Gaussian Processes for Bayesian Filtering

Size: px
Start display at page:

Download "Gaussian Processes for Bayesian Filtering"

Transcription

1 Gaussian Processes for Bayesian Filtering Dieter Fox University of Washington Joint work with Jonathan Ko, Brian Ferris, Marc Deisenroth, Ashish Deshpande, Neil Lawrence Funded by NSF and ONR 1

2 Bayes Filters Task: EsNmate state of a dynamical system from sensor data and control informanon Key problems in roboncs LocalizaNon, mapping, people and object tracking, acnvity recogninon, POMDPs, Various instannanons / approximanons Kalman filter, EKF, UKF, ADF, parncle filters, grid filters 2

3 [Ko-F: RSS-08, ARJ-09] GP- BayesFilters u(k-1) u(k) σ u(k+1) Q(k) s(k-1) GP Dynamics dynamics model s(k) µ s(k+1) z(k-1) z(k) GP Observation observation z(k+1) model µ σ R(k) Typical Bayesian filtering Parametric dynamics and observanon models Approximate posterior via sampling (PF), sigma points (UKF), linearizanon (EKF), moment matching (ADF) GP- BayesFilters GP dynamics and observanon models Noise derived from GP predicnon uncertainty Can be integrated seamlessly into Bayes filters: EKF, UKF, PF, ADF 3

4 Learning GP Dynamics and ObservaNon Models Ground truth training sequence: S = [s 1,s 2,...,s n ],Z = [z 1,z 2,...,z n ],U = [u 1,u 2,...,u n ] Learn observanon and dynamics GPs: s k GP observation model z k [ ] k u k GP dynamics model s, Δs k = s k+1 s k [ ] k u k EGP dynamics model s, r k = Δs k f (s k,u k ) Learn separate GP for each output dimension Diagonal noise matrix [Deisenroth-etal] introduced GP-ADFs and EP for smoothing in GP dynamical systems 4

5 GP- PF PropagaNon S k S k+1 for m = 1... M : s m k+1 = GP µ s m k,u ( ) + sample( GP Σ (s m k )) Propagate each particle using GP prediction Sample from GP uncertainty One GP mean and variance prediction per particle 5

6 GP- EKF PropagaNon µ k, k µ k+1, k+1 µ k+1 = GP µ (µ k ) G = GP µ (µ k ) s k+1 = G k G T + GP Σ (µ k ) Propagate mean using GP prediction Use gradient of GP to propagate covariance 6

7 GP- UKF PropagaNon µ k, k µ k+1, k+1 ( ) χ k = µ k, µ k + γ k, µ k γ k for i = 0...2n : χ k+1 = GP µ (χ k ) 2n i i µ k+1 = ω m χ k+1 i=0 2n k+1 = ω i i c (χ k+1 µ k+1 )(χ i k+1 µ k+1 ) T + GP Σ (µ k ) i=0 Propagate each sigma point using GP predicnon 2d+1 sigma points - > 2d+1 GP mean predicnons 7

8 From EKF to GP- EKF 8

9 [Ferris- Haehnel- Fox: RSS- 06] WiFi- Based LocaNon EsNmaNon Mean Similar to [Schwaighofer-etal: NIPS-03] 9 Variance

10 Building Model 10

11 Tracking Example 11

12 WiFi- SLAM: [Ferris- F- Lawrence: IJCAI- 07] Mapping without Ground Truth Using GPLVMs 12

13 Blimp Testbed Task: Track a blimp with two webcams Baseline: Parametric model that takes drag, thrust, gravity, etc, into account GP-BayesFilters and parametric model trained on ground truth data 13 obtained with Vicon motion capture system

14 GP- UKF Tracking Example Blue ellipses: sigma points projected into observanon space Green ellipse: Mean state esnmate 14

15 Tracking Results Percentage reduction in RMS over parametric baseline Cross validanon with 900 Nmesteps for training hetgp: HeteroscedasNc GP with variable noise [KersNng- etal: ICML- 07] sparsegp: sparsified to 50 acnve points [Snelson- Ghahramani: NIPS- 06] 15

16 Dealing with Training Data Sparsity Full process model tracking No right turn process model tracking Training data for right turns removed 16

17 HeteroscedasNc GP Heterosc. GP Regular GP Grey shading indicates tail motor power 17

18 GP- UKF Issue Training data density Simulated robot moving in circuit while observing landmarks Sigma points in region of low training sample density Poor GP predicnon leads to large UKF tracking error landmarks Sigma points poserr velerr GPUKF GPEKF GPPF

19 Going Latent SomeNmes ground truth states are not or only parnally available Instead of opnmizing over GP hyperparameters only, opnmize over latent states S as well 19

20 [Ko-F: RSS-09, ARJ-10] GP Latent Variable Models u1 u2 u 3 u n s 1 GP s2 GP 3 s s n GP GP GP GP z 1 z z 2 3 z n Latent variable models [Lawrence: NIPS- 03, Wang- etal: PAMI- 08] Learn latent states and GPs in one opnmizanon argmax S,ΘZ,Θ S log p(s,θ Z,Θ S Z,U,S ) = log p(z S,Θ Z ) + log p(s U,Θ S ) + log p(s S ) + log p(θ Z ) + log p(θ S ) + const Can take noisy labels into account 20

21 Slotcar Testbed Track contains banked curves, elevanon changes Custom IMU with gyros and accelerometers built by Intel Research Seakle ObservaNons very noisy, perceptual aliasing 21

22 PredicNve Capability Observation error Lookahead [steps] Latent space dimensionality: GPBFL 3D, HSE- HMM 20D HSE- HMM [Song- etal: ICML- 10] much more efficient GPBFL opnmizanon can incroporate noisy labels 22

23 Simple Trajectory Replay u 1 u 2 GP GP u u s 1 GP S s 2 GP GP z z z 1 z 2 Learning Human demonstrates control Learn latent states using GPBF- Learn Learn mapping from state to control Replay Track state using GP- BayesFilter Use control given by control GP 23

24 Trajectory Replay 24

25 Time Alignment 1d latent posinon vs. ground truth track posinon Blue indicates GPBFL alignment (mulnple laps) 25

26 Learning from Noisy State Labels Position along track (cm) Frame # 1d latent space indicates car posinon on track Learn posinon of car when ininalized with noisy weak labels Shading indicates control values (darker is stronger) 26

27 Comparison with Subspace IdenNficaNon ObservaNon Nme Simulated system with 1D observanon and 1D control input PredicNon errors N4SID [Overschee- 94]: 8.08 KCCA subspace idennficanon method [Kawahara- etal: NIPS- 07]: 6.42 GPBF- Learn:

28 ACT Hand Control [Deshpande- Ko- F- Matsuoka: IJRR- 13] 1. InvesNgaNon of muscle- joint kinemancal relanonship 2. How to control joints with muscles? 28

29 ACT Hand Tendon Arrangements Tendon hood structure for extensors CriNcal for preserving hand funcnonality Slides over the bones and joints We have non- linear, non- constant relanonships between muscles and joints [Wilkinson et al, ICRA 03] 29

30 Determine Muscle- Joint KinemaNcs Move finger in its ranges of monon Record joint angle and muscle excursion data Determine mappings using joint and muscle data Determine moment arm matrix using mapping funcnons muscle lengths joint angles l j = f j (θ) j =1,..., 6 l = R(θ) θ R ij = l mi θ j = f i θ j non-constant moment arm matrix 30 [Deshpande et al, BioRob 08, J Biomch 09]

31 Force OpNmized Joint Control Determine the desired joint torques Desired joint posinons Finger dynamics Determine muscle forces τ joint = R T F muscle 31

32 Force OpNmized Joint Control Beker posinon tracking than with polynomial fit MoNons are not smooth 32

33 GP- Based Control 33

34 RL with GP Dynamics Models So far GPs for filtering and predicnon subspace id trajectory replay hand control Now: IncorporaNon of GP models into RL 34

35 [Deisenroth-etal, ICML-11, RSS-11] PILCO: ProbabilisNc Inference for Learning Control Model-based policy search to minimize given cost function Policy: mapping from state to control Rollout: plan using current policy and GP dynamics model Policy parameter update via CG/BFGS Highly data efficient 35

36 Model Learning and Approximate Inference Gaussian Process Forward Model Approximate Inference for Policy Learning 2 x t (x, u ) t 1 t 1 Probabilistic GP model consistently describes model uncertainties Long-term planning requires approximate inference: moment matching Model uncertainties are integrated out analytically (opposed to MC [Bagnell-00]) Deisenroth-etal also introduced GP-ADFs and EP for smoothing in GP 36 dynamical systems

37 Controlling a Low- Cost RoboNc Low- cost system ($500 for robot arm and Kinect) Very noisy No sensor informanon about robot s joint configuranon used Goal: Learn to stack tower of 5 blocks from scratch Kinect camera for tracking block in end- effector State: coordinates (3D) of block center (from Kinect camera) 4 controlled DoF 20 learning trials for stacking 5 blocks (5 seconds long each) Account for system noise, e.g., Robot arm Image processing Manipulator 37

38 Collision Avoidance y dist. to target (in m) x dist. to target (in m) Use valuable prior information about obstacles if available Incorporation into planning à penalize in cost function 38

39 Collision Avoidance Results Experimental Setup Training runs (during learning) with collisions Cautious learning and exploration (rather safe than risky-successful) Learning slightly slower, but with significantly fewer collisions during training Average collision reduction (during training): 32.5% à 0.5% 39

40 Summary GPs provide flexible modeling framework Take data noise and uncertainty due to data sparsity into account Seamless integranon into Bayes filters CombinaNon with parametric models increases accuracy and reduces amount of training data Subspace idennficanon via extended GPLVMs Data efficient RL ComputaNonal complexity is a key problem Advances in GPs and GPLVMs can be leveraged 40

Gaussian with mean ( µ ) and standard deviation ( σ)

Gaussian with mean ( µ ) and standard deviation ( σ) Slide from Pieter Abbeel Gaussian with mean ( µ ) and standard deviation ( σ) 10/6/16 CSE-571: Robotics X ~ N( µ, σ ) Y ~ N( aµ + b, a σ ) Y = ax + b + + + + 1 1 1 1 1 1 1 1 1 1, ~ ) ( ) ( ), ( ~ ), (

More information

Learning to Control a Low-Cost Manipulator Using Data-Efficient Reinforcement Learning

Learning to Control a Low-Cost Manipulator Using Data-Efficient Reinforcement Learning Learning to Control a Low-Cost Manipulator Using Data-Efficient Reinforcement Learning Marc Peter Deisenroth Dept. of Computer Science & Engineering University of Washington Seattle, WA, USA Carl Edward

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information

Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information 5st IEEE Conference on Decision and Control December 0-3, 202 Maui, Hawaii, USA Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information Joseph Hall, Carl Rasmussen

More information

Optimal Control with Learned Forward Models

Optimal Control with Learned Forward Models Optimal Control with Learned Forward Models Pieter Abbeel UC Berkeley Jan Peters TU Darmstadt 1 Where we are? Reinforcement Learning Data = {(x i, u i, x i+1, r i )}} x u xx r u xx V (x) π (u x) Now V

More information

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning

Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Gaussian Processes as Continuous-time Trajectory Representations: Applications in SLAM and Motion Planning Jing Dong jdong@gatech.edu 2017-06-20 License CC BY-NC-SA 3.0 Discrete time SLAM Downsides: Measurements

More information

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms

L06. LINEAR KALMAN FILTERS. NA568 Mobile Robotics: Methods & Algorithms L06. LINEAR KALMAN FILTERS NA568 Mobile Robotics: Methods & Algorithms 2 PS2 is out! Landmark-based Localization: EKF, UKF, PF Today s Lecture Minimum Mean Square Error (MMSE) Linear Kalman Filter Gaussian

More information

GP-SUM. Gaussian Process Filtering of non-gaussian Beliefs

GP-SUM. Gaussian Process Filtering of non-gaussian Beliefs GP-SUM. Gaussian Process Filtering of non-gaussian Beliefs Maria Bauza and Alberto Rodriguez Mechanical Engineering Department Massachusetts Institute of Technology @mit.edu Abstract. This

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e.

Bayes Filter Reminder. Kalman Filter Localization. Properties of Gaussians. Gaussians. Prediction. Correction. σ 2. Univariate. 1 2πσ e. Kalman Filter Localization Bayes Filter Reminder Prediction Correction Gaussians p(x) ~ N(µ,σ 2 ) : Properties of Gaussians Univariate p(x) = 1 1 2πσ e 2 (x µ) 2 σ 2 µ Univariate -σ σ Multivariate µ Multivariate

More information

Markov localization uses an explicit, discrete representation for the probability of all position in the state space.

Markov localization uses an explicit, discrete representation for the probability of all position in the state space. Markov Kalman Filter Localization Markov localization localization starting from any unknown position recovers from ambiguous situation. However, to update the probability of all positions within the whole

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Hidden Markov Models Dieter Fox --- University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

State-Space Inference and Learning with Gaussian Processes

State-Space Inference and Learning with Gaussian Processes Ryan Turner 1 Marc Peter Deisenroth 1, Carl Edward Rasmussen 1,3 1 Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB 1PZ, UK Department of Computer Science & Engineering,

More information

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein

Kalman filtering and friends: Inference in time series models. Herke van Hoof slides mostly by Michael Rubinstein Kalman filtering and friends: Inference in time series models Herke van Hoof slides mostly by Michael Rubinstein Problem overview Goal Estimate most probable state at time k using measurement up to time

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Simultaneous Localization and Mapping (SLAM) Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Introduction SLAM asks the following question: Is it possible for an autonomous vehicle

More information

Control in the Reliable Region of a Statistical Model with Gaussian Process Regression

Control in the Reliable Region of a Statistical Model with Gaussian Process Regression Control in the Reliable Region of a Statistical Model with Gaussian Process Regression Youngmok Yun and Ashish D. Deshpande Abstract We present a novel statistical model-based control algorithm, called

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods

Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods Yaakov Engel Joint work with Peter Szabo and Dmitry Volkinshtein (ex. Technion) Why use GPs in RL? A Bayesian approach

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

Mutual Information Based Data Selection in Gaussian Processes for People Tracking

Mutual Information Based Data Selection in Gaussian Processes for People Tracking Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 01, Victoria University of Wellington, New Zealand. Mutual Information Based Data Selection in Gaussian Processes for People Tracking

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Kernel Bayes Rule: Nonparametric Bayesian inference with kernels

Kernel Bayes Rule: Nonparametric Bayesian inference with kernels Kernel Bayes Rule: Nonparametric Bayesian inference with kernels Kenji Fukumizu The Institute of Statistical Mathematics NIPS 2012 Workshop Confluence between Kernel Methods and Graphical Models December

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg Temporal Reasoning Kai Arras, University of Freiburg 1 Temporal Reasoning Contents Introduction Temporal Reasoning Hidden Markov Models Linear Dynamical Systems (LDS) Kalman Filter 2 Temporal Reasoning

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

EKF, UKF. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics EKF, UKF Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Kalman Filter Kalman Filter = special case of a Bayes filter with dynamics model and sensory

More information

CSE446: Naïve Bayes Winter 2016

CSE446: Naïve Bayes Winter 2016 CSE446: Naïve Bayes Winter 2016 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, Luke ZeIlemoyer Supervised Learning: find f Given: Training set {(x i, y i ) i = 1 n} Find: A good approximanon

More information

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors GRASP Laboratory University of Pennsylvania June 6, 06 Outline Motivation Motivation 3 Problem

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 25: Markov Chain Monte Carlo (MCMC) Course Review and Advanced Topics Many figures courtesy Kevin

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search Marc Peter Deisenroth marc@cs.washington.edu Department of Computer Science & Engineering, University of Washington, USA Carl Edward Rasmussen cer54@cam.ac.uk Department of Engineering, University of Cambridge,

More information

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart

Robotics. Mobile Robotics. Marc Toussaint U Stuttgart Robotics Mobile Robotics State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM Marc Toussaint U Stuttgart DARPA Grand

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

From Bayes to Extended Kalman Filter

From Bayes to Extended Kalman Filter From Bayes to Extended Kalman Filter Michal Reinštein Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/

More information

2D Image Processing (Extended) Kalman and particle filter

2D Image Processing (Extended) Kalman and particle filter 2D Image Processing (Extended) Kalman and particle filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

More information

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

CS 532: 3D Computer Vision 6 th Set of Notes

CS 532: 3D Computer Vision 6 th Set of Notes 1 CS 532: 3D Computer Vision 6 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Intro to Covariance

More information

Data-Driven Differential Dynamic Programming Using Gaussian Processes

Data-Driven Differential Dynamic Programming Using Gaussian Processes 5 American Control Conference Palmer House Hilton July -3, 5. Chicago, IL, USA Data-Driven Differential Dynamic Programming Using Gaussian Processes Yunpeng Pan and Evangelos A. Theodorou Abstract We present

More information

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms

L11. EKF SLAM: PART I. NA568 Mobile Robotics: Methods & Algorithms L11. EKF SLAM: PART I NA568 Mobile Robotics: Methods & Algorithms Today s Topic EKF Feature-Based SLAM State Representation Process / Observation Models Landmark Initialization Robot-Landmark Correlation

More information

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF)

Review: Probabilistic Matrix Factorization. Probabilistic Matrix Factorization (PMF) Case Study 4: Collaborative Filtering Review: Probabilistic Matrix Factorization Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 2 th, 214 Emily Fox 214 1 Probabilistic

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

System identification and control with (deep) Gaussian processes. Andreas Damianou

System identification and control with (deep) Gaussian processes. Andreas Damianou System identification and control with (deep) Gaussian processes Andreas Damianou Department of Computer Science, University of Sheffield, UK MIT, 11 Feb. 2016 Outline Part 1: Introduction Part 2: Gaussian

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Simultaneous Localization and Mapping Miroslav Kulich Intelligent and Mobile Robotics Group Czech Institute of Informatics, Robotics and Cybernetics Czech Technical University in Prague Winter semester

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Target Tracking Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Linear Dynamical System (LDS) Stochastic process governed by is the state vector is the input vector is the process

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Learning Non-stationary System Dynamics Online using Gaussian Processes

Learning Non-stationary System Dynamics Online using Gaussian Processes Learning Non-stationary System Dynamics Online using Gaussian Processes Axel Rottmann and Wolfram Burgard Department of Computer Science, University of Freiburg, Germany Abstract. Gaussian processes are

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach B. Bischoff 1, D. Nguyen-Tuong 1,H.Markert 1 anda.knoll 2 1- Robert Bosch GmbH - Corporate Research Robert-Bosch-Str. 2, 71701

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Model-Based Reinforcement Learning with Continuous States and Actions

Model-Based Reinforcement Learning with Continuous States and Actions Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters: Model-Based Reinforcement Learning with Continuous States and Actions in Proceedings of the 16th European Symposium on Artificial Neural Networks

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Hidden Markov Models Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Additional References: David

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Gaussian Filters Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile robot

More information

Probabilistic Model-based Imitation Learning

Probabilistic Model-based Imitation Learning Probabilistic Model-based Imitation Learning Peter Englert, Alexandros Paraschos, Jan Peters,2, and Marc Peter Deisenroth Department of Computer Science, Technische Universität Darmstadt, Germany. 2 Max

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Robotics. Lecture 4: Probabilistic Robotics. See course website for up to date information.

Robotics. Lecture 4: Probabilistic Robotics. See course website   for up to date information. Robotics Lecture 4: Probabilistic Robotics See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Sensors

More information

State Estimation with a Kalman Filter

State Estimation with a Kalman Filter State Estimation with a Kalman Filter When I drive into a tunnel, my GPS continues to show me moving forward, even though it isn t getting any new position sensing data How does it work? A Kalman filter

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Probabilistic Model-based Imitation Learning

Probabilistic Model-based Imitation Learning Probabilistic Model-based Imitation Learning Peter Englert, Alexandros Paraschos, Jan Peters,2, and Marc Peter Deisenroth Department of Computer Science, Technische Universität Darmstadt, Germany. 2 Max

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Summary of last lecture We know how to do probabilistic reasoning over time transition model P(X t

More information

Probabilistic Fundamentals in Robotics

Probabilistic Fundamentals in Robotics Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino June 2011 Course Outline Basic mathematical framework Probabilistic

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Efficient Reinforcement Learning for Motor Control

Efficient Reinforcement Learning for Motor Control Efficient Reinforcement Learning for Motor Control Marc Peter Deisenroth and Carl Edward Rasmussen Department of Engineering, University of Cambridge Trumpington Street, Cambridge CB2 1PZ, UK Abstract

More information

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems

Modeling and state estimation Examples State estimation Probabilities Bayes filter Particle filter. Modeling. CSC752 Autonomous Robotic Systems Modeling CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami February 21, 2017 Outline 1 Modeling and state estimation 2 Examples 3 State estimation 4 Probabilities

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization and Timothy D. Barfoot CRV 2 Outline Background Objective Experimental Setup Results Discussion Conclusion 2 Outline

More information

MODEL BASED LEARNING OF SIGMA POINTS IN UNSCENTED KALMAN FILTERING. Ryan Turner and Carl Edward Rasmussen

MODEL BASED LEARNING OF SIGMA POINTS IN UNSCENTED KALMAN FILTERING. Ryan Turner and Carl Edward Rasmussen MODEL BASED LEARNING OF SIGMA POINTS IN UNSCENTED KALMAN FILTERING Ryan Turner and Carl Edward Rasmussen University of Cambridge Department of Engineering Trumpington Street, Cambridge CB PZ, UK ABSTRACT

More information

Bayesian Methods in Positioning Applications

Bayesian Methods in Positioning Applications Bayesian Methods in Positioning Applications Vedran Dizdarević v.dizdarevic@tugraz.at Graz University of Technology, Austria 24. May 2006 Bayesian Methods in Positioning Applications p.1/21 Outline Problem

More information

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010

Probabilistic Fundamentals in Robotics. DAUIN Politecnico di Torino July 2010 Probabilistic Fundamentals in Robotics Probabilistic Models of Mobile Robots Robot localization Basilio Bona DAUIN Politecnico di Torino July 2010 Course Outline Basic mathematical framework Probabilistic

More information

2010 Small Satellite Systems and Services Symposium - Funchal, Madeira, Portugal 1

2010 Small Satellite Systems and Services Symposium - Funchal, Madeira, Portugal 1 INTERACTIONS OF POSE ESTIMATION AND ONLINE DYNAMIC MODELING FOR A SMALL INSPECTOR SPACECRAFT Mishari Alarfaj 1 and Forrest Rogers-Marcovitz 2 1 ECE Dept., Carnegie Mellon University, Pittsburgh, PA, USA,

More information

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions

CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions CIS 390 Fall 2016 Robotics: Planning and Perception Final Review Questions December 14, 2016 Questions Throughout the following questions we will assume that x t is the state vector at time t, z t is the

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets

Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets Nonlinear Estimation Techniques for Impact Point Prediction of Ballistic Targets J. Clayton Kerce a, George C. Brown a, and David F. Hardiman b a Georgia Tech Research Institute, Georgia Institute of Technology,

More information