Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As

Size: px
Start display at page:

Download "Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As"

Transcription

1 Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As M. Sawicki Institute of Physics, Polish Academy of Sciences, Warsaw, Poland. In collaboration with: T. Dietl, et al., Warsaw B. Gallagher, et al., Nottingham L.W. Molenkamp, et al., Wuerzburg H. Ohno, et al., Sendai Support by: Japanese ERATO, EU FENIKS, Polish MNiI School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 1

2 Outlook Introduction - motivation/history T C and M S Uniaxial magnetic anisotropy due to confinement and/or biaxial (epitaxial) strain - reorientation transition Biaxial (cubic, 4-fold) in-plane anisotropy Uniaxial in-plane anisotropy - reorientation transition - single domain behaviour Hole driven ferro-dms, mostly (Ga,Mn)As School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 2

3 Spintronics Making spins to: store and reveal information in a faster way transmit information (supplementing charge and light) process information (supplementing charge) Spin valve (or MTJ) Anti Ferro Ferro Conductor/Oxide Ferro Substrate Main applications: magnetic field sensors read heads galvanic isolators Magnetoresistive RAMs Why semiconductor spintronics? School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 3

4 Semiconductor Spin-electronics (Spintronics) Spin-related phenomena in semiconductors an additional degree of freedom (spin + charge spintronics) spin including magnetism spintronics electronics optics School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 4

5 Ferromagnetic semiconductors May offer a possibility to replace of All metal Spin-Based Electronic Devices they posses both spins and mechanism that effectively couples spins with carriers. technological compliance with semiconductor industry. School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 5

6 Towards ferromagnetic semiconductors magnetic semiconductors magnetic semiconductors and insulators: short-range antiferromagnetic superexchange EuTe,..., NiO,... short-range ferromagnetic super- or double exchange EuS, ZnCr 2 Se 4, La 1-x Sr x MnO 3,... EuS/KCl,... diluted magnetic semiconductors Standard semiconductor + magnetic ion II-VI: Cd 1-x Mn x Te,..., Hg 1-x Mn x Se,... IV-VI: Sn 1-x Mn x Te,..., Pb 1-x Eu x S III-V: In 1-x Mn x Sb,..., Ga 1-x Er x N IV: Ge 1-x Mn x,..., Si 1-x Ce x School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 6

7 History of DMS School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 7

8 Most of DMS: random antiferromagnet short range antiferromagnetic superexchange B School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 8

9 Evidences for antiferromagnetic interactions: magnetic susceptibility Curie-Weiss law χ = C/(T Θ) C = gµ B S(S+1)xN o /3k B Θ < 0 antiferro A. Lewicki et al. School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/2005 9

10 Magnetisation of localized spins M(T,H) = gµ B Sx eff N o B S [gµ B H/k B (T + T AF )] antiferromagnetic interactions x eff < x T AF > 0 Modified Brillouin function no spontaneous magnetisation Y. Shapira et al. School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

11 Determination of sp-d exchange integrals: - giant splitting of exciton states E ~ M ~ B S (H) ENERGY c.b. v.b. σ+ σ+ σ- σ- g eff > s-d: I sd αn o 0.2 ev no s-d hybridization => potential s-d exchange J. Gaj et al., R. Planel,.. A. Twardowski et al. G. Bastard, -- p-d: I pd βn o -1.0 ev large p-d hybridization and large intra-site Hubbard U => kinetic p-d exchange School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

12 Effect of acceptor doping on magnetic susceptibility in Zn 1-x Mn x Te:P 5 4 p -Zn 1-x Mn x Te x = p cm -3 p χ -1 vs. T χ -1 [ a.u. ] 3 2 p cm T CW Temperature [ K ] Sawicki et al. (Warsaw) pss 02 Kępa et al. (Warsaw, Oregon) PRL 03 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

13 Ferromagnetic temperature in p-(zn,mn)te Ferromagnetic Temp. T F / x eff (K) Hole concentration (cm -3 ) x (Zn,Mn)Te:N (Zn,Mn)Te:P Insulating Metallic ferromagnetism disappears in the absence of holes ferromagnetism on both sides of metal-insulator transition Ferrand et al. (Grenoble, Warsaw) PRB 01 Sawicki et al. (Warsaw) pss 02 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

14 Ferromagnetism in DMS the origin -- carriers localized by impurities (BMP): inoperative Bhatt et al., Dugaev et al., Inoue et al., Das Sarma et al., Dagotto et al., delocalized carriers (Zener/RKKY model) Ryabchenko, et al., Dietl et al., MacDonald et al., Boselli et al., Petukhov, Sham et al., hole world E F k Mn Mn k Mn world + Mn Mn Mn Mn Mn Mn T T C School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ E F Exchange spin splitting redistributes the carriers between spin subbands thus lowering their energy

15 Ferromagnetism in DMS the origin -- carriers localized by impurities (BMP): inoperative Bhatt et al., Dugaev et al., Inoue et al., Das Sarma et al., Dagotto et al., delocalized carriers (Zener/RKKY model) Ryabchenko, et al., Dietl et al., MacDonald et al., Boselli et al., Petukhov, Sham et al., T C =x eff N 0 S(S+1)J 2 A F ρ(ε F )/12k F holes!!! = valence band Mn Mn k -- s-d: I sd αn o 0.2 ev no s-d hybridization -- p-d: I pd βn o -1.0 ev large p-d hybridization Mn T T C E F Exchange spin splitting redistributes the carriers between spin subbands thus lowering their energy Mn School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

16 Why DMS, why (Ga,Mn)As? Carrier mediated ferromagnetism in semiconductors: GaSb InAs InP InSb ZnSe ZnTe CdTe x = 0.05, p = cm -3 Ge AlAs GaP GaAs AlP GaN ZnO Curie temperature (K) T. Dietl, et al., Science 2000 Si C More than 20 compounds showed ferro- coupling so far Operational criteria: Scaling of T C and M with x and p Interplay between semiconducting and ferromagnetic properties School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

17 (Ga,Mn)As: single phase ferro-dms M [110] (T) / M Sat (5K) [ r.u. ] M REM (M Spontaneous ) [ a.u. ] Remnant Magnetisation % (Ga,Mn)As Temperature [ K ] 8% (Ga,Mn)As T C = 173 K T = 172 K T = 175 K 25 nm thick Magnetic Field [ Oe ] K-Y. Wang, et al., JAP 04 & ICPS 27 χ -1 [ a.u. ] T F = x eff N 0 S(S+1)J 2 A F ρ(ε F )/12k F T C ~ xp 1/ Total x Mn ( % ) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ T C ( K ) T. Dietl, H. Ohno, F. Matsukura, PRB 01 T C = 173 K = -100 o C

18 Operational criteria for carrier-controlled ferromagnetic semiconductors Spin-LED Ferro-FET Also: Y. Ohno et al., Nature 99 H. Ohno et al., Nature 00 Current induced domain wall switching J C ~10 5 A/cm 2 Electrically assisted magnetisation reversal M. Yamanouchi, et al., Nature 04 D. Chiba, et al., Science 03 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

19 Why DMS, why (Ga,Mn)As? Carrier mediated ferromagnetism in semiconductors: GaSb InAs InP InSb ZnSe ZnTe CdTe x = 0.05, p = cm -3 Ge AlAs GaP GaAs AlP GaN ZnO Curie temperature (K) T. Dietl, et al., Science 2000 Si C More than 20 compounds showed ferro- coupling so far Operational criteria: Scaling of T C and M with x and p Interplay between semiconducting and ferromagnetic properties School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

20 T C in (Ga,Mn)As: prospects Record T C (K) LT annealing Increase Mn incorporation High index surfaces? 173 K Date School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

21 Mn in GaAs Mn(...3d 5 4s 2 ) + GaAs = 3d 4 (A 0 ) + e+e+e v.b. 3d e e e e e e e h e 3d e 3d 5 +h = 3d 4 A 0 J = 1 h v.b. 3d e e e e e 3d 4+1 = 3d 5 A - S = 5/2, L = 0 Mn = spin 5/2 + hole School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

22 Growth of (Ga,Mn)As Mn source Mn total hole + S=5/2 SUBSTRATE p [ cm -3 ] (Ga,Mn)As zero compensation limit Something went wrong! x tot [ % ] K. Yu, et al. School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

23 Mn interstitials c-rbs and c-pixe reveal: in low-temperature MBE grown ferromagnetic (Ga,Mn)As Mn atoms occupy three distinct positions in the lattice substitutional Mn Ga, interstitial Mn I, and random (MnAs) in proportions depending on annealing. Mn Mn ++ As Ga K. Yu, et al., PRB 02 interstitial Mn I : Double donor Does not play ferro AF bonds to Mn Ga Blinowski, Kacman, PRB 03 Low temperature annealing!! Potashnik et al., 02 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

24 Growth of (Ga,Mn)As Mn source Mn source Mn total hole + S=5/2 K. Yu, et al. Mn Ga hole + S=5/2 Mn I 2e+? SUBSTRATE SUBSTRATE p [ cm -3 ] (Ga,Mn)As x tot [ % ] zero compensation limit p [ cm -3 ] (Ga,Mn)As x tot [ % ] zero compensation limit p = x Annealing Wang, et al., 2004 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

25 (apparent) Magnetisation deficit µ tot = M S / x tot M S =N 0 x eff X + p (-1) Mn I paramagnetic: x eff = x Sub Mn I AF to Mn Ga : x eff = x Sub - x I µ tot [ µ B /Mn ] X [ µ B /Mn sub ] X [ µ B /Mn sub ] 6 4 As-Grown Annealed x total [ % ] School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

26 ... summary (Ga,Mn)As emerges as the best understood model ferromagnet with a number of attractive functionalities Control of magnetism and magnetization direction is possible by external means Beginning of the road for high temperature ferromagnetic semiconducting system School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

27 The magnetic anisotropy - Testing/verification for models - Device engineering magnetoresistive AMR ~ cos 2 ( ) j, M ) spin injection/detection Injector Ferromagnetic polarizer Electrical gate Electric field Detector Ferromagnetic analyser Datta & Das (1990) utilisation of the magnetic anisotropy School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

28 Magnetocrystalline vs. shape anisotropy Despite the expected for the layered material in-plane arrangement of M (H A = M S ), relatively strong perpendicular (uniaxial) magnetic anisotropy has been observed since the very beginning of the studies: (In,Mn)As/GaAs Munekata 93 some (Ga,Mn)As/InGaAs Ohno, Shono QW (Cd,Mn)Te Haury 97 (Ga,Al,Mn)As/GaAs Takamura 02 (Ga,Mn)As/GaAs Sawicki 02 H A >> M S magnetocrystalline anisotropy dominates over the shape effects School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ H M M S in 5% (Ga,Mn)As 600 Oe Oe for Fe

29 Magnetic anisotropy in cubic materials T d symmetry of the host lattice magnetic anisotropy is expected on <100> and <111> directions School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

30 MA of p-dms: the epitaxial origin H M Tensile strain Perpendicular Magnetic Anisotropy Marginal role of the shape anisotropy!! K s = M 2 (D a D c )/2 H M Compressive strain In plane Magnetic Anisotropy Shen et al (Sendai) + lots of confusing information? [100], [110]? about in plain easy axis School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

31 Excellent micromagnetic properties Large values of K a (= M S H a / 2) and A hinder domain formation Dilute systems: low M S Domain wall energy E = (K a A) 1/2 (Ga,Mn)As 1 mm Welp et al., PRL 03 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

32 Magnetic anisotropy the origin EPR studies shows that Mn single ion anisotropy is negligible p-d Zener Model - Mn - Mn interaction is mediated by holes, characterised by a non-zero orbital momentum Fedorych et al., 2002 Dietl, Ohno, Matsukura, PRB 2001 (cf. Abolfath, Jungwirth, Brum, MacDonald, PRB 2001 ) It is the anisotropy of the carrier-mediated exchange interaction stemming from spin-orbit coupling of hole gas. School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

33 Valence band structure (Zinc-blende Γ 7 and Γ 8 ) Schrödinger equation: ( + H + H ) Ψ = EΨ basis function: H kp pd bs 1 1 u u2 = i [( X + iy ) 2Z ] u3 = [( X iy ) + 2Z ] 1 1 = ( X + iy ) 2, 1 4 = i ( X iy ) 2, u 6 = i ( X iy ) + Z 3 1 u u 5 = [( X + iy ) + Z ] [ ] 0,1 GaAs 3,, Fermi Surface at E F = 100 mev,. 0,0 2 (x10 7 ) E (ev) -0,1-0,2 k z (cm -1 ) 1-0,3-0, L Γ X [111] (x10 7 [100] ) k (cm -1 ) 0 (x10 7 ) 1 k x (cm -1 ) k y (cm -1 ) (x10 7 ) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

34 Dispersion of strained (Ga,Mn)As GaAs GaAs ε xx = E (ev) E (ev) L Γ X [111] (x10 7 [100] ) k (cm -1 ) L Γ X [111] (x10 7 ) [100] k (cm -1 ) Fermi Surface at E F = 100 mev 2 (x10 7 ) 2 (x10 7 ) k z (cm -1 ) 1 k z (cm -1 ) 1 0 (x10 7 ) 1 k x (cm -1 ) k y (cm -1 ) (x10 7 ) 0 (x10 7 ) 1 k x (cm -1 ) 0 1 k y (cm -1 ) 2 (x10 7 ) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

35 Uniaxial MA epitaxial origin Pseudomorphic low temperature MBE growth: growth axis (001) (GaMn)As T d Compressive Biaxial strain (GaMn)As D 2d GaAs T d GaAs T d School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

36 Uniaxial MA epitaxial origin 1. strain, confinement or both split the hh from lh Energy lh hh, lh hh j z = ± 3/2 hh lh j z = ± 1/2 Tensile 0 Compressive strain confinement School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

37 Ferromagnetism in DMS the origin Mn Mn k Uniaxial MA epitaxial origin 1. strain, confinement or both split the hh from lh 2. if M 0 the lower energy state: for hh (l=±1) when k M Compressive case, low hole density Mn T T C j z = ± 3/2 E F Mn hh hh Energy MIS M: M. S awicki on (Ga,Mn)As - Moscow 29/06/ j z = ± 1/2 lh Energy lh ~ Js S M z M in plane hh. subband occupied easy [001] (K U > 0; strong) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

38 Uniaxial MA epitaxial origin 1. strain, confinement or both split the hh from lh 2. if M 0 the lower energy state: for lh (l=0) when k M Ferromagnetism in DMS the origin Mn Mn k Tensile case, low hole density Mn T T C E F Mn j z = ± 3/2 lh lh Energy MIS M: M. S awicki on (Ga,Mn)As - Moscow 29/06/ j z = ± 1/2 hh Energy ~ Js S hh hh M z M in plane hh. subband occupied easy (001) (K U < 0; weak) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

39 Magnetic anisotropy epitaxial origin Epitaxial (biaxial) strain Splitting of the hole states Ferromagnetism in DMS the origin Mn Mn k Compressive case: Mn T T C E F Mn hh hh j z = ± 3/2 Energy lh MIS M: M. S awicki on (Ga,Mn)As - Moscow 29/06/ j z = ± 1/2 Energy lh ~ Js S M z uniaxial anisotropy M in plane hh. subband occupied perpendicular anisotropy (strong) lh. subband occupied in-plane anisotropy (weak) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

40 Valence band engineering (Cd,Mn)Te QW Compensation of confinement induced hh/lh splitting by epitaxial tensile strain compressive ε xx = % tensile ε xx = 0.11% tensile ε xx = 0.13% QW 10 nm x = 5.3% QW 10nm x = 4.9% QW 15nm x = 5.6% Cd 1-z Zn z Te 12% Zn CdTe CdTe e e e hh lh hh lh lh hh S. Tatarenko J. Cibert (Grenoble) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

41 The measurements Faraday configuration σ ENERGY σ+ σ- σ+ σ- χ = δ(e -E + )/δh at H 0 E ~ M σ + (Warsaw, Grenoble) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

42 Tailoring the magnetic anisotropy Perp. anisotropy Ising case no splitting for B Z χ -1 P. Kossacki et al., Physica E 04 By strain (Cd,Mn)Te QW e hh lh In-plane like anisotropy e lh hh School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

43 hh/lh influence on uniaxial anisotropy T 2d D 2d symmetry lowering, growth direction is the quantisation axis, hh/lh population plays decisive role K u = f ( k p 6 6 H + H p-d, H Strain ) E F For biaxial compression e hh lh Typically, easy axis in plane Hole density [ cm -3 ] H M [001] <110> Easy z-axis <100> x = 5.3% ε xx = -0.27% T / T C Easy plane Calculations: Dietl, Ohno, Matsukura, PRB 2001 M H T C =33K School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

44 hh/lh influence on anisotropy Hole density [ cm -3 ] M [001] <110> Easy z-axis <100> x = 5.3% ε xx = -0.27% Easy plane M T / T C Two important features emerge: 1) Both types of anisotropy possible 2) 2nd order phase transition in-between School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

45 Perpendicular magnetic anisotropy 1) For low enough p perpendicular magnetic anisotropy in compressively strained (Ga,Mn)As/GaAs is observed (in-plane for tensile case) M / M Sat (5K) [ a.u. ] T = 5 K H M H M x Mn =0.023 M H M H A H Magnetic Field [ Oe ] School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

46 hh/lh influence on anisotropy 2) The reorientation: easy axis easy plane Hole density [ cm -3 ] [001] <110> Easy z-axis <100> x = 5.3% ε xx = -0.27% Easy plane H M M H T / T C Calculations: Dietl, Ohno, Matsukura, PRB 2001 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

47 The reorientation transition: temperature Temperature influence on hh/lh population ratio: hω s ~ M = f(t) Hole density [ cm -3 ] [001] x = 5.3% ε xx = -0.27% Easy (001) plane Easy z-axis 0,1 0,0 0,2 0,4 0,6 0,8 1,0 T / T C M / M Sat (5K) [ rel. u. ] 1,0 0,5 0,0-0,5-1,0 Perpendicular 5 K H M H M x Mn = ,4 0,2 0,0-0,2-0,4 22 K In-plane Magnetic Field [ Oe ] M. Sawicki, et al., PRB 04 H M H M School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

48 Tailoring the magnetic anisotropy Perp. anisotropy Ising case no splitting for B Z χ -1 P. Kossacki et al., Physica E 04 By strain (Cd,Mn)Te QW T = 5 K In-plane like anisotropy Magnetic Field [ Oe ] 22 K Compressed (Ga,Mn)As By temperature (and hole density) School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

49 The reorientation transition: hole density Hole density [ cm -3 ] M [001] <110> Easy z-axis <100> x = 5.3% ε xx = -0.27% Easy plane M E F E F e hh lh e hh lh T / T C Calculations: Dietl, Ohno, Matsukura, PRB 2001 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

50 The reorientation transition: hole density Gate Light InMnAs InMnAs/GaSb heterojunction H. Ohno et al., Nature 00 Magnetization (emu/cm 3 ) H M M z <M H=10oe normal to plane H M M z =M Temperature (K) ρ Hall (B) [Ωcm] M. S awicki on magnetic anisotropy - S endai 28/07/ w/ illumination w/o illumination Magnetic Field [T] T=10K Koshihara et al., 97; X. Liu et al., 04 Compensation Hydrogenation Lemaitre et al., 27 ICPS 04 Brandt et al., 04 ρ Hall ~ M LT annealing Penn State 02, Nottingham 03, & everywhere else p b < p c < p d < p e Thevenard, et al., 05 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

51 Hole density change: LT annealing Post growth LT annealing increases hole density Annealing influence on magnetic anisotropy/ REM(T) needed reorientation transition M / M Sat (5K) [ rel. u. ] 1,0 0,5 0,0-0,5-1,0 Perpendicular 5 K H M H M x Mn = ,4 0,2 0,0-0,2-0,4 22 K Magnetic Field [ Oe ] In-plane H M H M School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

52 Hole density change: LT annealing Hole density [ cm -3 ] Post growth LT annealing increases hole density 20 Annealing influence on magnetic anisotropy/ 15 reorientation transition Easy z-axis x = 5.3% ε xx = -0.27% 0,1 0,0 0,2 0,4 0,6 0,8 1,0 T / T C Easy plane School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ Perpendicular component of REM [ a.u. ] In-plane component of REM [ a.u. ] M. Sawicki, et al., PRB annealing annealing Temperature [ K ] Temperature [ K ] As grown 28 h ann. 57 h ann. T Tr

53 Control of the magnetism in nano scale Controlling quantum magnetic dots Patterning magnetic nanostructures Patterning magnetic nanostructures Ferromagnetic Quantum Wires Ferromagnetic Quantum Dot Array School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

54 ...summary Confinement and Strain induced magnetocrystalline anisotropy observed. - character - magnitude - reorientation transition consistent with p-d Zener model School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

55 The in-plane magnetic anisotropy The epitaxially induced D 2d symmetry suggests 4-fold (biaxial) magnetic inplane anisotropy School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

56 4-fold in-plane magnetic anisotropy Hole density [ cm -3 ] 10 1 <110> [001] <100> <110> x = 5.3% Easy plane: cubic anisotropy 4-fold symmetry Easy z-axis 180 [010] [-110] 135 H = 0 [100] 90 M [110] 0 0,1 0,0 0,2 0,4 0,6 0,8 1,0 T / T C Calculations: Dietl, Ohno, Matsukura, PRB 2001 Can we observe this? School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

57 Field induced coherent rotation [110] 135 M [100] 90 H - [110] = 0 H - [110] > [110] [110] 135 [100] 90 M 45 H - [110] [010] [010] m = M /M S 1 [110] 2K C /M S / 2 T << T C H <100> School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

58 Field induced coherent rotation: low T 1/ 2 m = M /M S 1 [110] 2K C /M S H H [110] H [100] 45 H - [110] Sample Moment [ a.u. ] % [100] = [010] <100> [-110] T = 5 K Magnetic Field [ Oe ] [010] A proof of: Formation of macroscopically large domains 4-fold magnetic symmetry 0 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

59 Temperature dependence of in-plane magnetic anisotropy 40 [100] 40 71% Sample Moment [ a.u. ] [-110] [110] T = 5 K Magnetic Field [ Oe ] REM Moment [ a.u. ] A [100] B [-110] C [100] D [110] Ga 1-x Mn x As x = 6.5% H = Temperature [ K ] biaxial anisotropy 4-fold symmetry winning at low T uniaxial anisotropy 2-fold symmetry winning at high T cf. Katsumoto et al., Hrabovsky et al., Tang et al., Welp et al., Ferre et al., Liu et al.,..., & EVERYONE ELSE. The new reorientation transition when system crosses from biaxial to uniaxial anisotropy dominating temperature range School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

60 Temperature dependence of in-plane magnetic anisotropy 40 [100] 40 71% Sample Moment [ a.u. ] [-110] [110] T = 5 K Magnetic Field [ Oe ] REM Moment [ a.u. ] A [100] B [-110] C [100] D [110] Ga 1-x Mn x As x = 6.5% H = Temperature [ K ] As grown samples: Uni_easy [-110] Cubic_easy <100> Uni_hard [110] School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

61 In-plane uniaxial magnetic anisotropy Strong uniaxial behaviour with either [-110] or [110] the easy axis, seen on all studied samples, usually dominating close to T C Magnetisation [ a.u. ] T / T C = 0.65 T / T C = _ [110] [110] Ga 1-x Mn x As x = 3 % Magnetic Field [ Oe ] T = 15 K School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ Magnetisation [ a.u. ] (near perfect single domain behaviour!!) 2 [110] _ [110] Magnetic Field [ Oe ] T=135K (Ga,Mn)As x = 6.7 % M. Sawicki, et al.,, PRB 05

62 In-plane uniaxial magnetic anisotropy Precluded by symmetry considerations. Not expected in D 2d. Thickness independent: seen from 7 µm down to 5 nm Not sensitive to etching Sample Moment [ a.u. ] % (Ga,Mn)As 50 nm Annealed [110] [-110] T = 0.92 T C Magnetic Field [ Oe ] Welp et al., 04 Nottingham, 04 Not sensitive to the state of the surface; surface/interface anisotropy not important School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/ x0.81 x0.50 Before: 50nm 2x etch 4x etch: 25nm

63 In-plane uniaxial magnetic anisotropy D 2d C 2v symmetry lowering: (In C 2v [110] and [-110] are not equivalent) - Mn concentration gradient along growth axis - preferential incorporation of Mn during growth Sadowski et al., 2004 Welp et al., 2004 More information required... School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

64 In-plane uniaxial magnetic anisotropy There are samples with the easy axis switching from [-110] to [110] on increasing T M REM ( emu/cm 3 ) T R [-110] easy [110] easy _ [110] (Ga,Mn)As x = 8.4% Annealed [110] Temperature ( K ) M. Sawicki, et al., PRB 05 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

65 In-plane uniaxial magnetic anisotropy There are samples with the uniaxial easy axis switching from [-110] to [110] on increasing T; It switches also upon annealing if p > ~ cm p ( cm -3 ) (Ga,Mn)As _ [110] - easy x ( % ) [110] - easy M. Sawicki, et al., PRB 05 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

66 M(T) in presence of two competing in-plane anisotropies: single domain case E m = K C /4 sin 4 (2θ) + K U sin 2 θ MHcos(ϕ θ) K C ~ M 4 S K U ~ M 2 S Temperature dependence of in-plane magnetic anisotropy expected [100] REM Moment [ a.u. ] A [100] B [-110] C [100] D [110] Ga 1-x Mn x As x = 6.5% H = Temperature [ K ] Sample Moment [ a.u. ] % [110] [-110] T = 5 K Magnetic Field [ Oe ] Two competing terms Magnetic easy axis reorientation transition when K C = K U K. Wang, et al., cond-mat 05 M. S awicki on magnetic anisotropy - S endai 28/07/ School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

67 Phenomenological description of magnetic anisotropy in single domain (Ga,Mn)As E m = K C /4 sin 4 (2θ) + K U sin 2 θ MHcos(ϕ θ) K C ~ M 4 expected S K U ~ M 2 S M [-110]2 + M [110]2 = M 2 S M (emu/cm 3 ) T = 5 K M (emu/cm 3 ) (2K C + (2K 2K ) / M U S C - 2K ) / M U S H (Oe) H (Oe) T = 50 K K U, K C (10 3 erg/cm 3 ) K C = K U , T (K) M S ( emu/cm 3 ) K U = b M S (2.1±0.1) K C = a M S (3.8±0.2) K. Wang, et al., cond-mat 05 School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

68 Conclusions Magnetic anisotropy in hole-controlled ferro-dms: magnetic anisotropy effect of s-o interaction in the valence band z-axis (perpendicular)/in plane anisotropies controlled by confinement and epitaxial strain in-plane anisotropy: competition of biaxial(cubic) and uniaxial anisotropy origin not yet understood three Spin Reorientation Transitions observed: perpendicular in plane <100> [-110] [-110] [110] possibility of easier magnetisation manipulation phenomenological self-consistent description possible in single domain model School of Magnetism: M. Sawicki on (Ga,Mn)As - Constanta 9/09/

Making Semiconductors Ferromagnetic: Opportunities and Challenges

Making Semiconductors Ferromagnetic: Opportunities and Challenges Making Semiconductors Ferromagnetic: Opportunities and Challenges J.K. Furdyna University of Notre Dame Collaborators: X. Liu and M. Dobrowolska, University of Notre Dame T. Wojtowicz, Institute of Physics,

More information

Diluted Magnetic Semiconductors - An Introduction -

Diluted Magnetic Semiconductors - An Introduction - International Conference and School on Spintronics and Quantum Information Technology (Spintech VI) School Lecture 2 Diluted Magnetic Semiconductors Matsue, Japan, August 1, 2011 Diluted Magnetic Semiconductors

More information

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures X. Liu, a, W. L. Lim, a L. V. Titova, a T. Wojtowicz, a,b M. Kutrowski, a,b K. J. Yee, a M. Dobrowolska,

More information

Tomasz Dietl MAGNETIC SEMICONDUCTORS. REVIEW and EFFECTS OF COMPETING FERRO- AND ANTI-FERROMAGNETIC INTERACTIONS IN

Tomasz Dietl MAGNETIC SEMICONDUCTORS. REVIEW and EFFECTS OF COMPETING FERRO- AND ANTI-FERROMAGNETIC INTERACTIONS IN REVIEW and EFFECTS OF COMPETING FERRO- AND ANTI-FERROMAGNETIC INTERACTIONS IN MAGNETIC SEMICONDUCTORS Tomasz Dietl Institute of Physics, Polish Academy of Sciences, Laboratory for Cryogenic and Spintronic

More information

Magic triangle Ph q Materials science epitaxy, self organized growth organic synthesis tio implantation, isotope purification

Magic triangle Ph  q Materials science   epitaxy, self organized growth   organic synthesis tio implantation, isotope purification Materials science epitaxy, self organized growth organic synthesis implantation, isotope purification atom and molecule manipulation nanolithography, nanoprinting beam and scanning probes... Magic triangle

More information

Magnetic properties of (Ga,Mn)As

Magnetic properties of (Ga,Mn)As Magnetic properties of (Ga,Mn)As Maciej Sawicki Institute of Physics, Polish Academy of Sciences, Warszawa, Poland Introduction The discovery of carrier-mediated ferromagnetism in (III,Mn)V and (II,Mn)VI

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Exchange interactions

Exchange interactions Exchange interactions Tomasz Dietl Institute of Physics, Polish Academy of Sciences, PL-02-668Warszawa, Poland Institute of Theoretical Physics, University of Warsaw, PL-00-681Warszawa, Poland 1. POTENTIAL

More information

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl Analele Universităţii de Vest din Timişoara Vol. LIII, 2009 Seria Fizică EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS Tomasz Dietl Institute of Physics, Polish Academy

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Mn Interstitial Diffusion in GaMnAs

Mn Interstitial Diffusion in GaMnAs Mn Interstitial Diffusion in GaMnAs K.W. Edmonds 1, P. Bogusławski,3, B.L. Gallagher 1, R.P. Campion 1, K.Y. Wang 1, N.R.S. Farley 1, C.T. Foxon 1, M. Sawicki, T. Dietl, M. Buongiorno Nardelli 3, J. Bernholc

More information

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band

More information

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXIII International School of Semiconducting Compounds, Jaszowiec 2004 Injection of Optically Generated Spins through Magnetic/Nonmagnetic

More information

Magnetic semiconductors. Tomasz Dietl Institute of Physics, Polish Academy of Sciences al. Lotników 32/46, PL Warszawa, Poland

Magnetic semiconductors. Tomasz Dietl Institute of Physics, Polish Academy of Sciences al. Lotników 32/46, PL Warszawa, Poland Magnetic Semiconductors Institute of Physics, Polish Academy of Sciences al. Lotników 32/46, PL-02668 Warszawa, Poland Introduction: diluted magnetic semiconductors As discussed in accompanying lectures,

More information

Magnetic Polarons in Concentrated and Diluted Magnetic Semiconductors

Magnetic Polarons in Concentrated and Diluted Magnetic Semiconductors Magnetic Polarons in Concentrated and Diluted Magnetic Semiconductors S. von Molnár Martech, The Florida State University, Tallahassee FL 32306 Gd 3-x v x S 4 Ref. 1 For: Spins in Solids, June 23 rd, 2006.

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As

Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As Maciej Sawicki 1,2 *, Daichi Chiba 3,1, Anna Korbecka 4, Yu Nishitani 1, Jacek A. Majewski 4, Fumihiro Matsukura

More information

Manipulation of the magnetic configuration of (Ga,Mn)As

Manipulation of the magnetic configuration of (Ga,Mn)As Manipulation of the magnetic configuration of (Ga,Mn)As nanostructures J.A. Haigh, M. Wang, A.W. Rushforth, E. Ahmad, K.W. Edmonds, R.P. Campion, C.T. Foxon, and B.L. Gallagher School of Physics and Astronomy,

More information

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs Universal valence-band picture of the ferromagnetic semiconductor GaMnAs Shinobu Ohya *, Kenta Takata, and Masaaki Tanaka Department of Electrical Engineering and Information Systems, The University of

More information

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE SEM and EDAX images of an integrated circuit SEM EDAX: Si EDAX: Al source: [Cal 99 / 605] M&D-.PPT, slide: 1, 12.02.02 Classification semiconductors electronic semiconductors mixed conductors ionic conductors

More information

From magnetic polarons to magnetic quantum dots. Jacek Kossut, Institute of Physics of the Polish Academy of Sciences

From magnetic polarons to magnetic quantum dots. Jacek Kossut, Institute of Physics of the Polish Academy of Sciences From magnetic polarons to magnetic quantum dots Jacek Kossut, Institute of Physics of the Polish Academy of Sciences 1 Diluted magnetic semiconductors Magnetic Polarons Self-assembled dots of CdMnTe: Formation

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Research Highlights. Salient results from our group. Mixed phosphides in Sn-P and Sn-Mn-P systems

Research Highlights. Salient results from our group. Mixed phosphides in Sn-P and Sn-Mn-P systems Research Highlights Dilute magnetic semiconductors and Spintronics Spintronics is a branch of electronics emerged from the dilute magnetic semiconductor in an aspect of utilization of the spin in addition

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

arxiv: v1 [cond-mat.mes-hall] 14 Aug 2012

arxiv: v1 [cond-mat.mes-hall] 14 Aug 2012 arxiv:1208.2811v1 [cond-mat.mes-hall] 14 Aug 2012 The Nature of the magnetism-promoting hole state in the prototype magnetic semiconductor GaAs: Mn V. Fleurov, K. Kikoin Raymond and Beverly Sackler Faculty

More information

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES Romanian Reports in Physics, Vol. 62, No. 1, P. 115 120, 2010 SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES M. NEGOITA, E. A. PATROI, C. V. ONICA National Institute for Research and Development

More information

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Self-compensating incorporation of Mn in Ga 1 x Mn x As Self-compensating incorporation of Mn in Ga 1 x Mn x As arxiv:cond-mat/0201131v1 [cond-mat.mtrl-sci] 9 Jan 2002 J. Mašek and F. Máca Institute of Physics, Academy of Sciences of the CR CZ-182 21 Praha

More information

magic spin Mechanisms of exchange interactions in dilute Ga 1 x Mn x N experiment and modelling

magic spin Mechanisms of exchange interactions in dilute Ga 1 x Mn x N experiment and modelling Mechanisms of exchange interactions in dilute Ga 1 x Mn x N experiment and modelling A. Grois 1 T. Devillers 1 J. Suffczyński 2 A. Navarro-Quezada 1 B. Faina 1 W. Stefanowicz 3 S. Dobkowska 3 D. Sztenkiel

More information

Spintronics at Nanoscale

Spintronics at Nanoscale Colloquium@NTHU Sep 22, 2004 Spintronics at Nanoscale Hsiu-Hau Lin Nat l Tsing-Hua Univ & Nat l Center for Theoretical Sciences What I have been doing Spintronics: Green s function theory for diluted magnetic

More information

Spintronics in semiconductors

Spintronics in semiconductors Materials Science-Poland, Vol. 24, No. 3, 2006 Spintronics in semiconductors Z. Wilamowski (1) and A. M. Werpachowska (1,2) (1) Institute of Physics PAS, 02-668 Warsaw, Poland (2) College of Science by

More information

Ph.D. THESIS. High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors. Miklós CSONTOS

Ph.D. THESIS. High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors. Miklós CSONTOS Ph.D. THESIS High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors Miklós CSONTOS Supervisor: Prof. György MIHÁLY Budapest University of Technology and Economics Institute of

More information

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Yuanyuan Li 1, Y. F. Cao 1, G. N. Wei 1, Yanyong Li 1, Y. i and K. Y. Wang 1,* 1 SKLSM, Institute of Semiconductors,

More information

MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD

MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD C. Hernandez 1, F. Terki 1, S. Charar 1, J. Sadowski 2,3,4, D. Maude 5, V.

More information

Spontaneous Magnetization in Diluted Magnetic Semiconductor Quantum Wells

Spontaneous Magnetization in Diluted Magnetic Semiconductor Quantum Wells Journal of the Korean Physical Society, Vol. 50, No. 3, March 2007, pp. 834 838 Spontaneous Magnetization in Diluted Magnetic Semiconductor Quantum Wells S. T. Jang and K. H. Yoo Department of Physics

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations K. Levchenko 1, T. Andrearczyk 1, J. Z. Domagala 1, J. Sadowski 1,2, L. Kowalczyk 1, M. Szot

More information

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract A spin Esaki diode Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University,

More information

PHYSICAL REVIEW B 75,

PHYSICAL REVIEW B 75, Magnetotransport properties of strained Ga 0.95 Mn 0.05 As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory J. Honolka, 1,2, * S. Masmanidis,

More information

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping High Temperature Ferromagnetism in GaAs-based Heterostructures with Mn Delta Doping A. M. Nazmul, 1,2 T. Amemiya, 1 Y. Shuto, 1 S. Sugahara, 1 and M. Tanaka 1,2 1. Department of Electronic Engineering,

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN

Crystal Properties. MS415 Lec. 2. High performance, high current. ZnO. GaN Crystal Properties Crystal Lattices: Periodic arrangement of atoms Repeated unit cells (solid-state) Stuffing atoms into unit cells Determine mechanical & electrical properties High performance, high current

More information

Semiconductor Spintronics

Semiconductor Spintronics IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 1, MARCH 2002 19 Semiconductor Spintronics Hiro Akinaga and Hideo Ohno, Member, IEEE Abstract We review recent progress made in the field of semiconductor

More information

Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers

Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers K. C. Ku,* S. J. Potashnik,* R. F. Wang,* M. J. Seong, E. Johnston-Halperin,# R. C. Meyers, # S. H. Chun,* A. Mascarenhas,

More information

Optical Control of Ferromagnetism in Mn-Doped III-V V Semiconductors

Optical Control of Ferromagnetism in Mn-Doped III-V V Semiconductors @ TAMU, October 22, 23 Optical Control of Ferromagnetism in Mn-Doped III-V V Semiconductors Junichiro Kono Department of Electrical & Computer Engineering, Rice University, Houston, Texas Rice University

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors TOPICAL REVIEW arxiv:cond-mat/0311029v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors 1. Introduction Carsten Timm Institut für Theoretische Physik, Freie Universität

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

2005 EDP Sciences. Reprinted with permission.

2005 EDP Sciences. Reprinted with permission. H. Holmberg, N. Lebedeva, S. Novikov, J. Ikonen, P. Kuivalainen, M. Malfait, and V. V. Moshchalkov, Large magnetoresistance in a ferromagnetic GaMnAs/GaAs Zener diode, Europhysics Letters 71 (5), 811 816

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

Making semiconductors magnetic: new materials properties, devices, and future

Making semiconductors magnetic: new materials properties, devices, and future Making semiconductors magnetic: new materials properties, devices, and future JAIRO SINOVA Texas A&M University Institute of Physics ASCR Texas A&M L. Zarbo Institute of Physics ASCR Tomas Jungwirth, Vít

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Thermoelectric studies of electronic properties of ferromagnetic GaMnAs layers

Thermoelectric studies of electronic properties of ferromagnetic GaMnAs layers Thermoelectric studies of electronic properties of ferromagnetic GaMnAs layers V. Osinniy, K. Dybko, A. Jedrzejczak, M. Arciszewska, W. Dobrowolski, and T. Story Institute of Physics, Polish Academy of

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

Prospect for research on spintronics of U 3 As 4 ferromagnet and its semiconducting Th derivatives

Prospect for research on spintronics of U 3 As 4 ferromagnet and its semiconducting Th derivatives Materials Science-Poland, Vol. 25, No. 2, 2007 Prospect for research on spintronics of U 3 As 4 ferromagnet and its semiconducting Th derivatives P. WIŚNIEWSKI, Z. HENKIE * Institute of Low Temperature

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 6 Aug 2007

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 6 Aug 2007 Anisotropic magnetoresistance components in (Ga,Mn)As arxiv:cond-mat/7357v [cond-mat.mes-hall] 6 Aug 7 A. W. Rushforth, 1 K. Výborný, C. S. King, 1 K. W. Edmonds, 1 R. P. Campion, 1 C. T. Foxon, 1 J. Wunderlich,

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 5 Feb 2004

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 5 Feb 2004 High-Temperature Hall Effect in Ga 1 x Mn x As arxiv:cond-mat/0302013v2 [cond-mat.mtrl-sci] 5 Feb 2004 D. Ruzmetov, 1 J. Scherschligt, 1 David V. Baxter, 1, T. Wojtowicz, 2,3 X. Liu, 2 Y. Sasaki, 2 J.K.

More information

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web.

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web. Energy bands in solids Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web. we are starting to remind p E = = mv 1 2 = k mv = 2 2 k 2m 2 Some

More information

Tuning the ferromagnetic properties of hydrogenated GaMnAs

Tuning the ferromagnetic properties of hydrogenated GaMnAs Tuning the ferromagnetic properties of hydrogenated GaMnAs L. Thevenard, Ludovic Largeau, Olivia Mauguin, Aristide Lemaître, Bertrand Theys To cite this version: L. Thevenard, Ludovic Largeau, Olivia Mauguin,

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Carrier-induced ferromagnetism in p Zn 1 x Mn x Te

Carrier-induced ferromagnetism in p Zn 1 x Mn x Te Carrier-induced ferromagnetism in p Zn 1 x Mn x Te D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, et al. To cite this

More information

Teaching Nanomagnets New Tricks

Teaching Nanomagnets New Tricks Teaching Nanomagnets New Tricks v / Igor Zutic R. Oszwaldowski, J. Pientka, J. Han, University at Buffalo, State University at New York A. Petukhov, South Dakota School Mines & Technology P. Stano, RIKEN

More information

Ferromagnetic semiconductor GaMnAs

Ferromagnetic semiconductor GaMnAs Ferromagnetic semiconductor GaMnAs The newly-developing spintronics technology requires materials that allow control of both the charge and the spin degrees of freedom of the charge carriers. Ferromagnetic

More information

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes Anomalous spin suscep.bility and suppressed exchange energy of 2D holes School of Chemical and Physical Sciences & MacDiarmid Ins7tute for Advanced Materials and Nanotechnology Victoria University of Wellington

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Heterostructures and sub-bands

Heterostructures and sub-bands Heterostructures and sub-bands (Read Datta 6.1, 6.2; Davies 4.1-4.5) Quantum Wells In a quantum well, electrons are confined in one of three dimensions to exist within a region of length L z. If the barriers

More information

ARTICLE IN PRESS. Physica B

ARTICLE IN PRESS. Physica B Physica B 5 (21) 17 151 Contents lists available at ScienceDirect Physica B journal homepage: www.elsevier.com/locate/physb First principles calculations of Co-doped zinc-blende ZnO magnetic semiconductor

More information

Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism

Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism P.R. Stone 1,2*, K. Alberi 1,2, S.K.Z. Tardif 2, J.W. Beeman 2, K.M. Yu 2, W. Walukiewicz 2

More information

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach» - k.p method I.3. Effectie mass approximation - Electrons - Holes I.4. train effect on band structure - Introduction:

More information

A Study of the Group-IV Diluted Magnetic Semiconductor GeMn. Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008

A Study of the Group-IV Diluted Magnetic Semiconductor GeMn. Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008 A Study of the Group-IV Diluted Magnetic Semiconductor GeMn Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008 Outline Motivation and Background Our DMS : GeMn Hall Bars Summary / Future Work Motivation

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

sp-d exchange coupling in Mn doped GaN and ZnO studied by magnetospectroscopy

sp-d exchange coupling in Mn doped GaN and ZnO studied by magnetospectroscopy sp-d exchange coupling in Mn doped GaN and ZnO studied by magnetospectroscopy J. Suffczyński 1, A. Grois 2, W. Pacuski 1, P. Kossacki 1, A. Golnik 1, J. A. Gaj 1, D. Ferrand 3, J. Cibert 3, Y. Dumont 4,

More information

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Ling Xia 1, Vadim Tokranov 2, Serge R. Oktyabrsky

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Semiconductor Fundamentals. Professor Chee Hing Tan

Semiconductor Fundamentals. Professor Chee Hing Tan Semiconductor Fundamentals Professor Chee Hing Tan c.h.tan@sheffield.ac.uk Why use semiconductor? Microprocessor Transistors are used in logic circuits that are compact, low power consumption and affordable.

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

arxiv: v1 [cond-mat.mtrl-sci] 16 Apr 2007

arxiv: v1 [cond-mat.mtrl-sci] 16 Apr 2007 Bound hole states in a ferromagnetic (Ga,Mn)As environment arxiv:0704.2028v1 [cond-mat.mtrl-sci] 16 Apr 2007 M.J. Schmidt, 1,2 K. Pappert, 1 C. Gould, 1 G. Schmidt, 1 R. Oppermann, 2 and L.W. Molenkamp

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

arxiv: v1 [cond-mat.mtrl-sci] 8 Mar 2012

arxiv: v1 [cond-mat.mtrl-sci] 8 Mar 2012 Origin of magnetic circular dichroism in GaMnAs: giant Zeeman splitting vs. spin dependent density of states arxiv:.85v [cond-mat.mtrl-sci] 8 Mar M. Berciu, R. Chakarvorty, Y. Y. Zhou, M. T. Alam, K. Traudt,

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations J Supercond Nov Magn (17) 3:85 89 DOI 1.17/s1948-16-375-3 ORIGINAL PAPER Novel Quaternary Dilute Magnetic Semiconductor : Magnetic and Magneto-Transport Investigations K. Levchenko 1 T. Andrearczyk 1 J.

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Introduction to Dilute Magnetic Semiconductors

Introduction to Dilute Magnetic Semiconductors Introduction to Dilute Magnetic Semiconductors Nan Zheng Course: Solid Sate II, Instructor: Ebio Dagotto, Semester: Spring 2008, Department of Physics and Astronomy, The University of Tennessee Knoxville

More information