System identification and control with (deep) Gaussian processes. Andreas Damianou

Size: px
Start display at page:

Download "System identification and control with (deep) Gaussian processes. Andreas Damianou"

Transcription

1 System identification and control with (deep) Gaussian processes Andreas Damianou Department of Computer Science, University of Sheffield, UK MIT, 11 Feb. 2016

2 Outline Part 1: Introduction Part 2: Gaussian processes GPs as infinite dimensional Gaussian distributions Part 3: In practice Autoregressive Dynamics Going deeper: Deep Recurrent Gaussian Process Regressive dynamics with deep GPs

3 Outline Part 1: Introduction Part 2: Gaussian processes GPs as infinite dimensional Gaussian distributions Part 3: In practice Autoregressive Dynamics Going deeper: Deep Recurrent Gaussian Process Regressive dynamics with deep GPs

4 General area of interest Dynamical systems. Non-linear models; models with exogenous inputs (NARX) Model-based, data-driven approaches for regressive and auto-regressive inference.

5 Examples Through a model, we wish to learn to: perform free simulation by learning patterns coming from the latent generation process (a mechanistic system we do not know) perform inter/extrapolation in time-series data which are very high-dimensional (e.g. video) detect outliers in data coming from a dynamical system optimize policies for control based on a model of the data.

6 Data-driven Data driven: Learn from data by exploiting patterns through probabilistic modelling. Pros: Complex situations where no ODEs are present etc. Prior probabilities can to some degree incorporate side knowledge. Principled handling of noise / uncertainty.... Cons: More difficult to incorporate mechanistic knowledge (although there s work attempting to do this). Relies on the way the model is optimized (local minima, approximations, computational inefficiencies, numerical problems...)...

7 Model-based approach Mechanistic model challenge: create a model which is as simple as possible but also as close to reality as possible. Probabilistic model challenge: enrich the statistical properties of the model: robustness to outliers, representation learning (e.g. deep, auto-encoders)

8 Why Model with Gaussian process Uncertainty quantification learn from few data attractive analytical properties Bayesian framework: make modelling assumptions explicit.

9 Cool stuff you can do with GPs #1 Model-based policy learning (Cart-pole) (Unicycle) Work by: Marc Deisenroth, Andrew McHutchon, Carl Rasmussen

10 Outline Part 1: Introduction Part 2: Gaussian processes GPs as infinite dimensional Gaussian distributions Part 3: In practice Autoregressive Dynamics Going deeper: Deep Recurrent Gaussian Process Regressive dynamics with deep GPs

11 Introducing Gaussian Processes: A Gaussian distribution depends on a mean and a covariance matrix. A Gaussian process depends on a mean and a covariance function.

12 Infinite model... but we always work with finite sets! Let s start with a multivariate Gaussian: p(f 1, f 2,, f }{{} s, f s+1, f s+2,, f N ) N (µ, K). }{{} f A f B with: µ = [ µa µ B ] [ ] KAA K and K = AB K BA K BB Marginalisation property: p(f A, f B ) N (µ, K). Then: p(f A ) = p(f A, f B )df B = N (µ A, K AA ) f B

13 Infinite model... but we always work with finite sets! Let s start with a multivariate Gaussian: p(f 1, f 2,, f }{{} s, f s+1, f s+2,, f N ) N (µ, K). }{{} f A f B with: µ = [ µa µ B ] [ ] KAA K and K = AB K BA K BB Marginalisation property: p(f A, f B ) N (µ, K). Then: p(f A ) = p(f A, f B )df B = N (µ A, K AA ) f B

14 Infinite model... but we always work with finite sets! In the GP context: µ X µ = and K = [ KXX ]

15 Posterior is also Gaussian! p(f A, f B ) N (µ, K). Then: p(f A f B ) = N (µ A + K AB K 1 BB (f B µ B ), K AA K AB K 1 BB K BA) In the GP context this can be used for inter/extrapolation: f f 1,, f N GP post p(f f 1,, f N ) = p(f(x ) f(x 1 ),, f(x N )) But where is K.. coming from in GPs? N (K K 1 f, K, K K 1 K )

16 Posterior is also Gaussian! p(f A, f B ) N (µ, K). Then: p(f A f B ) = N (µ A + K AB K 1 BB (f B µ B ), K AA K AB K 1 BB K BA) In the GP context this can be used for inter/extrapolation: f f 1,, f N GP post p(f f 1,, f N ) = p(f(x ) f(x 1 ),, f(x N )) But where is K.. coming from in GPs? N (K K 1 f, K, K K 1 K )

17 Posterior is also Gaussian! p(f A, f B ) N (µ, K). Then: p(f A f B ) = N (µ A + K AB K 1 BB (f B µ B ), K AA K AB K 1 BB K BA) In the GP context this can be used for inter/extrapolation: f f 1,, f N GP post p(f f 1,, f N ) = p(f(x ) f(x 1 ),, f(x N )) But where is K.. coming from in GPs? N (K K 1 f, K, K K 1 K )

18 Covariance samples and hyperparameters k(x, x ) = α exp ( γ 2 (x x ) (x x ) ) The hyperparameters of the cov. function define the properties (and NOT an explicit form) of the sampled functions

19 Incorporating Gaussian noise is tractable So far we assumed: f = f(x) Assuming that we only observe noisy versions y of the true outputs f: y = f(x) + ɛ, ɛ N (0, σ 2 )

20 Fitting the data (shaded area is uncertainty)

21 Fitting the data - Prior Samples

22 Fitting the data

23 Fitting the data

24 Fitting the data - more noise

25 Fitting the data - no noise

26 Fitting the data - Posterior samples

27 Fitting the data

28 Fitting the data

29 Fitting the data

30 Fitting the data

31 Fitting the data

32 Fitting the data

33 Part 1: Take-home messages Gaussian processes as infinite dimensional Gaussian distributions can be used as priors over functions Non-parametric: training data act as parameters Principled handling of uncertainty

34 Outline Part 1: Introduction Part 2: Gaussian processes GPs as infinite dimensional Gaussian distributions Part 3: In practice Autoregressive Dynamics Going deeper: Deep Recurrent Gaussian Process Regressive dynamics with deep GPs

35 NARX model A standard NARX model considers an input vector x i R D comprised of L y past observed outputs y i R and L u past exogenous inputs u i R: x i = [y i 1,, y i Ly, u i 1,, u i Lu ], y i = f(x i ) + ɛ (y) i, ɛ (y) i Latent auto-regressive GP model: N (ɛ (y) i 0, σy), 2 x i = f(x i 1,, x i Lx u i 1,, u i Lu ) + ɛ (x) i, y i = x i + ɛ (y) i, Contribution 1: Simultaneous auto-regressive and representation learning. Contribution 2: Latents avoid the feedback of possibly corrupted observations into the dynamics. Mattos, Damianou, Barreto, Lawrence, 2016

36 NARX model A standard NARX model considers an input vector x i R D comprised of L y past observed outputs y i R and L u past exogenous inputs u i R: x i = [y i 1,, y i Ly, u i 1,, u i Lu ], y i = f(x i ) + ɛ (y) i, ɛ (y) i Latent auto-regressive GP model: N (ɛ (y) i 0, σy), 2 x i = f(x i 1,, x i Lx u i 1,, u i Lu ) + ɛ (x) i, y i = x i + ɛ (y) i, Contribution 1: Simultaneous auto-regressive and representation learning. Contribution 2: Latents avoid the feedback of possibly corrupted observations into the dynamics. Mattos, Damianou, Barreto, Lawrence, 2016

37 Robustness to outliers Latent auto-regressive GP model: x i = f(x i 1,, x i Lx u i 1,, u i Lu ) + ɛ (x) i, y i = x i + ɛ (y) i, ɛ (x) i ɛ (y) i N (ɛ (x) i 0, σx), 2 N (ɛ (y) 0, τ 1 i i ), τ i Γ(τ i α, β), Contribution 3: Switching-off outliers by including the above Student-t likelihood for the noise. Mattos, Damianou, Barreto, Lawrence, 2016

38 Robust GP autoregressive model: demonstration (a) Artificial 1. (b) Artificial 2. Figure: RMSE values for free simulation on test data with different levels of contamination by outliers.

39 (c) Artificial 3. (d) Artificial 4. (e) Artificial 5.

40 Going deeper: Deep Recurrent Gaussian Process u x (1) x (2) x (H ) y Figure 1: RGP graphical model with H hidden layers. x is the lagged latent function values augmented with the lagged exogenous inputs. Mattos, Dai, Damianou, Barreto, Lawrence, 2016

41 Inference is tricky... log p(y) N L 2 Tr H+1 h=1 ( ( K (H+1) z log 2πσ 2 h 1 ) 1 Ψ (H+1) (σH+1 2 y Ψ (H+1) )2 1 { ( H + 1 N 2σ 2 h=1 h i=l K (h) z 1 2 K(h) + 1 ( µ (h)) (h) Ψ 2(σh 2)2 1 N ) i=l+1 x (h) i ( q 2σ 2 H+1 ) ) ( y y + Ψ (H+1) 0 K z (H+1) ( K z (H+1) + 1 Ψ (H+1) σh ( λ (h) i + µ (h)) µ (h) + Ψ (h) 0 Tr z + 1 Ψ (h) σh 2 2 ( K z (h) + 1 ) 1 ( Ψ (h) σh 2 2 ( ) L log q + x (h) i x (h) i i=1 x (h) i 1 2 K(H+1) z + 1 σh+1 2 ) 1 ( ) y Ψ (h) 1 ( q x (h) i Ψ (H+1) 1 ( ( K (h) z ) µ (h) ) ( log p Ψ (H+1) 2 ) 1 Ψ (h) 2 x (h) i ) }. ) )

42 Results Results in nonlinear systems identification: 1. artificial dataset 2. drive dataset: by a system with two electric motors that drive a pulley using a flexible belt. input: the sum of voltages applied to the motors output: speed of the belt.

43 RGP GPNARX MLP-NARX LSTM

44 RGP GPNARX MLP-NARX LSTM

45 Avatar control Figure: The generated motion with a step function signal, starting with walking (blue), switching to running (red) and switching back to walking (blue) Videos: Switching between learned speeds Interpolating (un)seen speed Constant unseen speed

46 Regressive dynamics with deep GPs t x h f Instead of coupling f s by encoding the Markov property, we couple them by coupling the f s inputs through another GP with time as input. y = f(x) + ɛ x GP(0, k x (t, t)) f GP(0, k f (x, x)) y Damianou, Titsias, Lawrence, 2011

47 Dynamics Dynamics are encoded in the covariance matrix K = k(t, t). We can consider special forms for K. Model individual sequences Model periodic data (missa) (dog) (mocap)

48 Summary Data-driven, model-based approach to control problems Gaussian processes: Uncertainty quantification / propagation gives an advantage Deep Gaussian processes: Representation learning + dynamics learning Future work: Deep Gaussian processes + mechanistic information; consider real applications. Thanks!

49 Thanks Thanks to my co-authors: Neil Lawrence, Cesar Lincoln Mattos, Zhenwen Dai, Javier Gonzalez, Guilheme Barreto Thanks to George Karniadakis, Themis Sapsis, Paris Perdikaris for hosting me

Probabilistic Models for Learning Data Representations. Andreas Damianou

Probabilistic Models for Learning Data Representations. Andreas Damianou Probabilistic Models for Learning Data Representations Andreas Damianou Department of Computer Science, University of Sheffield, UK IBM Research, Nairobi, Kenya, 23/06/2015 Sheffield SITraN Outline Part

More information

Probabilistic & Bayesian deep learning. Andreas Damianou

Probabilistic & Bayesian deep learning. Andreas Damianou Probabilistic & Bayesian deep learning Andreas Damianou Amazon Research Cambridge, UK Talk at University of Sheffield, 19 March 2019 In this talk Not in this talk: CRFs, Boltzmann machines,... In this

More information

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model (& discussion on the GPLVM tech. report by Prof. N. Lawrence, 06) Andreas Damianou Department of Neuro- and Computer Science,

More information

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu

Lecture: Gaussian Process Regression. STAT 6474 Instructor: Hongxiao Zhu Lecture: Gaussian Process Regression STAT 6474 Instructor: Hongxiao Zhu Motivation Reference: Marc Deisenroth s tutorial on Robot Learning. 2 Fast Learning for Autonomous Robots with Gaussian Processes

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Nonparameteric Regression:

Nonparameteric Regression: Nonparameteric Regression: Nadaraya-Watson Kernel Regression & Gaussian Process Regression Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Non-Factorised Variational Inference in Dynamical Systems

Non-Factorised Variational Inference in Dynamical Systems st Symposium on Advances in Approximate Bayesian Inference, 08 6 Non-Factorised Variational Inference in Dynamical Systems Alessandro D. Ialongo University of Cambridge and Max Planck Institute for Intelligent

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Gaussian Processes Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

More information

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification

Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification Fully Bayesian Deep Gaussian Processes for Uncertainty Quantification N. Zabaras 1 S. Atkinson 1 Center for Informatics and Computational Science Department of Aerospace and Mechanical Engineering University

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows Deep learning with differential Gaussian process flows Pashupati Hegde Markus Heinonen Harri Lähdesmäki Samuel Kaski Helsinki Institute for Information Technology HIIT Department of Computer Science, Aalto

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression Group Prof. Daniel Cremers 9. Gaussian Processes - Regression Repetition: Regularized Regression Before, we solved for w using the pseudoinverse. But: we can kernelize this problem as well! First step:

More information

Variational Gaussian Process Dynamical Systems

Variational Gaussian Process Dynamical Systems Variational Gaussian Process Dynamical Systems Andreas C. Damianou Department of Computer Science University of Sheffield, UK andreas.damianou@sheffield.ac.uk Michalis K. Titsias School of Computer Science

More information

Learning Gaussian Process Models from Uncertain Data

Learning Gaussian Process Models from Uncertain Data Learning Gaussian Process Models from Uncertain Data Patrick Dallaire, Camille Besse, and Brahim Chaib-draa DAMAS Laboratory, Computer Science & Software Engineering Department, Laval University, Canada

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Neil D. Lawrence GPSS 10th June 2013 Book Rasmussen and Williams (2006) Outline The Gaussian Density Covariance from Basis Functions Basis Function Representations Constructing

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling Nakul Gopalan IAS, TU Darmstadt nakul.gopalan@stud.tu-darmstadt.de Abstract Time series data of high dimensions

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information

Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information 5st IEEE Conference on Decision and Control December 0-3, 202 Maui, Hawaii, USA Modelling and Control of Nonlinear Systems using Gaussian Processes with Partial Model Information Joseph Hall, Carl Rasmussen

More information

Reinforcement Learning with Reference Tracking Control in Continuous State Spaces

Reinforcement Learning with Reference Tracking Control in Continuous State Spaces Reinforcement Learning with Reference Tracking Control in Continuous State Spaces Joseph Hall, Carl Edward Rasmussen and Jan Maciejowski Abstract The contribution described in this paper is an algorithm

More information

Multiple-step Time Series Forecasting with Sparse Gaussian Processes

Multiple-step Time Series Forecasting with Sparse Gaussian Processes Multiple-step Time Series Forecasting with Sparse Gaussian Processes Perry Groot ab Peter Lucas a Paul van den Bosch b a Radboud University, Model-Based Systems Development, Heyendaalseweg 135, 6525 AJ

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

Deep Gaussian Processes and Variational Propagation of Uncertainty

Deep Gaussian Processes and Variational Propagation of Uncertainty Deep Gaussian Processes and Variational Propagation of Uncertainty Andreas Damianou Department of Neuroscience University of Sheffield This dissertation is submitted for the degree of Doctor of Philosophy

More information

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes CSci 8980: Advanced Topics in Graphical Models Gaussian Processes Instructor: Arindam Banerjee November 15, 2007 Gaussian Processes Outline Gaussian Processes Outline Parametric Bayesian Regression Gaussian

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

Modelling Transcriptional Regulation with Gaussian Processes

Modelling Transcriptional Regulation with Gaussian Processes Modelling Transcriptional Regulation with Gaussian Processes Neil Lawrence School of Computer Science University of Manchester Joint work with Magnus Rattray and Guido Sanguinetti 8th March 7 Outline Application

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning November 17, 2011 CharmGil Hong Agenda Motivation GP : How does it make sense? Prior : Defining a GP More about Mean and Covariance Functions Posterior : Conditioning

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray murray@cs.toronto.edu CSC255, Introduction to Machine Learning, Fall 28 Dept. Computer Science, University of Toronto The problem Learn scalar function of

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides.

ECE521 Tutorial 2. Regression, GPs, Assignment 1. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 Regression, GPs, Assignment 1 ECE521 Winter 2016 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel for the slides. ECE521 Tutorial 2 ECE521 Winter 2016 Credits to Alireza / 3 Outline

More information

Building an Automatic Statistician

Building an Automatic Statistician Building an Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ ALT-Discovery Science Conference, October

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Optimizing Long-term Predictions for Model-based Policy Search

Optimizing Long-term Predictions for Model-based Policy Search Optimizing Long-term Predictions for Model-based Policy Search Andreas Doerr 1,2, Christian Daniel 1, Duy Nguyen-Tuong 1, Alonso Marco 2, Stefan Schaal 2,3, Marc Toussaint 4, Sebastian Trimpe 2 1 Bosch

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Deep Gaussian Processes

Deep Gaussian Processes Deep Gaussian Processes Neil D. Lawrence 30th April 2015 KTH Royal Institute of Technology Outline Introduction Deep Gaussian Process Models Variational Approximation Samples and Results Outline Introduction

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E483 Kernel Methods in Machine Learning Lecture : Gaussian processes Markus Heinonen 3. November, 26 Today s topic Gaussian processes: Kernel as a covariance function C. E. Rasmussen & C. K. I. Williams,

More information

Variational Model Selection for Sparse Gaussian Process Regression

Variational Model Selection for Sparse Gaussian Process Regression Variational Model Selection for Sparse Gaussian Process Regression Michalis K. Titsias School of Computer Science University of Manchester 7 September 2008 Outline Gaussian process regression and sparse

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Contents in latter part Linear Dynamical Systems What is different from HMM? Kalman filter Its strength and limitation Particle Filter

More information

Deep Gaussian Processes

Deep Gaussian Processes Deep Gaussian Processes Neil D. Lawrence 8th April 2015 Mascot Num 2015 Outline Introduction Deep Gaussian Process Models Variational Methods Composition of GPs Results Outline Introduction Deep Gaussian

More information

Gaussian Process Regression

Gaussian Process Regression Gaussian Process Regression 4F1 Pattern Recognition, 21 Carl Edward Rasmussen Department of Engineering, University of Cambridge November 11th - 16th, 21 Rasmussen (Engineering, Cambridge) Gaussian Process

More information

State Space Gaussian Processes with Non-Gaussian Likelihoods

State Space Gaussian Processes with Non-Gaussian Likelihoods State Space Gaussian Processes with Non-Gaussian Likelihoods Hannes Nickisch 1 Arno Solin 2 Alexander Grigorievskiy 2,3 1 Philips Research, 2 Aalto University, 3 Silo.AI ICML2018 July 13, 2018 Outline

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes Iain Murray School of Informatics, University of Edinburgh The problem Learn scalar function of vector values f(x).5.5 f(x) y i.5.2.4.6.8 x f 5 5.5 x x 2.5 We have (possibly

More information

Markov Chain Monte Carlo Algorithms for Gaussian Processes

Markov Chain Monte Carlo Algorithms for Gaussian Processes Markov Chain Monte Carlo Algorithms for Gaussian Processes Michalis K. Titsias, Neil Lawrence and Magnus Rattray School of Computer Science University of Manchester June 8 Outline Gaussian Processes Sampling

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

Models. Carl Henrik Ek Philip H. S. Torr Neil D. Lawrence. Computer Science Departmental Seminar University of Bristol October 25 th, 2007

Models. Carl Henrik Ek Philip H. S. Torr Neil D. Lawrence. Computer Science Departmental Seminar University of Bristol October 25 th, 2007 Carl Henrik Ek Philip H. S. Torr Neil D. Lawrence Oxford Brookes University University of Manchester Computer Science Departmental Seminar University of Bristol October 25 th, 2007 Source code and slides

More information

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group

Nonparmeteric Bayes & Gaussian Processes. Baback Moghaddam Machine Learning Group Nonparmeteric Bayes & Gaussian Processes Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group Outline Bayesian Inference Hierarchical Models Model Selection Parametric vs. Nonparametric Gaussian

More information

arxiv: v1 [stat.ml] 8 Sep 2014

arxiv: v1 [stat.ml] 8 Sep 2014 VARIATIONAL GP-LVM Variational Inference for Uncertainty on the Inputs of Gaussian Process Models arxiv:1409.2287v1 [stat.ml] 8 Sep 2014 Andreas C. Damianou Dept. of Computer Science and Sheffield Institute

More information

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic

NPFL108 Bayesian inference. Introduction. Filip Jurčíček. Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic NPFL108 Bayesian inference Introduction Filip Jurčíček Institute of Formal and Applied Linguistics Charles University in Prague Czech Republic Home page: http://ufal.mff.cuni.cz/~jurcicek Version: 21/02/2014

More information

The Automatic Statistician

The Automatic Statistician The Automatic Statistician Zoubin Ghahramani Department of Engineering University of Cambridge, UK zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ James Lloyd, David Duvenaud (Cambridge) and

More information

MTTTS16 Learning from Multiple Sources

MTTTS16 Learning from Multiple Sources MTTTS16 Learning from Multiple Sources 5 ECTS credits Autumn 2018, University of Tampere Lecturer: Jaakko Peltonen Lecture 6: Multitask learning with kernel methods and nonparametric models On this lecture:

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Variable sigma Gaussian processes: An expectation propagation perspective

Variable sigma Gaussian processes: An expectation propagation perspective Variable sigma Gaussian processes: An expectation propagation perspective Yuan (Alan) Qi Ahmed H. Abdel-Gawad CS & Statistics Departments, Purdue University ECE Department, Purdue University alanqi@cs.purdue.edu

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

Probabilistic Graphical Models Lecture 20: Gaussian Processes

Probabilistic Graphical Models Lecture 20: Gaussian Processes Probabilistic Graphical Models Lecture 20: Gaussian Processes Andrew Gordon Wilson www.cs.cmu.edu/~andrewgw Carnegie Mellon University March 30, 2015 1 / 53 What is Machine Learning? Machine learning algorithms

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes

Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Journal of Machine Learning Research 17 (2016) 1-62 Submitted 9/14; Revised 7/15; Published 4/16 Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes Andreas C. Damianou

More information

20: Gaussian Processes

20: Gaussian Processes 10-708: Probabilistic Graphical Models 10-708, Spring 2016 20: Gaussian Processes Lecturer: Andrew Gordon Wilson Scribes: Sai Ganesh Bandiatmakuri 1 Discussion about ML Here we discuss an introduction

More information

Deep Neural Networks as Gaussian Processes

Deep Neural Networks as Gaussian Processes Deep Neural Networks as Gaussian Processes Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, Jascha Sohl-Dickstein Google Brain {jaehlee, yasamanb, romann, schsam, jpennin,

More information

Probabilistic numerics for deep learning

Probabilistic numerics for deep learning Presenter: Shijia Wang Department of Engineering Science, University of Oxford rning (RLSS) Summer School, Montreal 2017 Outline 1 Introduction Probabilistic Numerics 2 Components Probabilistic modeling

More information

Nonparametric Inference for Auto-Encoding Variational Bayes

Nonparametric Inference for Auto-Encoding Variational Bayes Nonparametric Inference for Auto-Encoding Variational Bayes Erik Bodin * Iman Malik * Carl Henrik Ek * Neill D. F. Campbell * University of Bristol University of Bath Variational approximations are an

More information

Introduction to Gaussian Processes

Introduction to Gaussian Processes Introduction to Gaussian Processes 1 Objectives to express prior knowledge/beliefs about model outputs using Gaussian process (GP) to sample functions from the probability measure defined by GP to build

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

Nonlinear Modelling and Control using Gaussian Processes

Nonlinear Modelling and Control using Gaussian Processes Nonlinear Modelling and Control using Gaussian Processes Andrew McHutchon Churchill College August 214 A thesis presented for the degree of Doctor of Philosophy Department of Engineering University of

More information

A Process over all Stationary Covariance Kernels

A Process over all Stationary Covariance Kernels A Process over all Stationary Covariance Kernels Andrew Gordon Wilson June 9, 0 Abstract I define a process over all stationary covariance kernels. I show how one might be able to perform inference that

More information

Lecture 6: Bayesian Inference in SDE Models

Lecture 6: Bayesian Inference in SDE Models Lecture 6: Bayesian Inference in SDE Models Bayesian Filtering and Smoothing Point of View Simo Särkkä Aalto University Simo Särkkä (Aalto) Lecture 6: Bayesian Inference in SDEs 1 / 45 Contents 1 SDEs

More information

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation

COMP 551 Applied Machine Learning Lecture 21: Bayesian optimisation COMP 55 Applied Machine Learning Lecture 2: Bayesian optimisation Associate Instructor: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp55 Unless otherwise noted, all material posted

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Probabilistic Inference : Changepoints and Cointegration

Probabilistic Inference : Changepoints and Cointegration Probabilistic Inference : Changepoints and Cointegration Chris Bracegirdle c.bracegirdle@cs.ucl.ac.uk 26 th April 2013 Outline 1 Changepoints Modelling Approaches Reset Models : Probabilistic Inferece

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Gaussian process for nonstationary time series prediction

Gaussian process for nonstationary time series prediction Computational Statistics & Data Analysis 47 (2004) 705 712 www.elsevier.com/locate/csda Gaussian process for nonstationary time series prediction Soane Brahim-Belhouari, Amine Bermak EEE Department, Hong

More information

Tree-structured Gaussian Process Approximations

Tree-structured Gaussian Process Approximations Tree-structured Gaussian Process Approximations Thang Bui joint work with Richard Turner MLG, Cambridge July 1st, 2014 1 / 27 Outline 1 Introduction 2 Tree-structured GP approximation 3 Experiments 4 Summary

More information

Latent Force Models. Neil D. Lawrence

Latent Force Models. Neil D. Lawrence Latent Force Models Neil D. Lawrence (work with Magnus Rattray, Mauricio Álvarez, Pei Gao, Antti Honkela, David Luengo, Guido Sanguinetti, Michalis Titsias, Jennifer Withers) University of Sheffield University

More information

Non Linear Latent Variable Models

Non Linear Latent Variable Models Non Linear Latent Variable Models Neil Lawrence GPRS 14th February 2014 Outline Nonlinear Latent Variable Models Extensions Outline Nonlinear Latent Variable Models Extensions Non-Linear Latent Variable

More information

Development of Stochastic Artificial Neural Networks for Hydrological Prediction

Development of Stochastic Artificial Neural Networks for Hydrological Prediction Development of Stochastic Artificial Neural Networks for Hydrological Prediction G. B. Kingston, M. F. Lambert and H. R. Maier Centre for Applied Modelling in Water Engineering, School of Civil and Environmental

More information

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE

DEPARTMENT OF COMPUTER SCIENCE Autumn Semester MACHINE LEARNING AND ADAPTIVE INTELLIGENCE Data Provided: None DEPARTMENT OF COMPUTER SCIENCE Autumn Semester 203 204 MACHINE LEARNING AND ADAPTIVE INTELLIGENCE 2 hours Answer THREE of the four questions. All questions carry equal weight. Figures

More information

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak Gaussian processes and bayesian optimization Stanisław Jastrzębski kudkudak.github.io kudkudak Plan Goal: talk about modern hyperparameter optimization algorithms Bayes reminder: equivalent linear regression

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

The Kalman Filter ImPr Talk

The Kalman Filter ImPr Talk The Kalman Filter ImPr Talk Ged Ridgway Centre for Medical Image Computing November, 2006 Outline What is the Kalman Filter? State Space Models Kalman Filter Overview Bayesian Updating of Estimates Kalman

More information

Kernels for Automatic Pattern Discovery and Extrapolation

Kernels for Automatic Pattern Discovery and Extrapolation Kernels for Automatic Pattern Discovery and Extrapolation Andrew Gordon Wilson agw38@cam.ac.uk mlg.eng.cam.ac.uk/andrew University of Cambridge Joint work with Ryan Adams (Harvard) 1 / 21 Pattern Recognition

More information

Gaussian Process Regression Networks

Gaussian Process Regression Networks Gaussian Process Regression Networks Andrew Gordon Wilson agw38@camacuk mlgengcamacuk/andrew University of Cambridge Joint work with David A Knowles and Zoubin Ghahramani June 27, 2012 ICML, Edinburgh

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information