Zhen-Jiang(

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

REMOTE FIELD AND ATOMIC STATE PREPARATION

REMOTE FIELD AND ATOMIC STATE PREPARATION International Journal of Quantum Information Vol. 6, No. (008) 393 40 c World Scientific Publishing Company REMOTE FIELD AND ATOMIC STATE PREPARATION RAMEEZ-UL-ISLAM,, MANZOOR IKRAM, ASHFAQ H. KHOSA, and

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

MEMORY FOR LIGHT as a quantum black box. M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky MEMORY FOR LIGHT as a quantum black box M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process tomography

More information

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics Tang Jing-Wu( ), Zhao Guan-Xiang( ), and He Xiong-Hui( ) School of Physics, Hunan

More information

Diffraction effects in entanglement of two distant atoms

Diffraction effects in entanglement of two distant atoms Journal of Physics: Conference Series Diffraction effects in entanglement of two distant atoms To cite this article: Z Ficek and S Natali 007 J. Phys.: Conf. Ser. 84 0007 View the article online for updates

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Lecture 2: Quantum measurement, Schrödinger cat and decoherence

Lecture 2: Quantum measurement, Schrödinger cat and decoherence Lecture 2: Quantum measurement, Schrödinger cat and decoherence 5 1. The Schrödinger cat 6 Quantum description of a meter: the "Schrödinger cat" problem One encloses in a box a cat whose fate is linked

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Entanglement concentration for multi-atom GHZ class state via cavity QED

Entanglement concentration for multi-atom GHZ class state via cavity QED Vol 5 No, December 006 c 006 Chin. Phys. Soc. 009-963/006/5()/953-06 Chinese Physics and IOP Publishing Ltd Entanglement concentration for multi-atom GHZ class state via cavity QED Jiang Chun-Lei( ), Fang

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Quantum jumps of light: birth and death of a photon in a cavity

Quantum jumps of light: birth and death of a photon in a cavity QCCC Workshop Aschau, 27 Oct 27 Quantum jumps of light: birth and death of a photon in a cavity Stefan Kuhr Johannes-Gutenberg Universität Mainz S. Gleyzes, C. Guerlin, J. Bernu, S. Deléglise, U. Hoff,

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence

Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Counting non-destructively photons in a cavity, reconstructing Schrödinger cat states of light & realizing movies of their decoherence Serge Haroche, ENS and Collège de France, Paris International Workshop

More information

Quantum computing with cavity QED

Quantum computing with cavity QED Quantum computing with cavity QED Ch. J. Schwarz Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE Albuquerque, New Mexico 87106 Physics & Astronomy, University of

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Single photon nonlinear optics in photonic crystals

Single photon nonlinear optics in photonic crystals Invited Paper Single photon nonlinear optics in photonic crystals Dirk Englund, Ilya Fushman, Andrei Faraon, and Jelena Vučković Ginzton Laboratory, Stanford University, Stanford, CA 94305 ABSTRACT We

More information

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations. QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING Philippe Grangier, Institut d'optique, Orsay 1. Quantum cryptography : from basic principles to practical realizations. 2. Quantum computing : a conceptual revolution

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

arxiv:quant-ph/ v1 30 Aug 2003

arxiv:quant-ph/ v1 30 Aug 2003 The Quantum Self-eraser arxiv:quant-ph/0309005v1 30 Aug 003 1. Introduction Jesús Martínez-Linares and Julio Vargas Medina Facultad de Ingeniería en Tecnología de la Madera. P.O. Box 580, Universidad Michoacana

More information

Quantum non-demolition measurement of a superconducting two-level system

Quantum non-demolition measurement of a superconducting two-level system 1 Quantum non-demolition measurement of a superconducting two-level system A. Lupaşcu 1*, S. Saito 1,2, T. Picot 1, P. C. de Groot 1, C. J. P. M. Harmans 1 & J. E. Mooij 1 1 Quantum Transport Group, Kavli

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006 Resolving photon number states in a superconducting circuit arxiv:cond-mat/0608693v1 [cond-mat.mes-hall] 30 Aug 2006 D. I. Schuster, 1 A. A. Houck, 1 J. A. Schreier, 1 A. Wallraff, 1, 2 J. M. Gambetta,

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

ATOMIC, MOLECULAR, AND OPTICAL PHYSICS RAPID COMMUNICATIONS. Teleportation of an atomic state between two cavities using nonlocal microwave fields

ATOMIC, MOLECULAR, AND OPTICAL PHYSICS RAPID COMMUNICATIONS. Teleportation of an atomic state between two cavities using nonlocal microwave fields ATOMIC, MOLECULAR, AND OPTICAL PHYSICS THIRD SERIES, VOLUME 50, NUMBER PART A AUGUST 994 RAPID COMMUNICATIONS The Rapid Communications section is intended for the accelerated publication of important new

More information

Scheme for teleportation of unknown states of trapped ion

Scheme for teleportation of unknown states of trapped ion Vol 17 No, February 008 c 008 Chin. Phys. Soc. 1674-1056/008/17(0/0451-05 Chinese Physics B and IOP Publishing Ltd Scheme for teleportation of unknown states of trapped ion Chen Mei-Feng( and Ma Song-She(

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

COOPERATIVE NONLINEAR TRANSFER OF INFORMATION BETWEEN THREE Q-BITS THROUGH CAVITY VACUUM FIELD

COOPERATIVE NONLINEAR TRANSFER OF INFORMATION BETWEEN THREE Q-BITS THROUGH CAVITY VACUUM FIELD Romanian Reports in Physics, Vol. 67, No., P. 131 135, 015 Dedicated to nternational Year of Light 015 COOPERATVE NONLNEAR TRANSFER OF NFORMATON BETWEEN THREE Q-BTS THROUGH CAVTY VACUUM FELD TATANA PSLAR

More information

TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS

TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS TELEPORTATION OF ATOMIC STATES VIA CAVITY QUANTUM ELECTRODYNAMICS arxiv:quant-ph/0409194v1 7 Sep 004 E. S. Guerra Departamento de Física Universidade Federal Rural do Rio de Janeiro Cx. Postal 3851, 3890-000

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Step-by-Step Engineered Multiparticle Entanglement

Step-by-Step Engineered Multiparticle Entanglement x-ray transients containing accreting black holes, as a class, have longer recurrence times than similar systems containing less massive, accreting neutron stars (14). Theoretically, it has been argued

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Manipulating Single Atoms

Manipulating Single Atoms Manipulating Single Atoms MESUMA 2004 Dresden, 14.10.2004, 09:45 Universität Bonn D. Meschede Institut für Angewandte Physik Overview 1. A Deterministic Source of Single Neutral Atoms 2. Inverting MRI

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

arxiv:quant-ph/ Sep 2000

arxiv:quant-ph/ Sep 2000 PHYSICAL REVIEW A, VOLUME 62, 043810 Engineering cavity-field states by projection synthesis R. M. Serra, N. G. de Almeida, C. J. Villas-Bôas, and M. H. Y. Moussa Departamento de Física, Universidade Federal

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Cavity QED in Atomic Physics

Cavity QED in Atomic Physics Chapter 1 Cavity QED in Atomic Physics Serge Haroche, and Jean-Michel Raimond, Laboratoire Kastler-Brossel, ENS, UPMC-Paris 6, CNRS, 24 rue Lhomond 75005 Paris, France Collège de France, 11 place Marcelin

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Radiation pressure effects in interferometric measurements

Radiation pressure effects in interferometric measurements Laboratoire Kastler Brossel, Paris Radiation pressure effects in interferometric measurements A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon T. Briant O. Arcizet T. Caniard C. Molinelli P. Verlot Quantum

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

Cavity QED with Rydberg Atoms

Cavity QED with Rydberg Atoms Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Lecture 3: Quantum feedback and field state reconstruction in Cavity QED experiments. Introduction to Circuit

More information

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016

Quantum Information & Quantum Computing. (Experimental Part) Oliver Benson SoSe, 2016 Quantum Information & Quantum Computing (Experimental Part) Oliver Benson SoSe, 2016 Contents 1 Introduction 5 2 Optical and Cavity QED Implementations 7 2.1 Properties of an optical quantum computer............

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Nonlinear optics with single quanta

Nonlinear optics with single quanta Nonlinear optics with single quanta A brief excursion into cavity quantum electrodynamics Kevin Moore Physics 208 Fall 2004 What characterizes linear systems? X stuff Y 1. Start with input X 2. X impinges

More information

QUANTUM STATE SWAPPING IN OPTICAL QUANTUM COMMUNICATION USING MACH ZEHNDER INTERFEROMETER

QUANTUM STATE SWAPPING IN OPTICAL QUANTUM COMMUNICATION USING MACH ZEHNDER INTERFEROMETER QUANTUM STATE SWAPPING IN OPTICAL QUANTUM COMMUNICATION USING MACH ZEHNDER INTERFEROMETER Shamsolah Salemian * and Shahram Mohammad Nejad Nanoptronics Research Center Electrical and Electronics Engineering

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

Hong Ou Mandel experiment with atoms

Hong Ou Mandel experiment with atoms BEC on an MCP Hong Ou Mandel experiment with atoms Chris Westbrook Laboratoire Charles Fabry, Palaiseau FRISNO 13, Aussois 18 march 2015 2 particles at a beam splitter 1 particle at each input 4 possibilities:

More information

Introduction to Cavity QED

Introduction to Cavity QED Introduction to Cavity QED Fabian Grusdt March 9, 2011 Abstract This text arose in the course of the Hauptseminar Experimentelle Quantenoptik in WS 2010 at the TU Kaiserslautern, organized by Prof. Ott

More information

Quantum nondemolition measurements for quantum information

Quantum nondemolition measurements for quantum information Quantum nondemolition measurements for quantum information Author Ralph, T., Bartlett, S., O'Brien, J., Pryde, Geoff, Wiseman, Howard Published 2006 Journal Title Physical Review A DOI https://doi.org/10.1103/physreva.73.012113

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information