Currents through Quantum dots. Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016

Size: px
Start display at page:

Download "Currents through Quantum dots. Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 29/02/2016"

Transcription

1 Currents through Quantum dots Bhaskaran Muralidharan Dept. of Electrical Engineering, Indian institute of technology Bombay HRI Allahabad 9/0/016

2 ingle pins: An exciting frontier Read-Out of spins Elzerman et.al., (004) Initailization of spins Ono et.al., cience, (00) pin decoherence Koppens et.al., cience, (005) Coherent Manipulation Koppens et.al., Nature, (006)

3 γ N a = N b a a b b γ Preview K. Ono et al. PRL 04 EXPERIMENT γ N a a a N b b b γ Na Nb Na Nb THEORY THEORY Fin tructure Dual Resonance Un-identical baths Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 3

4 Outline pin Correlation effects in Quantum-dot transport pin Blockade Transport: Multiple NDR pin Blockade Transport: Role of Non-equilibrium cattering Processes Hysteretic behavior x K. Ono et al. cience 0 K. Ono et al. PRL 04

5 Introducing Fock pace Transport

6 Regimes of Transport Σ s µ 1 H + U µ Σ 1 Σ U-> elf Consistent field U CF = U < n > CF Regime Works for N Γ U N ^N many electron levels N N Fock space approach CWJ Beenakker (1991) CB Regime Works for Γ << U

7 Let us try to introduce the Fock space View Point: elf Consistent Field Σ s µ 1 µ H + U Σ 1 Σ ingle particle view point: ε U < n > NEGF-CF γ L ε γ R U

8 A small pocket of transport problems? Coulomb Blockade effects pin Correlation effects x Park et al, nature 0 pin Correlation coupled to Hot-scatterers Ono et al, cience 0 Bi-stability

9 Fock space picture ε γ L ε γ R N=1 γ L γ R 0 N=0 ε +U N= ε,u ε ε N=1 0 N=0

10 How Coulomb Blockade transport works ε ε +U ε ε +U ε ε +U N = CB ε ε N =1 0 N = 0 Correlations matter even for a minimal model! NEGF-CF Muralidharan et al., PRB06

11 Generalized Viewpoint N = n +1 ε tr1 ε tr { P} i N N N = n N = n N N ε tr ε tr1 Given a bias point a set of Fock states are probabilistically distributed!! These may be viewed as transition Energies in the one-particle picture

12 Fock space master equations { N + 1, j} { N, i} { N 1, j} dp N, i dt Fock space probability distribution + R P R P = j { P N, i } N, i N ± 1, j N, i N ± 1, j N, i N ± 1, j 0 j With scattering { N, i } { N, j} dp N, i dt + R P R P = j N, i N ± 1, j N, i N ± 1, j N, i N ± 1, j j

13 Part II pin Correlation effects in Quantum-dot transport pin Blockade Transport: Multiple NDR pin Blockade Transport: Role of Non-equilibrium cattering Processes Hysteretic behavior x K. Ono et al. cience 0 K. Ono et al. PRL 04

14 Coulomb Blockade v/s pin Blockade ε +U ε ε ε µ R Coulomb Blockade itself does not differentiate the spin degree pin Degree of freedom results in zero current ε +U ε ε X ε ε X X Finite Current Flows pin Degree of freedom + Coulomb Blockade pin Blockade!

15 pin Blockade regime in Double Quantum Dots: ε 1 ε No Ferromagnetic Contacts! What is the Blockade mechanism? But why does current flow at all? What is the mechanism for NDR Current Blockade!

16 NDR: Conventional Viewpoint µ L µ µ R L x I a) b) V L. Esaki, RTD Phenomenon 197 No band edges in our case! What makes pin blockade NDR novel? NEED FOCK PACE VIEWPOINT

17 NDR due to dark states ε BA ε CA ε BA I a) b) V B N = n C R = γ * M * f C A AC C A N = n 0 M = C H A CA Transition Rates reflect on the symmetry properties R C A RD ~ 1 τ CA

18 NDR from the dark state model τ τ + τ R CA τ > τ + τ R CA R BA R BA L AB L AB τ τ + τ L CA L BA R AB Muralidharan and Datta, PRB07

19 pin Blockade regime in Double Quantum Dots: ε 1 ε ε 1 ε + U X No Ferromagnetic Contacts! What is the Blockade mechanism? But why does current flow at all? ε Mechanism for NDR Explains Current Blockade!

20 Dark tate model: Double Quantum Dots: ε 1 ε ε 1 ε ε 1 ε N= T ε TB B N=1 ε B ε B Under pecial Conditions Triplet tate Can be Dark!

21 Results Theory Experiment Ono et. al., science 0 Muralidharan and Datta, PRB 07 Muralidharan et.al., JCEL 08

22 Pauli Blockade: A Broader Perspective X ε 1 ε Off state ε 1 ε Permits manipulation of single Electron spin detected by a current Measurement! Host Nuclei can also assist!

23 Part III pin Correlation effects in Quantum-dot transport pin Blockade Transport: Multiple NDR pin Blockade Transport: Role of Non-equilibrium cattering Processes Hysteretic behavior x K. Ono et al. cience 0 K. Ono et al. PRL 04

24 γ N a = N b a a b b γ Preview K. Ono et al. PRL 04 EXPERIMENT γ N a a a N b b b γ Na Nb Na Nb THEORY THEORY Fin tructure Dual Resonance Un-identical baths Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 4

25 pin-blockade Toy Model ingle QD with single nuclear bath pin-down polarized right contact Blockade lifted by pin-flip transitions γ ε + ε N γ + Ĥ HF + 0 5

26 Hyperfine mediation B app Apply B field externally pin-flip at the cost of nuclearflop N 6

27 Analysis: Fermi Golden rule Z-component Mean Field Approximation F I = average nuclear z-polarization Electron dynamics:!! X-Y component Fermi s Golden Rule to give spin-flip rate Nuclear spin dynamics: 7

28 No Overhauser field T B Energy of T Decreases under applied magnetic field No effect on energy of 8

29 With Overhauser field B T Bapp Bov Overhauser field:! It can either oppose the resonance or aid it via negative or positive feedback! Feedback: Origin of Hysteresis!! 9

30 Including Overhauser field T B Bapp Bov Negative feedback from gµb to J eff F I during forward sweep pseudo-linear build-up of F I Hysteresis: resonance breaking Positive feedback during reverse sweep rapid rise of F I 30

31 Recap K. Ono et al. PRL 04 EXPERIMENT THEORY THEORY Fin tructure Dual Resonance Un-identical baths Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 31

32 Two Dots, Two Nuclear Baths γ U aa ε a / a a a U ab U b b t ε b / b b b γ Na Nb 3

33 Double Resonance due to Two-Electron states Two-electron states at B = 0 Three = 1 states (T) Three = 0 states () Triplets are blocking states TWO REONANCE: T +1 1 A 1/ A +1/ B 1/ B + 1/ T 1 T 0 T +1 1 N=1 N= B app T -1 T + and T - move in opposite directions under B and F I. 33

34 Double Resonance: Electronic tructure 1 γ U aa ε a / a a a U ab U b b t ε b / b b b γ Na Nb 0 /1 ab + β0 /1 ab + ξ0 /1 aa + δ0 / 1 bb Identical Nuclear baths 0/1 β0/1 0 ( 1,1) (,0) /( 0, ) No Difference Overhauser field 0/1 β0/1 Unlike Nuclear Baths Difference Overhauser field 34

35 Electronic tructure: Continued 1 = 0 /1 ab + β 0 /1 ab + ξ 0 /1 aa + δ 0 /1 bb T 0 = ( ab + ab ) / T + 1 = ab 0 T 1 = ab 0/1 β0/1 Identical Nuclear baths No Difference Overhauser field 0/1 β0/1 Unlike Nuclear Baths Difference Overhauser field 35

36 Two-Dot Two-Bath Hamiltonian Z-component Mean Field Approximation F = average nuclear z-polarization Electron dynamics:!! X-Y component Fermi s Golden Rule to give spin-flip rate Nuclear spin dynamics: 36

37 Fermi s Golden rule: One-bath variable vs two-bath variables γ γ a a b b γ N γ a a b b Na Nb 37

38 Identical Nuclear Baths & Near-imultaneous Resonances Novelty of two nuclear baths: Matrix elements between singlet and triplet elements non-zero simply due to incoherent addition between the two baths. Difference Overhauser field NOT required!! Two dragged resonances Each contributes a triangular current traces uperposition: flat topped hysteretic behavior 38

39 uperposition N = a) 1 0 T +1 T 1 N =1 b 1/ 39

40 Un-identical Nuclear Baths: Difference Overhauser field / T = 0/1 ab + β0/1 ab + ξ0/1 aa + δ 0/ 1 bb Fin structure at the two ends of the hysteretic sweep as noted in the experiments Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 40

41 Results EXPERIMENT Fin tructure THEORY THEORY Ideal Dual Resonance Un-identical baths Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 41

42 ummary Key Points: One Dot toy example Hyperfine interaction Hamiltonian Dragged resonance due to Overhauser Field Triangular current trace Double Dot, Two-Bath: Buddhiraju and B Muralidharan, JPCM, 6, 48530, (014) 4

43 y z x B L B R B + = Density matrix formalism: pin dynamics ( ) ( ) ( ) + = + Γ = + + Γ = + = + = = = = τ ε ε π ε ε τ τ ρ ρ ρ ρ ρ ρ B m m p m p J q J E E f U E E f de m p B U f f B m m p m p J q dt d i r q r R L r q x y z, ',,, ˆ ˆ ˆ ) ( 1 ) ( ˆ, ) ( ) ( 1, ˆ ˆ ˆ,, ε +U ε ε,u Γ << k B T ( ) + = τ B m m p m p J q J r q, ˆ ˆ ˆ Injection Relaxation Precession

44 ( ), ˆ ˆ ˆ,, = + = R L r q B m m p m p J q dt d τ QD pin dynamics v/s TT L T L, R T, µ ε +U ε L m L p, R R m p, + Γ = ε ε π E E f U E E f de m p B ) ( 1 ) ( ˆ ' Precession Damping Injection Relaxation Precession

45 L m L p, R R m p, y z x B L B R B + = Thermoelectrically induced spin precession! Pure spin current due to spin precession! Y Tserkovnyak et.al., PRL (00) ( ) + = τ B m m p m p J q J r q, ˆ ˆ ˆ Injection Relaxation Precession pin precession-spin current B Muralidharan and M Grifoni, PRB (013)

46 pin batteries/maxwell s demon

47 Heat Engines with demons N 1 + N 1 = 0 E1 + E + E0 = 0 E1 µ 1N1 E µ N + T T + E T N 1 + N 1 = 0 E1 + E + E E1 µ 1N1 + T 0 = 0 E µ T N Δ 0 0 =klnw Reservoir/Bath at T0 Out of Equilibrium ystem Demon ource E 0 Channel Drain ource E 0 Channel Drain E, N E, N 1 1 E, N 1 1 E, N 1 1N E 1 µ N E µ 1 1N E 1 µ N E µ

48 Examples of nano-device demons Out of Equilibrium ystem ource E 0 Channel E1, N E, N 1 Drain 1 1N E 1 µ N E µ

49 nano-device demons + info battery 0 0 Δ = Δ Δ Δ T E F tot Δ + = + + = + T N E T N E E E E N N µ µ v/s ENERGY INFORMATION

50 nano-device demons + info battery H = J 1 D U u u+d d d+u

51 nano-device demons + info battery µ 1 µ i = 0 f = Nk ln Δ = Nk ln ΔW NkT ln i = 0 f = Nk ln Δ = Nk ln Current tops to flow eventually! Where does the energy come from?! tate of the Demons

52 W Connection with Maxwell s Demon Does it no violate any known laws or Common sense?! If not, what is the catch???! Demon exorcism by zilard (199)! TH Qin Qout Reservoirs at T1 and T TC

53 Connection with Maxwell s demon Δ tot ΔF 0 = ΔE TΔ 0 Δ tot ΔF 0 = ΔE TΔ 0 Energy Information

54 Connection with Maxwell s demon/landauer principle µ 1 Δµ µ u+d ΔW = final initial d+u dn u Δµ i = 0 f = k lnw = Nk Δ = Nk ln ΔW NkT ln E Erase NkT ln ln

55 Connection with Maxwell s demon/landauer principle tate of the Demons Discharging Randomizing the bit charging Erasure Δ = Nk ln ΔW NkT ln E Erase NkT ln

56 Nano-spin-energy group CHARGE pin Energy

57 Acknowledgments iddharth Buddhiraju (student IITB) Prof. upriyo Datta (Purdue University) Prof. Milena Grifoni (University of Regensburg, Germany) THANK YOU FOR YOUR ATTENTION!

Bhaskaran Muralidharan

Bhaskaran Muralidharan Molecular thermoelectric heat engines and coolers Ĥ,, in Q out Q P V app Bhaskaran Muralidharan Department of lectrical ngineering, II Bombay RI Allahabad Outline Prelude: Fundamentals Brief timeline:

More information

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots Introduction Resonant Cooling of Nuclear Spins in Quantum Dots Mark Rudner Massachusetts Institute of Technology For related details see: M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007);

More information

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields Gloria Platero Instituto de Ciencia de Materiales (ICMM), CSIC, Madrid, Spain María Busl (ICMM), Rafael Sánchez,Université de Genève Toulouse,

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Coherent Control of a Single Electron Spin with Electric Fields

Coherent Control of a Single Electron Spin with Electric Fields Coherent Control of a Single Electron Spin with Electric Fields Presented by Charulata Barge Graduate student Zumbühl Group Department of Physics, University of Basel Date:- 9-11-2007 Friday Group Meeting

More information

Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot

Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot Commun. Theor. Phys. 62 (2014) 86 90 Vol. 62, No. 1, July 1, 2014 Thermal Bias on the Pumped Spin-Current in a Single Quantum Dot LIU Jia ( ) 1,2, and CHENG Jie ( ) 1 1 School of Mathematics, Physics and

More information

Interference: from quantum mechanics to nanotechnology

Interference: from quantum mechanics to nanotechnology Interference: from quantum mechanics to nanotechnology Andrea Donarini L. de Broglie P. M. A. Dirac A photon interferes only with itself Double slit experiment: (London, 1801) T. Young Phil. Trans. R.

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Quantum Dot Spin QuBits

Quantum Dot Spin QuBits QSIT Student Presentations Quantum Dot Spin QuBits Quantum Devices for Information Technology Outline I. Double Quantum Dot S II. The Logical Qubit T 0 III. Experiments I. Double Quantum Dot 1. Reminder

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Coulomb-Blockade and Quantum Critical Points in Quantum Dots Coulomb-Blockade and Quantum Critical Points in Quantum Dots Frithjof B Anders Institut für theoretische Physik, Universität Bremen, Germany funded by the NIC Jülich Collaborators: Theory: Experiment:

More information

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Spin-Polarized Current in Coulomb Blockade and Kondo Regime P. Ogrodnik

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

Quantum information processing in semiconductors

Quantum information processing in semiconductors FIRST 2012.8.14 Quantum information processing in semiconductors Yasuhiro Tokura (University of Tsukuba, NTT BRL) Part I August 14, afternoon I Part II August 15, morning I Part III August 15, morning

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Manipulation of Majorana fermions via single charge control

Manipulation of Majorana fermions via single charge control Manipulation of Majorana fermions via single charge control Karsten Flensberg Niels Bohr Institute University of Copenhagen Superconducting hybrids: from conventional to exotic, Villard de Lans, France,

More information

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008

Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Chaotic Scattering of Microwaves in Billiards: Induced Time-Reversal Symmetry Breaking and Fluctuations in GOE and GUE Systems 2008 Quantum billiards and microwave resonators as a model of the compound

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Lessons from Nanoscience: A Lecture Note Series

Lessons from Nanoscience: A Lecture Note Series Lessons from Nanoscience: A Lecture Note Series http://nanohub.org/topics/lessonsfromnanoscience Volume 1: Lessons from Nanoelectronics: A New Perspective on Transport Supriyo Datta Purdue University datta@purdue.edu

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements. Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements Stony Brook University, SUNY Dmitri V Averin and iang Deng Low-Temperature Lab, Aalto University Jukka

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Quantum Impurities In and Out of Equilibrium. Natan Andrei Quantum Impurities In and Out of Equilibrium Natan Andrei HRI 1- Feb 2008 Quantum Impurity Quantum Impurity - a system with a few degrees of freedom interacting with a large (macroscopic) system. Often

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents Semiclassical limit and longtime asymptotics of the central spin problem Gang Chen Doron Bergman Leon Balents Trieste, June 2007 Outline The problem electron-nuclear interactions in a quantum dot Experiments

More information

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes:

Exchange Mechanisms. Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich. lecture notes: Exchange Mechanisms Erik Koch Institute for Advanced Simulation, Forschungszentrum Jülich lecture notes: www.cond-mat.de/events/correl Magnetism is Quantum Mechanical QUANTUM MECHANICS THE KEY TO UNDERSTANDING

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Quantum Transport in Ultracold Atoms Chih-Chun Chien ( 簡志鈞 ) University of California, Merced Outline Introduction to cold atoms Atomtronics simulating and complementing electronic devices using cold atoms

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Spin-Boson Model A simple Open Quantum System M. Miller F. Tschirsich Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Outline 1 Bloch-Equations 2 Classical Dissipations 3 Spin-Boson

More information

Laser Induced Control of Condensed Phase Electron Transfer

Laser Induced Control of Condensed Phase Electron Transfer Laser Induced Control of Condensed Phase Electron Transfer Rob D. Coalson, Dept. of Chemistry, Univ. of Pittsburgh Yuri Dakhnovskii, Dept. of Physics, Univ. of Wyoming Deborah G. Evans, Dept. of Chemistry,

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Mechanically Assisted Single-Electronics

Mechanically Assisted Single-Electronics * Mechanically Assisted Single-Electronics Robert Shekhter Göteborg University, Sweden Nanoelectromechanics of CB structures--classical approach: Coulomb blockade of single-electron tunneling (SET) Nanoelectromechanical

More information

Effet Kondo dans les nanostructures: Morceaux choisis

Effet Kondo dans les nanostructures: Morceaux choisis Effet Kondo dans les nanostructures: Morceaux choisis Pascal SIMON Rencontre du GDR Méso: Aussois du 05 au 08 Octobre 2009 OUTLINE I. The traditional (old-fashioned?) Kondo effect II. Direct access to

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov,

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects Massimiliano Esposito Paris May 9-11, 2017 Introduction Thermodynamics in the 19th century: Thermodynamics in the 21th century:

More information

w2dynamics : operation and applications

w2dynamics : operation and applications w2dynamics : operation and applications Giorgio Sangiovanni ERC Kick-off Meeting, 2.9.2013 Hackers Nico Parragh (Uni Wü) Markus Wallerberger (TU) Patrik Gunacker (TU) Andreas Hausoel (Uni Wü) A solver

More information

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012 2371-17 Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries 15-24 October 2012 Quantum Energy Transport in Electronic Nano- and Molecular Junctions Part I Yonatan

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Anrew Mitchell Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot Authors: A. Noiri 1,2, T. Takakura 1, T. Obata 1, T. Otsuka 1,2,3, T. Nakajima 1,2, J. Yoneda 1,2, and S. Tarucha 1,2 Affiliations:

More information

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field 1 Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha

More information

Apparent reversal of molecular orbitals reveals entanglement

Apparent reversal of molecular orbitals reveals entanglement Apparent reversal of molecular orbitals reveals entanglement Andrea Donarini P.Yu, N. Kocic, B.Siegert, J.Repp University of Regensburg and Shanghai Tech University Entangled ground state Spectroscopy

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime J. Basset, 1 A.Yu. Kasumov, 1 C.P. Moca, G. Zarand,, 3 P. Simon, 1 H. Bouchiat, 1 and R. Deblock 1 1 Laboratoire de Physique

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information

Teaching Nanomagnets New Tricks

Teaching Nanomagnets New Tricks Teaching Nanomagnets New Tricks v / Igor Zutic R. Oszwaldowski, J. Pientka, J. Han, University at Buffalo, State University at New York A. Petukhov, South Dakota School Mines & Technology P. Stano, RIKEN

More information

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear Pauli spin blockade in cotunneling transport through a double quantum dot H. W. Liu, 1,,3 T. Fujisawa, 1,4 T. Hayashi, 1 and Y. Hirayama 1, 1 NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya,

More information

Determination of the tunnel rates through a few-electron quantum dot

Determination of the tunnel rates through a few-electron quantum dot Determination of the tunnel rates through a few-electron quantum dot R. Hanson 1,I.T.Vink 1, D.P. DiVincenzo 2, L.M.K. Vandersypen 1, J.M. Elzerman 1, L.H. Willems van Beveren 1 and L.P. Kouwenhoven 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.138 Graphene Nanoribbons with Smooth Edges as Quantum Wires Xinran Wang, Yijian Ouyang, Liying Jiao, Hailiang Wang, Liming Xie, Justin Wu, Jing Guo, and

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Mean-field concept (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1 Static Hartree-Fock (HF) theory Fundamental puzzle: The

More information

Symmetry energy, masses and T=0 np-pairing

Symmetry energy, masses and T=0 np-pairing Symmetry energy, masses and T=0 np-pairing Can we measure the T=0 pair gap? Do the moments of inertia depend on T=0 pairing? Do masses evolve like T(T+1) or T^2 (N-Z)^2? Origin of the linear term in mean

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

University of New Mexico

University of New Mexico Quantum State Reconstruction via Continuous Measurement Ivan H. Deutsch, Andrew Silberfarb University of New Mexico Poul Jessen, Greg Smith University of Arizona Information Physics Group http://info.phys.unm.edu

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

PHYSICAL SCIENCES PART A

PHYSICAL SCIENCES PART A PHYSICAL SCIENCES PART A 1. The calculation of the probability of excitation of an atom originally in the ground state to an excited state, involves the contour integral iωt τ e dt ( t τ ) + Evaluate the

More information

Coulomb Blockade and Kondo Effect in Nanostructures

Coulomb Blockade and Kondo Effect in Nanostructures Coulomb Blockade and Kondo Effect in Nanostructures Marcin M. Wysokioski 1,2 1 Institute of Physics Albert-Ludwigs-Universität Freiburg 2 Institute of Physics Jagiellonian University, Cracow, Poland 2.VI.2010

More information

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Manipulating and characterizing spin qubits based on donors

More information

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Joël Peguiron Department of Physics and Astronomy, University of Basel, Switzerland Work done with Milena Grifoni at Kavli

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum 9. Transitions between Magnetic Levels pin Transitions Between pin tates. Conservation of pin Angular Momentum From the magnetic energy diagram derived in the previous sections (Figures 14, 15 and 16),

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information