INDEFINITE INTEGR ATION

Size: px
Start display at page:

Download "INDEFINITE INTEGR ATION"

Transcription

1 J-Mthemtics INDFINIT INTGR ATION If f & F re function of such tht F' () f() then the function F is clled PRIMITIV OR ANTIDRIVATIV OR INTGRAL of f() w.r.t. nd is written symboliclly s d f() F() c {F() c} f(), where c is clled the constnt of integrtion.. GOMTRICAL INTRPRTATION OF INDFINIT INTGR AL : f() F() c y(sy), represents fmily of curves. The different vlues of c will correspond to different members of this fmily nd these members cn be obtined by shifting ny one of the curves prllel to itself. This is the geometricl interprettion of indefinite integrl. Let f(). Then f() c. For different vlues of c, we get different integrls. But these integrls re very similr geometriclly. Thus, y + c, where c is rbitrry constnt, represents fmily of integrls. By ssigning different vlues to c, we get different members of the fmily. These together constitute the indefinite integrl. In this cse, ech integrl represents prbol with its is long y-is. If the line intersects the prbols y, y +, y +, y, y t P 0, P, P, P, P etc., respectively, then dy t these points equls. This indictes tht the tngents to the curves t these points X' Y P P P P 0 P P y+ y+ y+ y y y y X re prllel. Thus, d + c f( ) + c (sy), P NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 implies tht the tngents to ll the curves f() + c, c R, t the points of intersection of the curves by the line, ( R), re prllel.. STANDARD RSULTS : (i) (iii) ( v ) (vii) (i) (i) n n ( b) ( b) c; n (n ) b b e e c (ii) (iv) sin( b) cos( b) c (vi ) tn( b) n sec( b) c (viii) sec ( b) tn( b) c () cosec ( b). cot( b) cosec ( b) c (ii) sec ( + b).tn( + b) sec( b) c n b c b pq Y' p q c, ( 0) p n cos( b) sin( b) c cot( b) n sin( b) c cos ec ( b) cot( b) c

2 J-Mthemtics (iii) sec n sec tn c n tn c (iv) cosec n cosec cot c (v) (vii) (i) sin c sec c n tn c n cosec cot + c (vi) (viii) tn c n + c n + c () (i) n c (ii) (iii) (iv) n c n c n c sin c (v) e e.sin b ( sin b b cos b) c b e b b sin b tn c (vi) e e b e.cos b ( cos b b sin b) c cos b tn c b b. TCHNIQUS OF INTGR ATION : ( ) Substitution or chnge of independent vrible : If () is continuous differentible function, then to evlute integrls of the form f( ()) '(), we substitute () t nd '() dt. Hence I f( ()) '() reduces to f(t)dt. ( i ) Fundmentl deductions of method of substitution : Illustrtion : f() n f '() f '() OR n put f() t & proceed. [f()] vlute cos sin sin ( sin ) cos Solution : I sin cos sin ( sin ) sin Illustrtion : Put sin t cos dt I t dt n t t c n sin sin c t vlute tn NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

3 J-Mthemtics Solution : The given integrl cn be written s I Let tn t. Differentiting we get dt Hence I dt t tn t dt Now mke one more substitution tn t u. Then t Returning to t, nd then to, we hve du nd I du n u c u I n tn t c n tn c Do yourself - : (i) vlute : 6 (ii) vlute : 9 6 cos ( i i) Stndrd substitutions : or ; put tn or cot or ; put sin or cos NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 Illustrtion : Solution : or ; put sec or cosec ; put cos or ( )( ) ; put cos + sin or ( )( ) ; put sec tn ( )( ) ; put t or t. vlute ( )(b ) Put cos + bsin, the given integrl becomes

4 J-Mthemtics I (b ) sin cos d ( cos b sin )(b cos b sin (b ) sin cos d b sin cos Illustrtion : vlute. Solution : Put cos sin cos d b b b d c sin c cos I. ( sin cos )d tn tn d cos cos sin ( / ) cos d d n sec tn c cos cos n cos c Do yourself - : (i) vlute : (ii) vlute : du ( b ) Integrtion by prt : u.v u v. v re commonly designted s first & second function respectively. where u & v re differentible functions nd Note : While using integrtion by prts, choose u & v such tht (i) v & (ii) du. v re simple to integrte. This is generlly obtined by choosing first function s the function which comes first in the word ILAT, where; I-Inverse function, L-Logrithmic function, A-Algebric function, T-Trigonometric function & -ponentil function. Illustrtion : vlute : cos Solution : Consider I cos Let t Illustrtion 6 : vlute : then dt i.e. dt or t dt so I cos t.tdt tking t s first function, then integrte it by prt dt I t cos tdt cos tdt dt dt t sin t.sin tdt t sin t cos t c I sin cos c sin NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

5 Solution : Let I sin ( sin ) sin sec ( sin ) ( sin )( sin ) ( sin ) sec sec tn cos sec tn tn sec sec tn n sec sec n sec tn c J-Mthemtics sec tn sec tn (sec tn ) tn sec n c ( sin ) n sin c sec cos Do yourself - : (i) vlute : e (ii) vlute : sin( ) Two clssic integrnds : (i) e [f() f '()] e.f() c Illustrtion 7 : vlute e Solution : e ( ) e e e c ( ) ( ) ( ) NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 Illustrtion 8 : The vlue of Solution : Let I Do yourself - : (i) vlute : e ( ) ( ) / e / is equl to - ( ) e / ( ) e ( ) ( ) / e ( ) ( ) e ( ) ( ) / / e ( ) ( ) ( ) ( ) e e ( ) ( ) / / / / / / (ii) [f() f '()] f() c Illustrtion 9 : vlute c e { } / c ( ) /. e tn (ii) vlute : sin cos e sin cos (D) none of these Ans. (D)

6 J-Mthemtics sin sin Solution : I cos sec tn cos tn + c Do yourself - : e sec (e ) (ii) vlute : ( n ) (i) vlute : tn(e ) ( c ) Integrtion of rtionl function : (i) Rtionl function is defined s the rtio of two polynomils in the form P(), where P() nd Q() Q() re polynomils in nd Q() 0. If the degree of P() is less thn the degree of Q(), then the rtionl function is clled proper, otherwise, it is clled improper. The improper rtionl function cn be reduced to the proper rtionl functions by long division process. Thus, if P() is improper, Q() then P() P () T() + Q() Q(), where T() is polynomil in nd P () is proper rtionl function. Q() It is lwys possible to write the integrnd s sum of simpler rtionl functions by method clled prtil frction decomposition. After this, the integrtion cn be crried out esily using the lredy known methods. S. No. Form of the rtionl function Form of the prtil frction. p q r ( ) ( b)( c) A + B b + C c. p q r ( ) ( b) A B + ( ) + C b. Illustrtion 0 : Solution : p q r ( ) ( b c) where + b + c cnnot be fctorised further f(). ( )( b c) where f() is polynomil of degree less thn. vlute ( )( ) A B ( )( ) or A( + ) + B( ). by compring the coefficients, we get A /7 nd B /7 so tht 6 A + B C b c A + B C b c + D ( b c) n ( ) n c ( )( ) NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

7 J-Mthemtics Illustrtion : Solution : vlute ( )( ) ( ) ( )( ) ( )( ) Now, So, 6 ( )( ) ( ) 6 ( )( ) ( ) 6 Now, ( ) ( ) 6 tn n n( ) c 0 Do yourself - 6 : (i) vlute : (ii) vlute : ( )( ) ( )( ) (ii),, b c b c b c press + b + c in the form of perfect squre & then pply the stndrd results. p q p q (iii), b c b c press p + q (differentil coefficient of denomintor ) + m. NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 Illustrtion : vlute Solution : I 6 6 ( / ) 9 / 6 ( / ) ( / ) /. log / c using, log c ( / ) / / log / Illustrtion : vlute c log ( ) c 7

8 J-Mthemtics Solution : press + (d.c. of + + ) + m or, + (8 + ) + m Compring the coefficients, we get 8 nd + m /8 nd m / I 8 8 log 8 log tn c 8 8 Ans. Do yourself -7 : (i) vlute : (ii) vlute : (iv) Integrls of the form K OR K where K is ny constnt. Divide N r & D r by & proceed. Note : Sometimes it is useful to write the integrl s sum of two relted integrls, which cn be evluted by mking suitble substitutions e.g. * * These integrls cn be clled s Algebric Twins. Illustrtion : vlute : sin cos Solution : I sin cos sin cos sin cos (tn ) cos (tn ) sec (tn ) cos (tn ) Now, put tn t sec dt t / t I dt dt t t / t Now, put t /t z dt dz t dz z t / t I tn tn tn / tn tn c z Illustrtion : vlute : 8 NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

9 J-Mthemtics Solution : I I {dividing N r nd D r by } / / / / dt du ( / ) ( / ) ( / ) 7 ( / ) t 7 u where t nd u I t u 7 7. tn. tn c / / 7 7 tn tn c Do yourself -8 : (i) vlute : (ii) vlute : ( d ) Mnipulting integrnds : NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 (i) (ii) (iii), n N, tke n common & put + n t. n ( ) (n) n n, n N, tke n common & put + n t n, tke n common nd put + n tn. n n / n ( ) Illustrtion 6 : vlute : n n / n ( ) Solution : Let I n n / n / n ( ) n n Put n t n, then n n t dt n n n t dt n n t n t n n I t dt c c Do yourself -9 : (i) vlute : (ii) vlute : / ( ) (iii) vlute : / ( ) ( ) 9

10 J-Mthemtics ( e) Integrtion of trigonometric functions : (i) b sin OR b cos OR sin b sin cos c cos Divide N r & D r by cos & put tn t. Illustrtion 7 : vlute : sin Solution : Divide numertor nd denomintor by cos I sec sec tn sec tn Let tn t sec dt So dt t t I. tn c Illustrtion 8 : vlute : ( sin cos ) Solution : Divide numertor nd denomintor by cos I sec ( tn ) Let tn t, sec dt dt c c t t ( tn ) I tn tn 6 c Do yourself -0 : (i) vlute : (ii) vlute : sin sin sin cos (ii) OR b sin OR b cos b sin c cos Convert sines & cosines into their respective tngents of hlf the ngles & put tn t In this cse sin Illustrtion 9 : vlute : Solution : I t t,cos t t sin cos sin cos 0, tn dt t; t tn tn tn tn let tn t, sec dt dt dt so I 6t t t t dt t 6 sec 6 tn tn NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

11 J-Mthemtics t tn. n c n +c t tn Do yourself - : (i) vlute : (ii) vlute : sin sin cos (iii) cos b sin c p cos q sin r press Numertor (N r ) (D r ) + m d (Dr ) + n & proceed. Illustrtion 0 : vlute : cos d sin cos Solution : Write the Numertor (denomintor) + m(d.c. of denomintor) + n + cos (sin + cos + ) + m(cos sin) + n. Compring the coefficients of sin, cos nd constnt terms, we get + n, + m, m 0 6/, m / nd n 8/ Hence I 6 cos sin 8 d d d sin cos sin cos 6 8 n sin cos I where I In I, put tn t sec d dt I dt dt. t tn t t (t ) d sin cos tn / tn NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 Do yourself - : (i) vlute : (iv) 6 8 tn / Hence I n sin cos tn c sin (ii) vlute sin cos m n sin cos Cse-I : When m & n nturl numbers. sin cos cos sin * If one of them is odd, then substitute for the term of even power. * If both re odd, substitute either of the term. * If both re even, use trigonometric identities to convert integrnd into cosines of multiple ngles. Cse-II : m + n is negtive even integer. * In this cse the best substitution is tn t.

12 J-Mthemtics Illustrtion : vlute Solution : sin cos Put cos t; sin dt. so tht Illustrtion : vlute I ( t ).t dt t t cos cos (t t )dt c Alternte : Put sin t; cos dt so tht 7 I t ( t ) dt t t t dt 6 8 sin sin sin c 6 8 Note : This problem cn lso be hndled by successive reduction or by trignometric identities. sin cos Solution : cos cos sin cos cos cos cos 8 8 cos cos cos cos cos 8 cos cos cos cos 6 cos cos cos 8 sin 6 sin sin sin c sin 6 sin sin c sin Illustrtion : vlute 9 / cos Solution : Let I / sin 9 / / 9 / cos sin cos Here m + n 9 (negtive even integer). Divide Numertor & Denomintor by cos. I Do yourself - : (i) vlute : tn sec tn ( t ( t )dt (using tn t) tn ) sec 7 7 / 7 / / 7 / t t c tn tn c sin sin (ii) vlute : / cos (iii) vlute : cos sin cos NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

13 J-Mthemtics ( f ) Integrtion of Irrtionl functions : (i) ( b) p q & ;put p q t ( b c) p q (ii),put b ; ( b) p q r t ( b c) p q r, put t Illustrtion : vlute. ( ) Solution : Let, I. Put + t tdt ( ) (t ) I.(t)dt {(t ) (t ) } t / t du.dt (t / t) ( ) u ( ) t / t dt dt t t t / t where u t t u t tn c tn c tn c t ( ) Illustrtion : vlute ( ) Solution : Let, I ( ) put t /t dt I / t dt / t t t dt t t NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 dt log (t / ) (t / ) / c t / log c Illustrtion 6 : vlute ( ) Solution : Let, I ( ) Put t, So tht dt t I / t dt tdt ( / t ) / t (t ) t gin let, t u. So tht t dt du.

14 J-Mthemtics du (u ) u which reduces to the form we put u z so tht du z dz zdz dz I (z ) z (z ) z I tn c u I tn c t P Q where both P nd Q re liner so tht tn c tn c Do yourself - : (i) vlute ( ) (ii) vlute : Miscelleneous Illustrtions : Illustrtion 7 : vlute cos sin {sin cos } cos Solution : I sin {sin cos } Put + cot t cot cosec dt cos 6 sin { cot } cot cosec ( + cot ) / dt / / t c t / Illustrtion 8 : 6 6 is equl to - cos sin n tn cot + c tn (tn cot) + c Solution : Let I 6 6 cos sin If tn p, then sec dp I Illustrtion 9 : vlute : cot c 6 sec 6 tn ( p ) dp ( p ) dp 6 p p p dk n cot tn + c (D) tn ( cot) + c ( tn ) sec p 6 tn p p p p dp tn (k) c k where p k, dp dk p p tn p c tn (tn cot ) c p tn ( cot) + c Ans. (C,D) sin cos 6 cos sin Solution : I sin cos 6 cos sin ( sin ) cos ( sin ) cos 6 ( sin ) sin sin sin NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

15 J-Mthemtics Put sin t, so tht cos dt. ( t )dt I (t t )... (i) Now, let (t ) (t ) + µ Compring coefficients of like powers of t, we get, + µ... (ii), µ 7 (t ) 7 I dt t t {using (i) nd (ii)} t dt log dt 7 t t t t dt t t 7 t t dt log t t 7 log t t tn (t ) + c (t ) () log sin sin tn (sin ) + c. Illustrtion 0 : The vlue of 6.sin, is equl to - cos 9. cos c cos 9. sin c sin 9. sin c (D) none of these NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 Solution : Here, I.sin 6 Put cos 6sind cos.sin cos cos ( 6 sin )d 6 sin.sin (sin ).( 6 sin )d 6.( sin )d cos 6 Illustrtion : vlute : 6 ( cos )d 6 cos d sin sin. d sin cos 6 c cos 9. cos c tn cos tn tn tn Ans.

16 J-Mthemtics Solution : I I tn cos tn tn tn sec tn tn tn tn tn ( tn ) ( tn ) cos tn tn tn let, y tn y dy sec. sec tn tn ydy dy I (y ).y y tn y + c tn tn c tn ANSWRS FOR DO YOURSLF : (i) tn 6 c (ii) sin sin c : (i) sin c (ii) n c : (i) e e + c (ii) cos( ) sin( ) c e sin( ) c : (i) e tn + c (ii) : (i) tn(e ) + c (ii) n + c 6 : (i) 7 : (i) 8 : (i) 9 : (i) 7 n n c (ii) tn c tn n c c tn tn c 0 : (i) : (i) : (i) : (i) : (i) tn / tn c n sin cos c tn c n c n c (ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii) 6 n c tn 6 n / c 8 tn tn c 6 tn / n 6 6 tn / (iii) c n cos sin C tn / c c (iii) / c 7 sin sin sin c. 7 NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

17 J-Mthemtics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR) sin sin. If f(), 0 then lim f'() is equl to (D) / sin cos cos is equl to - cos cos cos c cos cos cos c (D) 8 is equl to - 7 cos cos cos c cos cos cos c 6 (8 + ) 7 + c (8 + ) c 6 (8 + 9) 7 + c (D) (8 + ) c. 8 8 cos sin equls - sin cos sin c sin c cos c (D) cos c. Primitive of w.r.t. is - c c c (D) c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p (...) ( < ) - ( + ) + c ( ) + c ( + ) + c (D) none of these is equl to - n c l c 7 c (D) none of these n n equls - n ( l n ) c n ( ln ) c n ( l n ) c (D) n (n ) c

18 J-Mthemtics 9. If B A n + c, where c is the constnt of integrtion then : A ; B A ; B A ; B (D) A ; B 0. / equls - c c c (D) none of these. sin.cos.cos.cos.cos 8.cos6 equls - sin6 c 0 cos c 0. Identify the correct epression. n n c n e c e e c (D) n. equls - cos c 096 (D) cos c 096 tn c n c. n c. n c (D) n c. If ( ) ( ) n( + ) + btn , b equls - c z equls - 6 0, b c 8 n + + C then- 0, b c tn c cot c cot c (D) cot c (D) 0, b (D) None of these NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

19 J-Mthemtics 7. equls- c c c (D) c ( ) is equl to - 9. If + c 0 ( + ) +c tn b tn cos + c, then- (D) + c 0 ( + ) + c, b, b, b (D), b SLCT TH CORRCT ALTRNATIVS (ON OR MOR THAN ON CORRCT ANSWRS) 0. Primitive of tn sec tn w.r.t. is - n sec n sec tn c n sec tn n sec c n sec tn c (D) n tn (sec tn ) c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6. sin equls -. cos c equls sin c n n c cos n n( ) n c (D) e cos e (A sin B cos ) c c (D) cos c n n c n. If, then - A B A B A B (D) A + B ANSWR KY CHCK YOUR GRASP X R CI S - Que B B A B B B B A C A Que B C A C D A A D B A,B,D Que. A,B,C B,C,D C, D c 9

20 J-Mthemtics XRCIS - 0 BRAIN TASRS SLCT TH CORRCT ALTRNATIVS (ON OR MOR THAN ON CORRCT ANSWRS). z b cot tn cos sin g equls - sec sin cos c sec sin cos c n sin cos sin c (D) n sin cos sin c. z sin sin 6 sin sin 7 equls - sin sin sin 6 sin+c sin+c cos+c (D) cos+c.. 7 equls - 7 ( ) 7 7 n n c 7 7 n n c (D) is equl to - 7 n n c 7 n n c ( + ) + c ( ) + c ( + ) / + c (D) ( ) + c sin ( n ) is equl to - 0 ( + sin(n) + cos(n)) + c ( + sin(n) cos(n)) + c 0 0 ( sin(n) cos(n)) + c (D) ( sin(n) + cos(n)) + c 0 cos.cosec is equl to - cot + tn + c cot tn + c cot tn + c (D) tn cot + c e e. c, equls- e c 6 0 e c 6 (D) e. c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

21 J-Mthemtics 8. tn e ( ).d(cot ) is equl to - e tn + c e tn + c. e tn + c (D). e tn + c 9. n n ( n. ) e is equl to - n n ( ) e n n n + c e n n + c e n n + c (D) e n + c 0. e ( ) e is equl to - e. e c e c e. e c (D) e. e c. Primitive of w.r.t. is - c c c (D) c. / equls - [ ( )] / c 0 / c / c (D) / c. sin is equl to - sin NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 sin n sin sin n sin. The vlue of integrl. If tn tn c + sin n 8 sin + sin n 8 sin + c + c (D) sin n sin sin n sin sin n 8 sin sin n 8 sin d cn be epressed s irrtionl function of tn s - cos sin tn tn c tn tn c (D) sin cos + bn[sin + cos + c, then - cos sin, b 9 7, b 6 tn tn c, b 9 + c + c (D) 7, b 9

22 J-Mthemtics 6. is equl to - n tn + c n tn + c n sec + c (D) n sec + c 7. ( ) is equl to - ( ) + c ( ) + c ( ) + c (D) ( ) + c 8. Let f'().sin cos, 0, f(0) 0, f 0, then which of the following is/re not correct. f() is continuous t 0 f() is non-differentible t 0 f'() is discontinuous t 0 (D) f'() is differentible t 0 9. n equls - n c n c n c (D) n c 0. equls, where, - sin c sin ( ) c c cos ( ) (D) sin. is equl to - sin cos cos c cot cot c cot tn c ANSWR KY tn tn c (D) tn cos c BRAIN TASRS X R CI S - Que A B C D C C C C B C Que B B D C C D A B,C,D B, D A,B,C,D Que. A,B,C,D NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

23 J-Mthemtics XRCIS - 0 MISCLLANOUS TYP QUSTIONS FILL IN TH BLANKS. If e 6e A + B log(9e ) + C, then A..., B... nd C... 9e e. If the grph of the ntiderivtive F() of f() log(log) + (log) psses through (e, 998 e) then the term independent of in F() is.... Let F() be the ntiderivtive of f() cos sin whose grph psses through the point (/, ). Then F(/).... Let f be function stisfying f"() /, f'() nd f(0) 0. Then f(78) is equl to... MATCH TH COLUMN Following question contins sttements given in two columns, which hve to be mtched. The sttements in Column-I re lbelled s A, B, C nd D while the sttements in Column-II re lbelled s p, q, r nd s. Any given sttement in Column-I cn hve correct mtching with ON sttement in Column-II.. The ntiderivtive of Column-I Column-II f() ( b ) ( b ) cos f() sin b cos f() cos b sin is is (p) b tn tn b + c tn is (q) sin tn sin + c, b cos (r) tn b tn b + c (D) f() b cos is ; ( > b ) (s) b log tn tn b + c. f() when Column-I Column-II NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 f() / ( ) f() f() / ( ) (D) f() ASSRTION & RASON (p) c sin (q) (r) c (s) sin + c In ech of the following questions, sttement of Assertion is given followed by corresponding sttement of Reson (R) just below it. Of the sttements mrk the correct nswer s + c Sttement-I is True, Sttement-II is True ; Sttement-II is correct eplntion for Sttement-I Sttement-I is True, Sttement-II is True ; Sttement-II is NOT correct eplntion for Sttement-I Sttement-I is True, Sttement-II is Flse. (D) Sttement-I is Flse, Sttement-II is True.

24 J-Mthemtics. If D() Sttement - I : f () f () f () b c b c D(), where f, f, f re differentible function nd, b, c,, b, c re constnts. f () f () f () b c b c B e c u s e Sttement - II : Integrtion of sum of severl function is equl to sum of integrtion of individul functions. A B C (D) D. Sttement - I : If > 0 nd b c < 0, then the vlues of integrl b c will be of the type A µ tn + c. where A, B, C, µ re constnts. B B e c u s e Sttement - II : If > 0, b c < 0, then + b + c cn be written s sum of two squres. A B C (D) D. If y is function of such tht y( y). Sttement - I : y log[( y) ] B e c u s e Sttement - II : y log( y) + c. A B C (D) D COMPRHNSION BASD QUSTIONS Comprehension # In clculting number of integrls we hd to use the method of integrtion by prts severl times in succession. The result could be obtined more rpidly nd in more concise form by using the so-clled generlized formul for integrtion by prts u() v() u() v () u'()v () + u"() v ()... + ( )n u n () v n () ( ) n un () v n () + c where v () v(), v () v ()..., v () n v () n Of course, we ssume tht ll derivtives nd integrls ppering in this formul eist. The use of the generlized formul for integrtion by prts is especilly useful when clculting P n () Q(), where P n (), is polynomil of degree n nd the fctor Q() is such tht it cn be integrted successively n + times.. If ( + ) cos. If sin u() + cos 8 v() + c, then - u() + u() + v() + (D) v() 6 8 e e. f() C then f() is equl to (D) + + NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

25 J-Mthemtics Comprehension # Integrls of clss of functions following definite pttern cn be found by the method of reduction nd recursion. Reduction formuls mke it possible to reduce n integrl dependent on the inde n > 0, clled the order of the integrl, to n integrl of the sme type with smller inde. Integrtion by prts helps us to derive reduction formuls. (Add constnt in ech question). If I n then I n n+ + n ( ) n ( ) n n. I n is equl to - ( ) n n. n ( ) (D) n. ( ). If I n, m n sin m then I n, m + n cos m I n, m is equl to- sin cos n m (m ) sin cos n m (n ) n sin m (D) n cos m sin cos n m. If u n n, then (n + )u n+ + (n + )bu n + ncu n is equl to - b c n b c n b c n b c (D) n b c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 MISCLLANOUS TYP QUSTION ANSWR KY X R CI S - Fill in the Blnks.,, ny rel vlue Mtch the Column. p; r; s; (D) q. s; q,; r; (D) p Assertion & Reson... Comprehension Bsed Questions Comprehensi on # :.. Comprehension # :... (D)

26 J-Mthemtics XRCIS - 0 [A] CONCPTUAL SUBJCTIV XRCIS v l u t e t h e f o l l o wing I ndefi ni t e i ntegrls :... sin( ) sin( b). Integrte n( ) n f '() w.r.t. cos ec cot sec. 7. cos ec cot sec cos sin cos. n d 0. cos sin ( ) ( ) [J 99].. sin sin cos tn. tn. tn.tn ( ), wher e f( ) tn n n ( b) 8. c ( b) ( sin cos ) e n e. n ( ) /. / ( ) / / (sin ) (cos ) tn co t [J 89] / (cos ) [J 87]. [J 9] sin [J 8] ( ) cos sin 7 9 sin CONCPTUAL SUBJCTIV XRCIS ANSWR KY X R C IS - ( A ). sin( b) cos ec(b ). n c. c sin ( ).. 9. n(sec ) n(sec ) n(sec ) + c. ( ). n 9 n c 6. sin sec c 7. 6 sin b c k (sin)n cos sin cos sin n(sec) + c 0. e c e. tn n( ) n( ) c. C ( ). tn n c tn 6. ( tn ) c 8 / 7. 8 (tn ) 8. sin cos c sin cos. rc sec 8. n(cos + sin) (sin + cos) 9. tn cot tn 0.. log log(cot + cot ) + c tn tn. n / c ( sin cos ) n c ( sin cos ) / 7 7/ + / / + / + 6 /6 / + log / + / + c + c + c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

27 J-Mthemtics XRCIS - 0 [B] BRAIN STORMING SUBJCTIV XRCIS. cos 8 cos 7. cos. sin( ). sin( ) cot ( sin )(sec ). 6. n cos 8. cos 9. sin sec cos ec 7. e ( ) sin sin( ) Let 6 0, R nd f() is differentible function stisfying, f(y) f() + (y ) + (y ) ;, y R nd f(). vlute f(). cot tn. sin sin f(). Let f() is qudrtic function such tht f(0) nd ( ) is rtionl function, find the vlue of f'(0). cos e ( sin cos ). / (7 0 ) sin NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 BRAIN STORMING SUBJCTIV XRCIS ANSWR KY X R C I S - ( B ). ( sin sin ) c 6 /. cos.rc cos sin. n sin sin sin c. cos cos.. rc cos c sin n cot cot cot cot cot c cos 8. sin 0. nf H I K F I HG KJ. ( + ) rc tn cot. n e cos cos c 9. tn c. + c.. C e cos ( + cosec). c n tn sec tn c / sin cos n tn c 8 e c sin tn c sin cos (7 0) c 7

28 J-Mthemtics XRCIS - 0 [A] J-[MAIN] : PRVIOUS YAR QUSTIONS. cos [AI-00] cos () tn + C () + tn + C () tn + C () cot + C (log ). [AI - 00 ] () (log + ) + C () (log + ) + C () (log ) + C () log( + ) + C. If sin A + B logsin( ) + C then vlues of (A, B) is - [AI - 00 ] sin( ) () (sin, cos) () (cos, sin) () ( sin, cos) () ( cos, sin). is equl to- [AI - 00 ] cos sin () log tn 8 + C () log cot + C () log tn 8 + C () log tn 8 + C. (log ) is equls to - [AI - 00 ] (log ) log () (log ) + C () + C () e + C () (log ) + C 6. cos sin equls- [AI ] () logtn + C () logtn + C () logtn + C () logtn 7. The vlue of 8 + C sin is - [AI ] sin () + log cos +c () log sin +c () + log sin +c () log cos 8. If the integrl tn + ln sin cos + k then is equl to : [AI-0] tn () () () () + c NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

29 J-Mthemtics 9. If ƒ() (), then ƒ( ) is equl to : [J (Min)-0] () ( ) ( ) C () ( ) ( ) C () ( ) ( ) C () ( ) ( ) C NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6 PRVIOUS YARS QUSTIONS ANSWR KY Q u e Ans XRCIS- [A] 9

30 J-Mthemtics XRCIS - 0 [B] J-[ADVANCD] : PRVIOUS YAR QUSTIONS PRVIOUS YARS QUSTIONS. vlute : sin. [J 00 (Mins) M out of 00] 8 m m m m m m. For ny nturl number m, evlute ( + + )( + + 6) where > 0. ANSWR KY m m m m 6 m. ( ). ( ) tn n( 8 ) c 6 (m ). D. A. D 6. C 7. C 0 [J 00 M out of 60] z is equl to - [J 006, (M, M) out of 8]. Let f() c c c (D) c n / n ( ) n ( n ) n K n(n ) for n nd g() (f f... f) f occurs n times ( n n ) n K n (). Then C n g() equls. [J 007, M] n ( n ) n K n(n ) (D) ( n n ) n K n. Let F() be n indefinite integrl of sin. [J 007, M] Sttement- : The function F() stisfies F( + ) F() for ll rel. b e c u s e Sttement- : sin ( + ) sin for ll rel. Sttement- is True, Sttement- is True ; Sttement- is correct eplntion for Sttement-. Sttement- is True, Sttement- is True ; Sttement- is NOT correct eplntion for Sttement-. Sttement- is True, Sttement- is Flse. (D) Sttement- is Flse, Sttement- is True. 6. Let I e, J e e e e e Then, for n rbitrry constnt c, the vlue of J I equls e e log e e e e log e e 7. The integrl c c sec (sec tn ) 9 / / sec tn K sec tn 7 / sec tn K sec tn 7. [J 008, M, M] (D) e e log e e e e log e e equls (for some rbitrry constnt K) c c [J 0, M, M] / sec tn K sec tn 7 (D) / sec tn K sec tn 7 XRCIS- [B] NOD6\ :\Dt\0\Kot\J-Advnced\SMP\Mths\Unit#06\ng\0-INDFINIT INTGRATION.p6

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to -

is equal to - (A) abc (B) 2abc (C) 0 (D) 4abc (sinx) + a 2 (sin 2 x) a n (A) 1 (B) 1 (C) 0 (D) 2 is equal to - J-Mthemtics XRCIS - 0 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR). The vlue of determinnt c c c c c c (A) c (B) c (C) 0 (D) 4c. If sin x cos x cos 4x cos x cos x sin x 4 cos x sin x

More information

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties

RAM RAJYA MORE, SIWAN. XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII (PQRS) INDEFINITE INTERATION & Their Properties M.Sc. (Mths), B.Ed, M.Phil (Mths) MATHEMATICS Mob. : 947084408 9546359990 M.Sc. (Mths), B.Ed, M.Phil (Mths) RAM RAJYA MORE, SIWAN XI th, XII th, TARGET IIT-JEE (MAIN + ADVANCE) & COMPATETIVE EXAM FOR XII

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

7. Indefinite Integrals

7. Indefinite Integrals 7. Indefinite Integrls These lecture notes present my interprettion of Ruth Lwrence s lecture notes (in Herew) 7. Prolem sttement By the fundmentl theorem of clculus, to clculte n integrl we need to find

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations LESSON 0 Chpter 7.2 Trigonometric Integrls. Bsic trig integrls you should know. sin = cos + C cos = sin + C sec 2 = tn + C sec tn = sec + C csc 2 = cot + C csc cot = csc + C MA 6200 Em 2 Study Guide, Fll

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

(B) a + (D) (A) A.P. (B) G.P. (C) H.P. (D) none of these. (A) A.P. (B) G.P. (C) H.P. (D) none of these

(B) a + (D) (A) A.P. (B) G.P. (C) H.P. (D) none of these. (A) A.P. (B) G.P. (C) H.P. (D) none of these J-Mathematics XRCIS - 01 CHCK YOUR GRASP SLCT TH CORRCT ALTRNATIV (ONLY ON CORRCT ANSWR) 1. The roots of the quadratic equation (a + b c) (a b c) + (a b + c) = 0 are - (A) a + b + c & a b + c (B) 1/ &

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) =

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) = Review of some needed Trig. Identities for Integrtion. Your nswers should be n ngle in RADIANS. rccos( 1 ) = π rccos( - 1 ) = 2π 2 3 2 3 rcsin( 1 ) = π rcsin( - 1 ) = -π 2 6 2 6 Cn you do similr problems?

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

ntegration (p3) Integration by Inspection When differentiating using function of a function or the chain rule: If y = f(u), where in turn u = f(x)

ntegration (p3) Integration by Inspection When differentiating using function of a function or the chain rule: If y = f(u), where in turn u = f(x) ntegrtion (p) Integrtion by Inspection When differentiting using function of function or the chin rule: If y f(u), where in turn u f( y y So, to differentite u where u +, we write ( + ) nd get ( + ) (.

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information

Section 7.1 Integration by Substitution

Section 7.1 Integration by Substitution Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find

More information

ELLIPSE. Standard equation of an ellipse referred to its principal axes along the co-ordinate axes is. ( a,0) A'

ELLIPSE. Standard equation of an ellipse referred to its principal axes along the co-ordinate axes is. ( a,0) A' J-Mthemtics LLIPS. STANDARD QUATION & DFINITION : Stndrd eqution of n ellipse referred to its principl es long the co-ordinte es is > & = ( e ) = e. Y + =. where where e = eccentricit (0 < e < ). FOCI

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. cos(2θ) = sin(2θ) =.

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. cos(2θ) = sin(2θ) =. Review of some needed Trig Identities for Integrtion Your nswers should be n ngle in RADIANS rccos( 1 2 ) = rccos( - 1 2 ) = rcsin( 1 2 ) = rcsin( - 1 2 ) = Cn you do similr problems? Review of Bsic Concepts

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x.

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x. Forule For Stndrd Forule Of Integrls: u Integrl Clculus By OP Gupt [Indir Awrd Winner, +9-965 35 48] A B C D n n k, n n log k k log e e k k E sin cos k F cos sin G tn log sec k OR log cos k H cot log sin

More information

1 The Riemann Integral

1 The Riemann Integral The Riemnn Integrl. An exmple leding to the notion of integrl (res) We know how to find (i.e. define) the re of rectngle (bse height), tringle ( (sum of res of tringles). But how do we find/define n re

More information

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then f(g(x))g (x) dx = f(u) du Integrtion by Substitution: The Fundmentl Theorem of Clculus demonstrted the importnce of being ble to find nti-derivtives. We now introduce some methods for finding ntiderivtives: If u = g(x) is differentible

More information

The Product Rule state that if f and g are differentiable functions, then

The Product Rule state that if f and g are differentiable functions, then Chpter 6 Techniques of Integrtion 6. Integrtion by Prts Every differentition rule hs corresponding integrtion rule. For instnce, the Substitution Rule for integrtion corresponds to the Chin Rule for differentition.

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Math 3B Final Review

Math 3B Final Review Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:45-10:45m SH 1607 Mth Lb Hours: TR 1-2pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems

More information

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b

Reversing the Chain Rule. As we have seen from the Second Fundamental Theorem ( 4.3), the easiest way to evaluate an integral b Mth 32 Substitution Method Stewrt 4.5 Reversing the Chin Rule. As we hve seen from the Second Fundmentl Theorem ( 4.3), the esiest wy to evlute n integrl b f(x) dx is to find n ntiderivtive, the indefinite

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Mathematics Extension 1

Mathematics Extension 1 04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

TABLE OF CONTENTS 3 CHAPTER 1

TABLE OF CONTENTS 3 CHAPTER 1 TABLE OF CONTENTS 3 CHAPTER 1 Set Lnguge & Nottion 3 CHAPTER 2 Functions 3 CHAPTER 3 Qudrtic Functions 4 CHAPTER 4 Indices & Surds 4 CHAPTER 5 Fctors of Polynomils 4 CHAPTER 6 Simultneous Equtions 4 CHAPTER

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclimer: This is ment to help you strt studying. It is not necessrily complete list of everything you need to know. The MTH 33 finl exm minly consists of stndrd response questions where students must

More information

7.5 Integrals Involving Inverse Trig Functions

7.5 Integrals Involving Inverse Trig Functions . integrls involving inverse trig functions. Integrls Involving Inverse Trig Functions Aside from the Museum Problem nd its sporting vritions introduced in the previous section, the primry use of the inverse

More information

5.5 The Substitution Rule

5.5 The Substitution Rule 5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Spring 2017 Exam 1 MARK BOX HAND IN PART PIN: 17

Spring 2017 Exam 1 MARK BOX HAND IN PART PIN: 17 Spring 07 Exm problem MARK BOX points HAND IN PART 0 5-55=x5 0 NAME: Solutions 3 0 0 PIN: 7 % 00 INSTRUCTIONS This exm comes in two prts. () HAND IN PART. Hnd in only this prt. () STATEMENT OF MULTIPLE

More information

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim Mth 9 Course Summry/Study Guide Fll, 2005 [1] Limits Definition of Limit: We sy tht L is the limit of f(x) s x pproches if f(x) gets closer nd closer to L s x gets closer nd closer to. We write lim f(x)

More information

CET MATHEMATICS 2013

CET MATHEMATICS 2013 CET MATHEMATICS VERSION CODE: C. If sin is the cute ngle between the curves + nd + 8 t (, ), then () () () Ans: () Slope of first curve m ; slope of second curve m - therefore ngle is o A sin o (). The

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

F (x) dx = F (x)+c = u + C = du,

F (x) dx = F (x)+c = u + C = du, 35. The Substitution Rule An indefinite integrl of the derivtive F (x) is the function F (x) itself. Let u = F (x), where u is new vrible defined s differentible function of x. Consider the differentil

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

Optimization Lecture 1 Review of Differential Calculus for Functions of Single Variable.

Optimization Lecture 1 Review of Differential Calculus for Functions of Single Variable. Optimiztion Lecture 1 Review of Differentil Clculus for Functions of Single Vrible http://users.encs.concordi.c/~luisrod, Jnury 14 Outline Optimiztion Problems Rel Numbers nd Rel Vectors Open, Closed nd

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009

First midterm topics Second midterm topics End of quarter topics. Math 3B Review. Steve. 18 March 2009 Mth 3B Review Steve 18 Mrch 2009 About the finl Fridy Mrch 20, 3pm-6pm, Lkretz 110 No notes, no book, no clcultor Ten questions Five review questions (Chpters 6,7,8) Five new questions (Chpters 9,10) No

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

The Riemann Integral

The Riemann Integral Deprtment of Mthemtics King Sud University 2017-2018 Tble of contents 1 Anti-derivtive Function nd Indefinite Integrls 2 3 4 5 Indefinite Integrls & Anti-derivtive Function Definition Let f : I R be function

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions ENGI 44 Engineering Mthemtics Five Tutoril Exmples o Prtil Frctions 1. Express x in prtil rctions: x 4 x 4 x 4 b x x x x Both denomintors re liner non-repeted ctors. The cover-up rule my be used: 4 4 4

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

Chapter 6. Riemann Integral

Chapter 6. Riemann Integral Introduction to Riemnn integrl Chpter 6. Riemnn Integrl Won-Kwng Prk Deprtment of Mthemtics, The College of Nturl Sciences Kookmin University Second semester, 2015 1 / 41 Introduction to Riemnn integrl

More information

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student) A-Level Mthemtics Trnsition Tsk (compulsory for ll mths students nd ll further mths student) Due: st Lesson of the yer. Length: - hours work (depending on prior knowledge) This trnsition tsk provides revision

More information

f(a+h) f(a) x a h 0. This is the rate at which

f(a+h) f(a) x a h 0. This is the rate at which M408S Concept Inventory smple nswers These questions re open-ended, nd re intended to cover the min topics tht we lerned in M408S. These re not crnk-out-n-nswer problems! (There re plenty of those in the

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

APPM 1360 Exam 2 Spring 2016

APPM 1360 Exam 2 Spring 2016 APPM 6 Em Spring 6. 8 pts, 7 pts ech For ech of the following prts, let f + nd g 4. For prts, b, nd c, set up, but do not evlute, the integrl needed to find the requested informtion. The volume of the

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth 3 Exm Prctice Februry 8, 03 Exm will cover 7.4, 7.5, 7.7, 7.8, 8.-3 nd 8.5. Plese note tht integrtion skills lerned in erlier sections will still be needed for the mteril in 7.5, 7.8 nd chpter 8. This

More information

Get Discount oupons for your oching institute nd FREE Study Mteril t lculus derive nd use the result f ' f ln f stte nd use the me

Get Discount oupons for your oching institute nd FREE Study Mteril t   lculus derive nd use the result f ' f ln f stte nd use the me Get Discount oupons for your oching institute nd FREE Study Mteril t www.pikmyoahing.com Integrtion lculus 6 INTEGRATION In the previous lesson, you hve lernt the concept of derivtive of function. You

More information

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS 6. CONCEPTS FOR ADVANCED MATHEMATICS, C (475) AS Objectives To introduce students to number of topics which re fundmentl to the dvnced study of mthemtics. Assessment Emintion (7 mrks) 1 hour 30 minutes.

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

7.2 Riemann Integrable Functions

7.2 Riemann Integrable Functions 7.2 Riemnn Integrble Functions Theorem 1. If f : [, b] R is step function, then f R[, b]. Theorem 2. If f : [, b] R is continuous on [, b], then f R[, b]. Theorem 3. If f : [, b] R is bounded nd continuous

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS MIT INVERSE TRIGONOMETRIC FUNCTIONS C Domins Rnge Principl vlue brnch nd Grphs of Inverse Trigonometric/Circulr Functions : Function Domin Rnge Principl vlue brnch = [ / /] Domin Rnge Principl vlue brnch

More information

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx . Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

More information

Main topics for the First Midterm

Main topics for the First Midterm Min topics for the First Midterm The Midterm will cover Section 1.8, Chpters 2-3, Sections 4.1-4.8, nd Sections 5.1-5.3 (essentilly ll of the mteril covered in clss). Be sure to know the results of the

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

MA 124 January 18, Derivatives are. Integrals are.

MA 124 January 18, Derivatives are. Integrals are. MA 124 Jnury 18, 2018 Prof PB s one-minute introduction to clculus Derivtives re. Integrls re. In Clculus 1, we lern limits, derivtives, some pplictions of derivtives, indefinite integrls, definite integrls,

More information

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01

ENGI 9420 Lecture Notes 7 - Fourier Series Page 7.01 ENGI 940 ecture Notes 7 - Fourier Series Pge 7.0 7. Fourier Series nd Fourier Trnsforms Fourier series hve multiple purposes, including the provision of series solutions to some liner prtil differentil

More information

0.1 Chapters 1: Limits and continuity

0.1 Chapters 1: Limits and continuity 1 REVIEW SHEET FOR CALCULUS 140 Some of the topics hve smple problems from previous finls indicted next to the hedings. 0.1 Chpters 1: Limits nd continuity Theorem 0.1.1 Sndwich Theorem(F 96 # 20, F 97

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

MATH1013 Tutorial 12. Indefinite Integrals

MATH1013 Tutorial 12. Indefinite Integrals MATH Tutoril Indefinite Integrls The indefinite integrl f() d is to look for fmily of functions F () + C, where C is n rbitrry constnt, with the sme derivtive f(). Tble of Indefinite Integrls cf() d c

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information