Dmitry Ryndyk. December 20, 2007, Dresden. In collaboration with Pino D Amico, Klaus Richter, and Gianaurelio Cuniberti

Size: px
Start display at page:

Download "Dmitry Ryndyk. December 20, 2007, Dresden. In collaboration with Pino D Amico, Klaus Richter, and Gianaurelio Cuniberti"

Transcription

1 Memory effect in electron-vibron systems Dmitry Ryndyk December 20, 2007, Dresden In collaboration with Pino D Amico, Klaus Richter, and Gianaurelio Cuniberti Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 1

2 Outline I. Motivation: nano-memory, experiments II. III. IV. Atomistic modelling Electron-vibron model Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 2

3 I. Motivation: nano-memory, experiments II. III. IV. Atomistic modelling Electron-vibron model Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 3

4 Nano-memory / single-electron electron memory Silicon single-electron electron memory L. Guo,, E. Leobandung,, S.Y. Chou,, Science (1997) SP1 proteins and Au nanoparticle hybrids D. Porath s group, The Hebrew University, Jerusalem Problem: stability (life-time) of charged state. Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 4

5 Charge-memory effect in Cu-NaCl NaCl-Au(Ag) systems J. Repp et al., Science (2004), F. E. Olsson et al., PRL (2007) Au / Ag NaCl Cu DFT calculation of neutral and charged state. Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 5

6 Conformational memory effect P. Liljeroth,, J. Repp,, G. Meyer, Science (2007) Bistability of hydrogen position (chemical bonds) in single naphthalocyanine molecule. Results of STM experiments and DFT calculations. Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 6

7 Nonequilibrium switching E. Lörtscher, H.B.. Weber, H. H Riel,, PRL (2007) Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 7

8 I. Motivation: nano-memory, experiments II. Atomistic modelling III. IV. Electron-vibron model Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 8

9 From ab initio and DFT to semi-empirical empirical models Ab initio Semi-empirical empirical Hˆ = Hˆ Hˆ Hˆ Hˆ Hˆ L LM M MR R Geometry optimization and vibrational modes. For this purpose DFT is good. Calculation of the I-V I V curves from DFTNGF codes: TranSIESTA,, SMEAGOL, gdftb. Parameters of the semi-empirical empirical model from ab initio codes: Gaussian, GAMESS, HyperChem. Gate V () L t VR () t V t α gate () V = V V n, σ electronic states bias L R Effective model of leads. Anderson-Hubbard Hamiltonian. ˆ = " ε ˆ ˆ αβ α β αβ α β αβ α β H d d U nˆ nˆ Hleads Htun Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 9

10 Stage I: DFT, geometry optimization Neutral state Charged state Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 10

11 Stage II: I: DFT, vibrational modes Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 11

12 Stage IIII II: ab initio (HF( 2e-integrals integrals) parameterization MO LMO AO (nonorthogonal!) MO (orthogonal) LMO (localized) ˆ = " ε ˆ ˆ αβ α β αβ α β αβ α β H d d U nˆ nˆ Hleads Htun Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 12

13 I. Motivation: nano-memory, experiments II. Atomistic modelling III. Electron-vibron model IV. Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 13

14 Vibrons and electron-vibron interaction t αβ ε α 0 ( ε ) α Hˆ ev = ε x Hˆ = ω a a λ a a d V ˆx ε β α, β electronic states ˆx normal mode Diagonal coupling α xˆ dαdα ( ) α d α ˆ αβ Hev tαβ xˆ dαdβ ˆ Hˆ pˆ mω0 xˆ = =ω 2m 2 Off - diagonal coupling t = x ( ) 0aa ˆ (0) M = εα( xˆ) dαdα tαβ( xˆ) dd α β α α β H HV = ω0a a λ a a dαdβ ( ) Hˆ = ω a a λ a a d d q V q q q αβ q q α β q qαβ Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 14

15 Standard Model: semi-empirical empirical or ab initio Hˆ Hˆ Hˆ Hˆ Hˆ Hˆ = L LM M MR (0) R Hˆ M = ( εα eϕα() t ) dαdα tαβ dαdβ α α β α Gate V () L t VR () t V t gate () V = V V bias L R n, σ electronic states ( ε ) Hˆ = = ev () t c c i L( R) ikσ i ikσ ikσ kσ Hˆ im = Vik σα, cik σdα hc.. kσα, ( ) ϕ = V η V V δ V α R α L R α gate ˆ ( C ) HM = U nˆ nˆ α β αβ α β ( ) Hˆ = ω a a λ a a d d q V q q q αβ q q α β q qαβ charge redistribution dissipation of vibrons ( ) ˆ q = " ε ˆ ˆ ˆ ˆ αβ α β ωq q q αβ α β λαβ q q α β leads tun αβ q α β qαβ H d d a a U n n a a d d H H Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 15

16 Single-level level model I ( ) Ĥ = " ε d d ω a a λ a a d d 0 0 ( λ ) " ε E( nm, ) = n ω m ω L ΓL ε 0 ΓR R ε n =1 n = 0 ev ε 1 ω 0 left (tip) x x 1 0 ρε ( ) right (substrate) Memory? Switching / noise? M. Galperin,, M.A. Ratner,, A. Nitzan,, Nano Lett.. (2005) A. Mitra, I. Aleiner,, A.J. Millis,, PRL (2005) Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 16

17 Single-level level model II: zero voltage λ 2 ( a a) 10 ω 0 Γ M = m e m M 0m 2 0,0 1, m mm ' mm ' ' g 2 λ = ω Γ # ω m g=0.1 g=1 g= m Franck-Condon blockade,, J. Koch & F. von Oppen g 2 (τγ) τ 1 10 τ λ/ω 0 τ Zero voltage: bistability Finite voltage: switching n 1 0 τ 00 τ 10 = Γ τ = Γ m'0 10 m'0 m' m' t Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 17

18 Single-level level model III: finite voltage Symmetric 0.6 n L ΓL ε 0 ΓR R (τγ) τ τ 10 0 t τ 1 00 Asymmetric ev/ω 0 L ΓL ΓR R L ΓL ε 0 ΓR R ε 1 Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 18

19 Single-level level model IV: I switching 1.0 V τ S t p ev/ω 0 L ΓL ε 0 Γ R 0 0 R L Γ Γ R (τγ) τ 1 10 n 1 τ 10 0 t τ 1 00 L ε 1 R Memory effect in electron-vibron systems Dresden, 20 December 2007 D. A. Ryndyk Memory effect in electron Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 19

20 Single-level level model V: NGF method Γ % ω 0 Nonequilibrium current J 2e = R (,) t t e < im Vik σα, Gα, ikσ $ kσα, Nonequilibrium Green functions G G = d c < α,ikσ α ikσ G = d d < ( RA, ) < ( RA, ) αβ α β < < ( RA, ) n ev/ω 0 J i= L( R) = ie d ε Tr ε ε 2π G G $ G = G G Σ G < 0 R A ( ε ev ) ( ) f ( ε ev ) ( ) G ( ε ) { Γ } i i i R( A) R( A) R( A) R( A) R( A) 0 0 G = G Σ G < R < A Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 20

21 I. Motivation: nano-memory, experiments II. III. Atomistic modelling Electron-vibron model IV. Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 21

22 Oligophenyl molecules Benzene Molecular junction Molecular diode Rectification fluorine hydrogen M.A. Reed et al., Science 278, 278, 252 (1997) Triphenyl Molecular switch M. Elbing et al., al., Proc. Natl. Acad. Sci. Sci. USA 102, 102, 8815 (2005) F. Pump and G. Cuniberti, Surface Science (2007) B. Song, D.A. Ryndyk, G. Cuniberti, PRB (2007) D. A. Ryndyk Memory effect in electronelectron-vibron systems systems Dresden, 20 December 2007 Complex Quantum Systems Institute for Theoretical Physics Universität Regensburg 22

23 Effective multi-qd models & vibrations From atomistic to effective multi quantum dot model L tl t ε R t R R ε L Include vibrons ε α ε β t p αβ ˆ mω0 xˆ ˆx ( ) ˆ q = " ε ˆ ˆ ˆ ˆ αβ α β ωq q q αβ α β λαβ q q α β leads tun αβ q α β qαβ H d d a a U n n a a d d H H 0aa Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 23 Hˆ = =ω 2m 2 ˆ (0) M = εα( xˆ) dαdα tαβ( xˆ) dd α β α α β H α, β electronic states ˆx normal mode

24 Molecular spin-valve and spin-correlation effects Spin-blockade Spin-memory L tl t ε R t R R ε L U L tl ε L t ε R t R R Charge-memory effect J. Repp, et al.,, Science (2004) Conformational-memory memory effect J. Repp, et al.,, Science (2007) Spin-memory effect? Current is suppressed in P case by combined action of Coulomb blockade and Pauli exclusion principle. L tl ε L t U ε R t R R L tl ε L t U ε R t R R Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 24

25 I. Motivation: nano-memory, experiments II. III. IV. Atomistic modelling Electron-vibron model Outlook: DQD, MQD, oligophenyls V. Conclusions Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 25

26 Conclusions! Simple polaron model of the charge-memory effect is considered! Crossover between memory and switching is investigated? Interplay of vibrons with charging effects and spin effects in multi-level level systems? Application to oligophenyl systems and recent experiments? Nonequilibrium ab initio theory This work is supported by SPP 1243 Quantum Transport at the Molecular Scale SFB 689 Spin phenomena in reduced dimensions Klaus Richter Pino D Amico Gianaurelio Cuniberti thank you for attention Complex Quantum Systems Institute for Theoretical Physics Universität t Regensburg 26

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016

arxiv: v1 [cond-mat.mes-hall] 13 Sep 2016 Bi-stability in single impurity Anderson model with strong electron-phonon interaction(polaron regime) arxiv:1609.03749v1 [cond-mat.mes-hall] 13 Sep 2016 Amir Eskandari-asl a, a Department of physics,

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun Computational Modeling of Molecular Electronics Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University May 9, 2007 Outline: 1. Introduction

More information

Electron transport through molecular junctions and FHI-aims

Electron transport through molecular junctions and FHI-aims STM m metallic surface Electron transport through molecular junctions and FHI-aims Alexei Bagrets Inst. of Nanotechnology (INT) & Steinbuch Centre for Computing (SCC) @ Karlsruhe Institute of Technology

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Heiko B. Weber Lehrstuhl für Angewandte Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Apparent reversal of molecular orbitals reveals entanglement

Apparent reversal of molecular orbitals reveals entanglement Apparent reversal of molecular orbitals reveals entanglement Andrea Donarini P.Yu, N. Kocic, B.Siegert, J.Repp University of Regensburg and Shanghai Tech University Entangled ground state Spectroscopy

More information

Iterative real-time path integral approach to nonequilibrium quantum transport

Iterative real-time path integral approach to nonequilibrium quantum transport Iterative real-time path integral approach to nonequilibrium quantum transport Michael Thorwart Institut für Theoretische Physik Heinrich-Heine-Universität Düsseldorf funded by the SPP 1243 Quantum Transport

More information

Many-body correlations in STM single molecule junctions

Many-body correlations in STM single molecule junctions Many-body correlations in STM single molecule junctions Andrea Donarini Institute of Theoretical Physics, University of Regensburg, Germany TMSpin Donostia Many-body correlations in STM single molecule

More information

Organometallic optoelectronically active magnetic molecules for logic and memory

Organometallic optoelectronically active magnetic molecules for logic and memory Organometallic optoelectronically active magnetic molecules for logic and memory Cormac Toher, Jörg Meyer, Anja Nickel, Robin Ohmann, Gianaurelio Cuniberti and Francesca Moresco Barcelona, 12.01.2012 Outline

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Scanning Probe Microscopy of Adsorbates on Insulating Films: From manipulation of the charge state to imaging of individual molecular orbitals and bond formation Gerhard Meyer, Jascha Repp, Peter Liljeroth

More information

Mechanically Assisted Single-Electronics

Mechanically Assisted Single-Electronics * Mechanically Assisted Single-Electronics Robert Shekhter Göteborg University, Sweden Nanoelectromechanics of CB structures--classical approach: Coulomb blockade of single-electron tunneling (SET) Nanoelectromechanical

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

arxiv: v1 [cond-mat.mes-hall] 31 Jan 2012

arxiv: v1 [cond-mat.mes-hall] 31 Jan 2012 Iterative summation of path integrals for nonequilibrium molecular quantum transport arxiv:2.6466v [cond-mat.mes-hall] 3 Jan 22 R. Hützen, S. Weiss,, 2 M. Thorwart, 2 and R. Egger Institut für Theoretische

More information

First-Principles Modeling of Charge Transport in Molecular Junctions

First-Principles Modeling of Charge Transport in Molecular Junctions First-Principles Modeling of Charge Transport in Molecular Junctions Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University September

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

arxiv: v2 [cond-mat.mes-hall] 28 Sep 2007

arxiv: v2 [cond-mat.mes-hall] 28 Sep 2007 Vibrational absorption sidebands in the Coulomb blockade regime of single-molecule transistors Matthias C. Lüffe, 1 Jens Koch, 2 and Felix von Oppen 1 1 Institut für Theoretische Physik, Freie Universität

More information

THEORETICAL CHEMISTRY AT BORDERS: ELECTRON TRANSFER AT INTERFACES. Peter Saalfrank. Universität Potsdam

THEORETICAL CHEMISTRY AT BORDERS: ELECTRON TRANSFER AT INTERFACES. Peter Saalfrank. Universität Potsdam THEORETICAL CHEMISTRY AT BORDERS: ELECTRON TRANSFER AT INTERFACES Peter Saalfrank Universität Potsdam CONTENTS Spectroscopy E.g., Two-Photon-Photo-Emission at metal surfaces 4eV ω Probe 2eV n=1 n=2 n=3

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Scanning Tunneling Spectroscopy of Single DNA Molecules. KEYWORDS: DNA molecular nanoelectronics scanning probe microscopy theoretical modeling.

Scanning Tunneling Spectroscopy of Single DNA Molecules. KEYWORDS: DNA molecular nanoelectronics scanning probe microscopy theoretical modeling. Scanning Tunneling Spectroscopy of Single DNA Molecules Dmitry A. Ryndyk, Errez Shapir, Danny Porath,, * Arrigo Calzolari, Rosa Di Felice, and Gianaurelio Cuniberti, * Institute for Theoretical Physics,

More information

Quantum Transport Beyond the Independent-Electron Approximation. Rex Godby

Quantum Transport Beyond the Independent-Electron Approximation. Rex Godby Quantum Transport Beyond the Independent-Electron Approximation Rex Godby Outline Introduction to the quantum transport problem Ab initio quantum conductance in the presence of e e interaction (TDDFT /

More information

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density 1. SIESTA DFT In a Nutshell Introduction to SIESTA Atomic Orbitals Capabilities Resources 2. TranSIESTA Transport in the Nanoscale - motivation Boundary Conditions: Open systems Greens functions and charge

More information

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS J. Barna Department of Physics Adam Mickiewicz University & Institute of Molecular Physics, Pozna, Poland In collaboration: M Misiorny, I Weymann, AM University,

More information

Support information: (a) + + (b)

Support information: (a) + + (b) 1 upport information: Mechanism of the toddart-heath bistable rotaxane molecular switch Abstract The supporting information is organized as follows: ection 1 describes the real device and our strategy

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Simulation of quantum dynamics and transport using multiconfiguration wave-function methods

Simulation of quantum dynamics and transport using multiconfiguration wave-function methods Simulation of quantum dynamics and transport using multiconfiguration wave-function methods Michael Thoss University of Erlangen-Nürnberg Haobin Wang (University of Colorado, Denver) Outline Methodology

More information

Heat conduction in molecular transport junctions

Heat conduction in molecular transport junctions Heat conduction in molecular transport junctions Michael Galperin and Mark A. atner Department of Chemistry, Northwestern University, Evanston, 6008 and Abraham Nitzan School of Chemistry, Tel Aviv University,

More information

The gdftb tool for quantum transport calculations. Alessandro Pecchia CNR - ISMN. University of Roma Tor Vergata

The gdftb tool for quantum transport calculations. Alessandro Pecchia CNR - ISMN. University of Roma Tor Vergata The gdftb tool for quantum transport calculations Alessandro Pecchia CNR - ISMN Institute for Nanostractured Materials University of Roma Tor Vergata A Gagliardi, G. Romano, G. Penazzi, M. Auf der Maur,

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Transport through Magnetic Molecules with Spin-Vibron Interaction

Transport through Magnetic Molecules with Spin-Vibron Interaction Transport through Magnetic Molecules with Spin-Vibron Interaction Thesis for the degree of Erasmus Mundus Master of Science in Nanoscience and Nanotechnology AHMED KENAWY Promoter: Prof. Janine Splettstößer

More information

Molecular Electronics

Molecular Electronics Molecular Electronics An Introduction to Theory and Experiment Juan Carlos Cuevas Universidad Autönoma de Madrid, Spain Elke Scheer Universität Konstanz, Germany 1>World Scientific NEW JERSEY LONDON SINGAPORE

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects. Deborah Prezzi CNR Nanoscience Institute, Modena, Italy

Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects. Deborah Prezzi CNR Nanoscience Institute, Modena, Italy Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects Deborah Prezzi CNR Nanoscience Institute, Modena, Italy Graphene Nanostructures Quantum Confinement Open a band gap by confining

More information

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale arxiv:1812.10531v1 [cond-mat.mes-hall] 20 Dec 2018 Dmitry A. Ryndyk Theory of Quantum Transport at Nanoscale introduction and contents author version The first edition is published as Springer Series in

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Nanoelectronics. Topics

Nanoelectronics. Topics Nanoelectronics Topics Moore s Law Inorganic nanoelectronic devices Resonant tunneling Quantum dots Single electron transistors Motivation for molecular electronics The review article Overview of Nanoelectronic

More information

Electronic transport and measurements in mesoscopic systems. S. Gurvitz. Weizmann Institute and NCTS. Outline:

Electronic transport and measurements in mesoscopic systems. S. Gurvitz. Weizmann Institute and NCTS. Outline: Electronic transport and measurements in mesoscopic systems S. Gurvitz Weizmann Institute and NCTS Outline: 1. Single-electron approach to electron transport. 2. Quantum rate equations. 3. Decoherence

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

NEAR-FIELD ELECTRODYNAMICS OF ATOMICALLY DOPED CARBON NANOTUBES

NEAR-FIELD ELECTRODYNAMICS OF ATOMICALLY DOPED CARBON NANOTUBES NER-FIELD ELECTRODYNMICS OF TOMICLLY DOPED CRBON NNOTUBES Igor Bondarev The Institute for Nuclear Problems The Belarusian State University Minsk, BELRUS E-mail: bondarev@tut.by Collaborators: Prof. Philippe

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules PHYSICAL REVIEW B 73, 235304 2006 Spin amplification, reading, and writing in transport through anisotropic magnetic molecules Carsten Timm 1,2, * and Florian Elste 2, 1 Department of Physics and Astronomy,

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

The Postulates of (Non-Relativistic) Quantum Mechanics (The Rules of the Game)

The Postulates of (Non-Relativistic) Quantum Mechanics (The Rules of the Game) The Postulates of (Non-Relativistic) Quantum Mechanics (The Rules of the Game) Everything we can know about the motion of a particle = a matter wave is contained in the wave function : 1D : (x,t) and may

More information

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization Diego Porras Outline Spin-boson trapped ion quantum simulators o Rabi Lattice/Jahn-Teller models o Gauge symmetries

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Büttiker s probe in molecular electronics: Applications to charge and heat transport

Büttiker s probe in molecular electronics: Applications to charge and heat transport Büttiker s probe in molecular electronics: Applications to charge and heat transport Dvira Segal Department of Chemistry University of Toronto Michael Kilgour (poster) Büttiker s probe in molecular electronics:

More information

Momentum filtering effect in molecular wires

Momentum filtering effect in molecular wires PHYSICAL REVIEW B 70, 195309 (2004) Momentum filtering effect in molecular wires Chao-Cheng Kaun, 1, * Hong Guo, 1 Peter Grütter, 1 and R. Bruce Lennox 1,2 1 Center for the Physics of Materials and Department

More information

Procesy Andreeva w silnie skorelowanych układach fermionowych

Procesy Andreeva w silnie skorelowanych układach fermionowych Kraków, 4 marca 2013 r. Procesy Andreeva w silnie skorelowanych układach fermionowych T. Domański Uniwersytet Marii Curie Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Outline Outline

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Fate of the Kondo impurity in a superconducting medium

Fate of the Kondo impurity in a superconducting medium Karpacz, 2 8 March 214 Fate of the Kondo impurity in a superconducting medium T. Domański M. Curie Skłodowska University Lublin, Poland http://kft.umcs.lublin.pl/doman/lectures Motivation Physical dilemma

More information

Coulomb blockade in metallic islands and quantum dots

Coulomb blockade in metallic islands and quantum dots Coulomb blockade in metallic islands and quantum dots Charging energy and chemical potential of a metallic island Coulomb blockade and single-electron transistors Quantum dots and the constant interaction

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Predicting Thermoelectric Properties From First Principles

Predicting Thermoelectric Properties From First Principles Predicting Thermoelectric Properties From First Principles Paul von Allmen, Seungwon Lee, Fabiano Oyafuso Abhijit Shevade, Joey Czikmantory and Hook Hua Jet Propulsion Laboratory Markus Buehler, Haibin

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Currents through Quantum dots. Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016

Currents through Quantum dots. Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016 Currents through Quantum dots Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 9/0/016 ingle pins: An exciting frontier Read-Out of spins Elzerman

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Numerical methods out of equilibrium -Threelectures-

Numerical methods out of equilibrium -Threelectures- Numerical methods out of equilibrium -Threelectures- Michael Thorwart Freiburg Institute for Advanced Studies (FRIAS) Albert-Ludwigs-Universität Freiburg funded by the Excellence Initiative of the German

More information

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction.

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction. At present, we observe a long-lasting process of miniaturization of electronic devices. The ultimate limit for the miniaturization of electronic components is set by the atomic scale. However, in the case

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Are molecules calm enough in molecular electronics junctions?

Are molecules calm enough in molecular electronics junctions? 1 Are molecules calm enough in molecular electronics junctions? Yoshihiro ASAI Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST) NRI at AIST Tsukuba

More information

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES Johannes Lischner Imperial College London LISCHNER GROUP AT IMPERIAL COLLEGE LONDON Theory and simulation of materials: focus on

More information

Berry-phase effects in transport through single Jahn-Teller molecules

Berry-phase effects in transport through single Jahn-Teller molecules PHYSICAL REVIEW B 77, 7533 8 Berry-phase effects in transport through single Jahn-Teller molecules Maximilian G. Schultz,* Tamara S. Nunner, and Felix von Oppen Institut für Theoretische Physik, Freie

More information

Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

Modeling inelastic phonon scattering in atomic- and molecular-wire junctions Downloaded from orbit.dtu.dk on: Mar 10, 2019 Modeling inelastic phonon scattering in atomic- and molecular-wire junctions Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads Published in: Physical

More information

Impact of collective effects on charge transport through molecular monolayers

Impact of collective effects on charge transport through molecular monolayers Impact of collective effects on charge transport through molecular monolayers Obersteiner Veronika Institute of Solid State Physics 11.12.2013 Outline Introduction Motivation Investigated Systems Methodology

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik

Topological Kondo effect in Majorana devices. Reinhold Egger Institut für Theoretische Physik Topological Kondo effect in Maorana devices Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport in a Maorana device: Topological Kondo effect with stable

More information

Electronic level alignment at metal-organic contacts with a GW approach

Electronic level alignment at metal-organic contacts with a GW approach Electronic level alignment at metal-organic contacts with a GW approach Jeffrey B. Neaton Molecular Foundry, Lawrence Berkeley National Laboratory Collaborators Mark S. Hybertsen, Center for Functional

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

An ab initio approach to electrical transport in molecular devices

An ab initio approach to electrical transport in molecular devices INSTITUTE OF PHYSICSPUBLISHING Nanotechnology 13 (00) 1 4 An ab initio approach to electrical transport in molecular devices NANOTECHNOLOGY PII: S0957-4484(0)31500-9 JJPalacios 1,ELouis 1,AJPérez-Jiménez,ESanFabián

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Superconducting properties of carbon nanotubes

Superconducting properties of carbon nanotubes Superconducting properties of carbon nanotubes Reinhold Egger Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf A. De Martino, F. Siano Overview Superconductivity in ropes of nanotubes

More information

Simple quantum feedback of a solid-state qubit

Simple quantum feedback of a solid-state qubit Simple quantum feedback of a solid-state qubit Alexander Korotkov H =H [ F φ m (t)] control qubit CÜ detector I(t) cos(ω t), τ-average sin(ω t), τ-average X Y phase φ m Feedback loop maintains Rabi oscillations

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS Proceedings of the 3rd Annual ISC Research Symposium ISCRS 9 April 14, 9, Rolla, Missouri PHOTO-DISSOCIATION OF CO GAS BY USING TWO LASERS Zhi Liang MAE department/zlch5@mst.edu Dr. Hai-Lung Tsai MAE department/tsai@mst.edu

More information

1D quantum rings and persistent currents

1D quantum rings and persistent currents Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Motivation In the last decades there was a growing interest for such microscopic

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Charge fluctuators, their temperature and their response to sudden electrical fields

Charge fluctuators, their temperature and their response to sudden electrical fields Charge fluctuators, their temperature and their response to sudden electrical fields Outline Charge two-level fluctuators Measuing noise with an SET Temperature and bias dependence of the noise TLF temperature

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Preliminary Examination - Day 1 Thursday, August 9, 2018

Preliminary Examination - Day 1 Thursday, August 9, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August 9, 8 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Quantum Mechanics (Topic

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information