Magnetic Resonance at the quantum limit and beyond

Size: px
Start display at page:

Download "Magnetic Resonance at the quantum limit and beyond"

Transcription

1 Magnetic Resonance at the quantum limit and beyond Audrey BIENFAIT, Sebastian PROBST, Xin ZHOU, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA-Saclay, France Jarryd J. Pla, Cheuk C. Lo & John J.L. Morton London Centre for Nanotechnology, University of College London Brian Julsgaard, Klaus Moelmer Aarhus University, Danemark

2 Motivation : quantum-enhanced magnetic resonance Conventional magnetic resonance spectroscopy Low sensitivity, room-temperature operation, Macroscopic samples, Spin-Field interaction classical Quantum technologies Superconducting circuits and resonators Superconducting amplifiers Quantum-enhanced magnetic resonance High sensitivity, millikelvin operation, nanoscale samples Spin-Field interaction in the quantum regime Towards single-spin detection

3 Pulsed Inductive Detection Electron Spin Resonance (ESR) Excite spins Echo emission B 0 Sensitivity Minimal number of spins NN mmmmmm detected with a SNR = 1 in a single echo? τ τ π/2 π echo time π π/2

4 Sensitivity of an inductive detection spectrometer gg resonator ωω 0, QQ TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss Q

5 Sensitivity of an inductive detection spectrometer gg resonator ωω 0, QQ TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = CC Q Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

6 Sensitivity of an inductive detection spectrometer nn eeee gg resonator ωω 0, QQ T nn aaaaaa TT EE B 0 τ τ π/2 π echo time L.O. I NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = nn II CC Q Number of noise photons in the detected quadrature bandwidth nn II = SS II(ωω) ħωω = nn eeee,ii + nn aaaaaa,ii Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

7 Sensitivity of an inductive detection spectrometer nn eeee gg resonator ωω 0, QQ T nn aaaaaa TT EE B 0 τ τ π/2 π echo time L.O. I Q NN mmmmmm = nnnnnnnnnn SSSSSSSSSSSS ffffffff oooooo ssssssss = nn II pp CC A.Bienfait et al., Nature Nano (2015) Spin polarization For spin ½ at T pp = tanh ħωω 0 2kkkk Number of noise photons in the detected quadrature bandwidth nn II = SS II(ωω) ħωω = nn eeee,ii + nn aaaaaa,ii Single-spin cooperativity CC = QQQQ2 TT EE ωω 0

8 EPR sensitivity : state-of-the-art 1000 NN mmmmmm Commercial ESR spectrometer (300K) 100 nn II 10 1 NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) 0.1 1E-12 1E-10 1E-8 1E-6 1E pp CC

9 Equilibrium thermal noise and quantum limit nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk nn eeee,ii TT/(ħωω 0 /kk)

10 Equilibrium thermal noise and quantum limit 1.5 nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk 1.0 Q I nn eeee,ii 0.5 ΔII 2 kkkk 2ħωω TT/(ħωω 0 /kk)

11 Equilibrium thermal noise and quantum limit 1.5 nn eeee,ii = ΔII 2 = 1 2 coth ħωω 0 2kkkk 1.0 ΔΔII 22 = Q I nn eeee,ii 0.5 Q I ΔII 2 kkkk 2ħωω 0 QUANTUM LIMIT ωω 0 /2ππ = 7.3GHz TT = 20mmmm TT/(ħωω 0 /kk)

12 Josephson Parametric Amplifier in out Input SQUID array X. Zhou et al., PRB (2014) M. Castellanos-Beltran et al., APL (2007) C. Eichler et al., PRL (2010) N. Bergeal et al., Nature (2010) 12/61

13 Josephson Parametric Amplifier in out ωω 0 (Φ) DC bias SQUID array ΦΦ ΦΦ ΦΦ ΦΦ X. Zhou et al., PRB (2014) 13/61

14 Josephson Parametric Amplifier in out ωω 0 (Φ) Working ΦΦ DC bias AC pump tone ωω pp 2ωω 0 X. Zhou et al., PRB (2014) 14/61

15 JPA in non-degenerate mode signal ωω in DC bias AC pump tone ωω pp 2ωω in Quantum-limited (ωω iiii ωω pp /22)/2222 (MHz) nn aaaaaa = 1/4 X. Zhou et al., PRB (2014) 15/61

16 JPA in degenerate mode signal ωω in Pump phase DC bias AC pump tone ωω pp = 2ωω in Noiseless amplifier X. Zhou et al., PRB (2014) 16/61

17 Quantum limited ESR with Parametric Amplifier ωω 0 π/2 π B 0 φφ ππ/2 φφ LLLL φφ pppppppp π/2

18 Quantum limited ESR with Parametric Amplifier 2D lumped element Superconducting Al resonator ω 0 /2π = 7.24 GHz, Q =

19 Quantum limited ESR with Parametric Amplifier B 0 Q = µm Spins 100 nm B 0 28 Si 2D lumped element Superconducting Al resonator

20 Quantum limited ESR with Parametric Amplifier B 0 Q = µm Spins 100 nm B 0 28 Si 2D lumped element Superconducting Al resonator Spin-resonator coupling gg 2222 =

21 The Spins: bismuth donors in silicon e Bi Bi +

22 The Spins: bismuth donors in silicon e Bi e - Bi + HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Electronic spin = 1/2 20 electro-nuclear states! Nuclear spin I=9/2 Large hyperfine coupling AA = GHz 2ππ

23 The Spins: Bi donors in 28 Si At low-field B 0 =0 B 0 0 F = 5 m F 5 5 A/2π 7.37 GHz F = 4 m F -5 m F 4 m F Bi HH ħ = AAII SS + BB 00 ( γγ ee SS γγ nn II) HYPERFINE ZEEMAN EFFECT Nuclear spin I=9/2 Electronic spin S=1/2 Large hyperfine coupling AA 2ππ = 1.48 GHz RE George et al., Phys Rev Lett (2010); GW Morley et al. Nature Materials (2010)

24 The Spins: bismuth donors in silicon 10 allowed ESR-like low B 0 28 Si Magnetic field B 0 (mt) Implanted Bismuth mf = 4 mf = mt

25 Sensitivity of the setup? How many spins? SNR? JPA off : SNR = 0.7 JPA on : SNR = 7 A. Bienfait et al., Nature Nanotechnology 11, (2016)

26 Spectrometer single-shot sensitivity ΔSS zz = SNR = 7 Estimated sensitivity per echo : NN mmmmmm = = spins Quantitative agreement with expected sensitivity A. Bienfait et al., Nature Nanotechnology 11, (2016)

27 Absolute sensitivity and spin relaxation time TT 1 Repetition rate?? Limited by time TT 1 needed for spins to reach thermal equilibrium TT = 0 TT T 1 = 0.35 s A Q Spectrometer absolute sensitivity : 1700 spin/ HHHH «Short» T 1 due to spontaneous emission in the cavity (Purcell effect)

28 Spin relaxation dependence on detuning ωω 0, QQ gg γγ PP 11 TT 11 = γγ PP + ΓΓ NNNN γγ PP = 4QQgg2 ωω QQ 2 ωω ss ωω 0 ωω 0 2 A. Bienfait et al., Nature (2016)

29 EPR sensitivity : summary 1000 NN mmmmmm Commercial ESR spectrometer (300K) nn II QUANTUM LIMIT NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) NN mmmmmm = improvement over state-of-the-art A.Bienfait et al., Nature Nano (2015) 0.1 1E-12 1E-10 1E-8 1E-6 1E pp CC C. Eichler et al., arxiv(2016)

30 Increasing sensitivity with narrower wire B 0 1 mm 100 um width: 500nm π π/2 π T 1 = 21 ms gg/2ππ = 440 Hz

31 EPR sensitivity : summary 1000 NN mmmmmm Commercial ESR spectrometer (300K) B 0 nn II QUANTUM LIMIT NN mmmmmm 10 7 Sigillito et al., APL 2014 (1.7K) C. Eichler et al., arxiv(2016) A.Bienfait et al., Nature Nano (2015) NN mmmmmm = E-12 1E-10 1E-8 1E-6 1E pp CC 10 4 improvement over state-of-the-art Below QL?? NN mmmmmm = S. Probst (2016)

32 Quantum squeezed states below the quantum limit nn eeee,ii = 1 2 coth ħωω 0 2kkkk Q I nn eeee,ii Q I Q I TT/(ħωω 0 /kk) QUANTUM LIMIT QUANTUM SQUEEZING

33 Measurements beyond the quantum limit using squeezing Giovanetti, Lloyd, Maccone, Science (2004) Optical domain Squeezed state production Slusher et al., PRL (1985) L. Wu et al., PRL (1986) Phase measurements in an interferometer Caves, PRD (1981) Grangier et al., PRL (1987), Xiao et al., PRL (1987) LIGO, Nature Phys (2011), Nature Photonics (2013) Spectroscopy Polzik et al., PRL (1992) Imaging Treps et al., Science (2003) M.A. Taylor et al., Nature Phot. (2013) Atomic magnetometry F Wolfgramm et al., PRL (2010) Microwave domain Squeezed state production Movshovitch, Yurke, PRL 65, 1419 (1990) Mallet et al., PRL 106, (2011) Quantum physics experiments Gardiner, PRL (1986) Murch et al., Nature (2012) Toyli et al., arxiv (2016) Proposals for qubit state readout N. Didier et al., PRL 115, (2015) N. Didier et al., PRL 115, (2015) Here : squeezing-enhanced pulsed magnetic resonance detection

34 Principle of the experiment B 0 Spin-echo L.O. I Q

35 Principle of the experiment SQUEEZER B 0 Spin-echo L.O. I Q Signal-to-noise ratio on the echo signal quadrature enhanced by vacuum squeezing at spectrometer input

36 How to generate squeezed microwave vacuum? Q amplification phase Josephson Parametric Amplifier GG IN OUT GG 1 I Pump signal in Frequency ωω pp = 2222

37 Squeezed vacuum characterization L.O. SQZ JPA AMP I I quadrature (V) Time (ms) Variance of I quadratue (V²) AMP Occurences AMP 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V)

38 Squeezed vacuum characterization Quantum noise L.O. SQZ JPA AMP I Variance of I quadratue (mv²) Quantum noise n JPA AMP Occurences AMP JPA 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V)

39 Squeezed vacuum characterization Reduced quantum noise L.O. SQZ JPA AMP I Deamplified phase φφ SQZ φφ JPA Noise reduction: -25% Variance of I quadratue (mv²) HEMT Occurences HEMT JPA SQZ 0 ππ/2 ππ Phase ( ) φφ SQZ φφ JPA Voltage (V) R. Movshovitch et al., PRL (1990) F. Mallet et al., PRL (2011)

40 Spin-echo emitted in squeezed vacuum Reduced quantum noise L.O. SQZ JPA AMP I SQZ ON B 0 Average 2000 Noise reduction: -25% SQZ ON SQZ OFF ECHO, SQZ ON ECHO, SQZ OFF Occurences Voltage (V) 40/61

41 Spin-echo emitted in squeezed vacuum SNR enhancement by 12% Proof of concept! Currently limited by microwave losses Average 2000 SQZ ON SQZ OFF ECHO, SQZ ON ECHO, SQZ OFF Occurences Voltage (V) 41/61

42 Conclusions Magnetic Resonance enhanced by quantum technologies (superconducting circuits) Magnetic resonance detection with unprecedented sensitivity (reaching the quantum limit) Towards single-spin sensitivity Quantum fluctuations of the field affect spin dynamics (Purcell effect) Dynamical control of T 1 by tuning spin frequency Useful for Dynamical Nuclear Polarization? Proof-of-principle that squeezing can improve sensitivity of magnetic resonance beyond quantum limit. Improving amount of squeezing becomes techn. relevant.

43 Quantronics group, CEA Saclay Acknowledgements University College London Aarhus University, Danemark D. ESTEVE D. VION A. BIENFAIT Y. KUBO S. PROBST J. PLA J. MORTON Quantronics Group B. JULSGAARD K. MOELMER POSITIONS OPEN X. ZHOU P. CAMPAGNE P. JAMONNEAU UC Berkeley T. SCHENKEL

Circuit-QED-enhanced magnetic resonance

Circuit-QED-enhanced magnetic resonance Circuit-QED-enhanced magnetic resonance P. Bertet, Quantronics Group, CEA Saclay CEA Saclay S. Probst A. Bienfait V. Ranjan B. Albanese J.F. DaSilva-Barbosa D. Vion D. Esteve R. Heeres PB UCL London J.J.

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

arxiv: v1 [quant-ph] 24 Jul 2015

arxiv: v1 [quant-ph] 24 Jul 2015 Reaching the quantum limit of sensitivity in electron spin resonance A. Bienfait 1, J.J. Pla 2, Y. Kubo 1, M. Stern 1,3, X. Zhou 1,4, C.C. Lo 2, C.D. Weis 5, T. Schenkel 5, M.L.W. Thewalt 6, D. Vion 1,

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

The SQUID-tunable resonator as a microwave parametric oscillator

The SQUID-tunable resonator as a microwave parametric oscillator The SQUID-tunable resonator as a microwave parametric oscillator Tim Duty Yarema Reshitnyk Charles Meaney Gerard Milburn University of Queensland Brisbane, Australia Chris Wilson Martin Sandberg Per Delsing

More information

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Amplification, entanglement and storage of microwave radiation using superconducting circuits Amplification, entanglement and storage of microwave radiation using superconducting circuits Jean-Damien Pillet Philip Kim s group at Columbia University, New York, USA Work done in Quantum Electronics

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Controlling spin relaxation with a cavity

Controlling spin relaxation with a cavity Controlling spin relaxation with a cavity A. Bienfait, J. J. Pla, Y. Kubo, Xin Zhou, M. Stern, C. C. Lo, D. Weis, T. Schenkel, Denis Vion, Daniel Esteve, et al. To cite this version: A. Bienfait, J. J.

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Last Name _Piatoles_ Given Name Americo ID Number

Last Name _Piatoles_ Given Name Americo ID Number Last Name _Piatoles_ Given Name Americo ID Number 20170908 Question n. 1 The "C-V curve" method can be used to test a MEMS in the electromechanical characterization phase. Describe how this procedure is

More information

Optical pumping and the Zeeman Effect

Optical pumping and the Zeeman Effect 1. Introduction Optical pumping and the Zeeman Effect The Hamiltonian of an atom with a single electron outside filled shells (as for rubidium) in a magnetic field is HH = HH 0 + ηηii JJ μμ JJ BB JJ μμ

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS Laboratoire Kastler Brossel A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) A. Dantan, E. Giacobino, M. Pinard (UPMC, Paris) NUCLEAR SPINS HAVE LONG RELAXATION

More information

(1) Correspondence of the density matrix to traditional method

(1) Correspondence of the density matrix to traditional method (1) Correspondence of the density matrix to traditional method New method (with the density matrix) Traditional method (from thermal physics courses) ZZ = TTTT ρρ = EE ρρ EE = dddd xx ρρ xx ii FF = UU

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Photons in the universe. Indian Institute of Technology Ropar

Photons in the universe. Indian Institute of Technology Ropar Photons in the universe Photons in the universe Element production on the sun Spectral lines of hydrogen absorption spectrum absorption hydrogen gas Hydrogen emission spectrum Element production on the

More information

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011 Observation of quantum jumps in a superconducting artificial atom R. Vijay, D. H. Slichter, and I. Siddiqi Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley

More information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Single Microwave-Photon Detector based on Superconducting Quantum Circuits 17 th International Workshop on Low Temperature Detectors 19/July/2017 Single Microwave-Photon Detector based on Superconducting Quantum Circuits Kunihiro Inomata Advanced Industrial Science and Technology

More information

Interaction between surface acoustic waves and a transmon qubit

Interaction between surface acoustic waves and a transmon qubit Interaction between surface acoustic waves and a transmon qubit Ø Introduction Ø Artificial atoms Ø Surface acoustic waves Ø Interaction with a qubit on GaAs Ø Nonlinear phonon reflection Ø Listening to

More information

Theory for investigating the dynamical Casimir effect in superconducting circuits

Theory for investigating the dynamical Casimir effect in superconducting circuits Theory for investigating the dynamical Casimir effect in superconducting circuits Göran Johansson Chalmers University of Technology Gothenburg, Sweden International Workshop on Dynamical Casimir Effect

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Photoelectric readout of electron spin qubits in diamond at room temperature

Photoelectric readout of electron spin qubits in diamond at room temperature Photoelectric readout of electron spin qubits in diamond at room temperature. Bourgeois,, M. Gulka, J. Hruby, M. Nesladek, Institute for Materials Research (IMO), Hasselt University, Belgium IMOMC division,

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Lecture 7 MOS Capacitor

Lecture 7 MOS Capacitor EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 7 MOS Capacitor Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

More information

Elastic light scattering

Elastic light scattering Elastic light scattering 1. Introduction Elastic light scattering in quantum mechanics Elastic scattering is described in quantum mechanics by the Kramers Heisenberg formula for the differential cross

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Quantum magnonics with a macroscopic ferromagnetic sphere

Quantum magnonics with a macroscopic ferromagnetic sphere Quantum magnonics with a macroscopic ferromagnetic sphere Yasunobu Nakamura Superconducting Quantum Electronics Team Center for Emergent Matter Science (CEMS), RIKEN Research Center for Advanced Science

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Mechanical Quantum Systems

Mechanical Quantum Systems Mechanical Quantum Systems Matt LaHaye Syracuse University 09 Nov. 2013 Outline My field: Mechanical Quantum Systems - What are these systems? - Why are they interesting? What are some of the experimental

More information

Let's Build a Quantum Computer!

Let's Build a Quantum Computer! Let's Build a Quantum Computer! 31C3 29/12/2014 Andreas Dewes Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion,

More information

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

Routes towards quantum information processing with superconducting circuits

Routes towards quantum information processing with superconducting circuits Routes towards quantum information processing with superconducting circuits? 0 1 1 0 U 2 1 0? 0 1 U 1 U 1 Daniel Estève Quantronics SPEC CEA Saclay Quantum Mechanics: resources for information processing

More information

Tunable Resonators for Quantum Circuits

Tunable Resonators for Quantum Circuits J Low Temp Phys (2008) 151: 1034 1042 DOI 10.1007/s10909-008-9774-x Tunable Resonators for Quantum Circuits A. Palacios-Laloy F. Nguyen F. Mallet P. Bertet D. Vion D. Esteve Received: 26 November 2007

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Quantum Computing with Superconducting Circuits

Quantum Computing with Superconducting Circuits Quantum Computing with Superconducting Circuits S. Filipp, A. Fuhrer, P. Müller, N. Moll, I. Tavernelli IBM Research Zurich, Switzerland J. Chow, M. Steffen, J. Gambetta, A. Corcoles, D. McKay et al. IBM

More information

Remote entanglement of transmon qubits

Remote entanglement of transmon qubits Remote entanglement of transmon qubits 3 Michael Hatridge Department of Applied Physics, Yale University Katrina Sliwa Anirudh Narla Shyam Shankar Zaki Leghtas Mazyar Mirrahimi Evan Zalys-Geller Chen Wang

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Resonantly Enhanced Microwave Photonics

Resonantly Enhanced Microwave Photonics Resonantly Enhanced Microwave Photonics Mankei Tsang Department of Electrical and Computer Engineering Department of Physics National University of Singapore eletmk@nus.edu.sg http://www.ece.nus.edu.sg/stfpage/tmk/

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Quantum Mechanics An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc. Fall 2018 Prof. Sergio B. Mendes 1 CHAPTER 3 Experimental Basis of

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

PHL424: Nuclear fusion

PHL424: Nuclear fusion PHL424: Nuclear fusion Hot Fusion 5 10 15 5 10 8 projectiles on target compound nuclei 1 atom Hot fusion (1961 1974) successful up to element 106 (Seaborgium) Coulomb barrier V C between projectile and

More information

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology

Nanomechanics II. Why vibrating beams become interesting at the nanoscale. Andreas Isacsson Department of Physics Chalmers University of Technology Nanomechanics II Why vibrating beams become interesting at the nanoscale Andreas Isacsson Department of Physics Chalmers University of Technology Continuum mechanics Continuum mechanics deals with deformation

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

The Bose Einstein quantum statistics

The Bose Einstein quantum statistics Page 1 The Bose Einstein quantum statistics 1. Introduction Quantized lattice vibrations Thermal lattice vibrations in a solid are sorted in classical mechanics in normal modes, special oscillation patterns

More information

Quantum Microwave Photonics:

Quantum Microwave Photonics: Quantum Microwave Photonics:Coupling quantum microwave circuits to quantum optics via cavity electro-optic modulators p. 1/16 Quantum Microwave Photonics: Coupling quantum microwave circuits to quantum

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

The Dark Matter Radio. Kent Irwin for the DM Radio Collaboration. DM Radio Pathfinder

The Dark Matter Radio. Kent Irwin for the DM Radio Collaboration. DM Radio Pathfinder The Dark Matter Radio Kent Irwin for the DM Radio Collaboration DM Radio Pathfinder Outline Field-like dark matter: axions and hidden photons Fundamental limits on the detection of axions and hidden photons

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Superconducting Qubits. Nathan Kurz PHYS January 2007

Superconducting Qubits. Nathan Kurz PHYS January 2007 Superconducting Qubits Nathan Kurz PHYS 576 19 January 2007 Outline How do we get macroscopic quantum behavior out of a many-electron system? The basic building block the Josephson junction, how do we

More information

Sensing the quantum motion of nanomechanical oscillators

Sensing the quantum motion of nanomechanical oscillators Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki Joseph Kerckhoff Collaborators John Teufel Cindy Regal Ray Simmonds Kent Irwin Graduate students Jennifer

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

OBE solutions in the rotating frame

OBE solutions in the rotating frame OBE solutions in the rotating frame The light interaction with the 2-level system is VV iiiiii = μμ EE, where μμ is the dipole moment μμ 11 = 0 and μμ 22 = 0 because of parity. Therefore, light does not

More information

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely

Atomic fluorescence. The intensity of a transition line can be described with a transition probability inversely Atomic fluorescence 1. Introduction Transitions in multi-electron atoms Energy levels of the single-electron hydrogen atom are well-described by EE nn = RR nn2, where RR = 13.6 eeee is the Rydberg constant.

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Acceleration to higher energies

Acceleration to higher energies Acceleration to higher energies While terminal voltages of 20 MV provide sufficient beam energy for nuclear structure research, most applications nowadays require beam energies > 1 GeV How do we attain

More information

Charge carrier density in metals and semiconductors

Charge carrier density in metals and semiconductors Charge carrier density in metals and semiconductors 1. Introduction The Hall Effect Particles must overlap for the permutation symmetry to be relevant. We saw examples of this in the exchange energy in

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier

Doppler Correction after Inelastic Heavy Ion Scattering 238 U Ta system at the Coulomb barrier Doppler-Corrected e - and γ-ray Spectroscopy Physical Motivation In-beam conversion electron spectroscopy complements the results obtained from γ-spectroscopy A method for determining the multipolarity

More information

Gravitational-Wave Detectors

Gravitational-Wave Detectors Gravitational-Wave Detectors Roman Schnabel Institut für Laserphysik Zentrum für Optische Quantentechnologien Universität Hamburg Outline Gravitational waves (GWs) Resonant bar detectors Laser Interferometers

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011 Coherence of nitrogen-vacancy electronic spin ensembles in diamond arxiv:006.49v [cond-mat.mes-hall] 4 Jan 0 P. L. Stanwix,, L. M. Pham, J. R. Maze, 4, 5 D. Le Sage, T. K. Yeung, P. Cappellaro, 6 P. R.

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

arxiv: v1 [quant-ph] 21 Mar 2014

arxiv: v1 [quant-ph] 21 Mar 2014 Emission of Microwave Photon Pairs by a Tunnel Junction arxiv:1403.5578v1 [quant-ph] 1 Mar 014 Jean-Charles Forgues 1, Christian Lupien 1, and Bertrand Reulet 1 1 Département de Physique, Université de

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA. Funding NIST NSA/LPS DARPA Boulder, CO Control and measurement of an optomechanical system using a superconducting qubit Florent Lecocq PIs Ray Simmonds John Teufel Joe Aumentado Introduction: typical

More information