Making semiconductors magnetic: new materials properties, devices, and future

Size: px
Start display at page:

Download "Making semiconductors magnetic: new materials properties, devices, and future"

Transcription

1 Making semiconductors magnetic: new materials properties, devices, and future JAIRO SINOVA Texas A&M University Institute of Physics ASCR Texas A&M L. Zarbo Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Hitachi Cambridge Jorg Wunderlich, A. Irvine, et al University of Utah November 9 th 2010 University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. NRI SWAN

2 OUTLINE Motivation Ferromagnetic semiconductor materials: (Ga,Mn)As - general picture Growth, physical limits on T c Related FS materials (searching for room temperature) Understanding critical behavior in transport Ferromagnetic semiconductors & spintronics Tunneling anisotropic magnetoresistive device Transistors (4 types)

3 ENGINEERING OF QUANTUM MATERIALS Technologically motivated and scientifically fueled Incorporate magnetic properties with semiconductor tunability (MRAM, etc) Generates new physics: Tunneling AMR Coulomb blockade AMR Nanostructure magnetic anisotropy engineering Understanding complex phenomena: Spherical cow of ferromagnetic systems (still very complicated) Engineered control of collective phenomena More knobs than usual in semiconductors: density, strain, chemistry/pressure, SO coupling engineering

4 Ferromagnetic semiconductor research : strategies 1. Create a material that marriages the tunability of semiconductors and the collective behavior of ferromagnets; once created search for room temperature systems 2. Study new effects in this new material and utilize in metal-based spintronics 3. Develop a three-terminal gated spintronic device to progress from sensors & memories to transistors & logic

5 (Ga,Mn)As GENERAL PICTURE

6 Ferromagnetic semiconductors Need true FSs not FM inclusions in SCs GaAs - standard III-V semiconductor + Group-II Mn - dilute magnetic moments & holes Mn Ga As Mn (Ga,Mn)As - ferromagnetic semiconductor

7 Ga As What happens when a Mn is placed in Ga sites: Mn hole spin-spin interaction Mn Mn-d As-p hybridization 5 d-electrons with L=0 S=5/2 local moment intermediate acceptor (110 mev) hole Hybridization like-spin level repulsion J pd S Mn s hole interaction In addition to the Kinetic-exchange coupling, for a single Mn ion, the coulomb interaction gives a trapped hole (polaron) which resides just above the valence band

8 Transition to a ferromagnet when Mn concentration increases GaAs:Mn extrinsic p-type semiconductor spin E F DOS << 1% Mn ~1% Mn >2% Mn Energy spin onset of ferromagnetism near MIT As-p-like holes localized on Mn acceptors valence band As-p-like holes Ga As Ga As Mn Ga As Mn Mn Mn Mn FM due to p-d hybridization (Zener local-itinerant kinetic-exchange)

9 (Ga,Mn)As GROWTH high-t growth Low-T MBE to avoid precipitation High enough T to maintain 2D growth need to optimize T & stoichiometry for each Mn-doping optimal-t growth Inevitable formation of interstitial Mndouble-donors compensating holes and moments need to anneal out but without loosing Mn Ga

10 Polyscrystalline 20% shorter bonds Interstitial Mn out-diffusion limited by surface-oxide GaMnAs-oxide O GaMnAs Mn I ++ x-ray photoemission Olejnik et al, 08 10x shorther annealing with etch Optimizing annealing-t another key factor Rushforth et al, 08

11 (Ga,Mn)As GENERAL THEORY

12 HOW DOES ONE GO ABOUT UNDERSTANDING SUCH SYSTEMS 1. One could solve the full many body S.E.: not possible AND not fun 2. Combining phenomenological models (low degrees of freedom) and approximations and comparison to other computational technieques while checking against experiments This is the art of condensed matter science, an intricate tango between theory and experiment whose conclusion can only be guessed at while the dance is in progress A.H.M et al., in Electronic Structure and Magnetism in Complex Materials (2002).

13 Theoretical Approaches to DMSs First Principles LSDA Jungwirth, Sinova, Masek, Kucera, MacDonald, Rev. of Mod. Phys. 78, 809 (2006) PROS: No initial assumptions, effective Heisenberg model can be extracted, good for determining chemical trends CONS: Size limitation, difficulty dealing with long range interactions, lack of quantitative predictability, neglects SO coupling (usually) Microscopic TB models PROS: Unbiased microscopic approach, correct capture of band structure and hybridization, treats disorder microscopically (combined with CPA), very good agreement with LDA+U calculations CONS: neglects (usually) coulomb interaction effects, difficult to capture non-tabulated chemical trends, hard to reach large system sizes k.p Local Moment PROS: simplicity of description, lots of computational ability, SO coupling can be incorporated, CONS: applicable only for metallic weakly hybridized systems (e.g. optimally doped GaMnAs), over simplicity (e.g. constant Jpd), no good for deep impurity levels (e.g. GaMnN)

14 Magnetism in systems with coupled dilute moments and delocalized band electrons coupling strength / Fermi energy band-electron density / local-moment density (Ga,Mn)As

15 Which theory is right? Impurity bandit vs Valence Joe Fast principles Jack KP Eastwood

16 How well do we understand (Ga,Mn)As? In the metallic optimally doped regime GaMnAs is well described by a disordered-valence band picture: both dc-data and ac-data are consistent with this scenario. The effective Hamiltonian (MF) and weak scattering theory (no free parameters) describe (III,Mn)V metallic DMSs very well in the optimally annealed regime: Ferromagnetic transition temperatures Magneto-crystalline anisotropy and coercively Domain structure Anisotropic magneto-resistance Anomalous Hall effect MO in the visible range Non-Drude peak in longitudinal ac-conductivity Ferromagnetic resonance Domain wall resistance TAMR Transport critical behaviour Infrared MO effects TB+CPA and LDA+U/SIC-LSDA calculations describe well chemical trends, impurity formation energies, lattice constant variations upon doping

17 EXAMPLE: MAGNETO-OPTICAL EFFECTS IN THE INFRARED

18 EXAMPLE: INFRARED ABSORPTIN not so red shifted after all PRL 2010

19 T c LIMITS AND STRATEGIES

20 Problems for GaMnAs (late 2002) Curie temperature limited to ~110K.! Only metallic for ~3% to 6% Mn! High degree of compensation! Mn Mn Unusual magnetization (temperature dep.)! Significant magnetization deficit! As 110K could be a fundamental limit on T C! Mn Ga But are these intrinsic properties of GaMnAs??!

21 Can a dilute moment ferromagnet have a high Curie temperature? EXAMPLE OF THE PHYSICS TANGO The questions that we need to answer are: 1. Is there an intrinsic limit in the theory models (from the physics of the phase diagram)? 2. Is there an extrinsic limit from the ability to create the material and its growth (prevents one to reach the optimal spot in the phase diagram)?

22 Intrinsic properties of (Ga,Mn)As COMBINATION OF THEORY APPROACHES PREDICTS:! T c linear in Mn Ga local moment concentration; falls rapidly with decreasing hole density in more than 50% compensated samples; nearly independent of hole density for compensation < 50%.! Jungwirth, Wang, et al. Phys. Rev. B 72, (2005)

23 Extrinsic effects: Interstitial Mn - a magnetism killer" Interstitial Mn is detrimental to magnetic order:! hcompensating double-donor reduces carrier density! hcouples antiferromagnetically to substitutional Mn even in! low compensation samples Blinowski PRB 03, Mašek, Máca PRB '03 Mn As Yu et al., PRB 02: ~10-20% of total Mn concentration is incorporated as interstitials! Increased T C on annealing corresponds to removal of these defects.!

24 Mn Ga and Mn I partial concentrations! As grown " Materials calculation" Jungwirth, Wang, et al.! Phys. Rev. B 72, (2005)! Microscopic defect formation energy calculations:! No signs of saturation in the dependence of Mn Ga concentration! on total Mn doping!

25 Experimental hole densities: measured by ordinary Hall effect Open symbols & half closed as grown. Closed symbols annealed! Low Compensation Obtain Mn sub assuming change in hole density due to Mn out diffusion Annealing can vary significantly increases hole densities. Jungwirth, Wang, et al.! Phys. Rev. B 72, (2005)!

26 Experimental partial concentrations of Mn Ga and Mn I in as grown samples Theoretical linear dependence of Mn sub on total Mn confirmed experimentally! Obtain Mn sub & Mn Int assuming change in hole density due to Mn out diffusion Jungwirth, Wang, et al.! Phys. Rev. B 72, (2005)! SIMS: measures total Mn concentration. " Interstitials only compensation assumed "

27 Can we have high Tc in Diluted Magnetic Semicondcutors? NO INTRINSIC LIMIT T c linear in Mn Ga local (uncompensated) moment concentration; falls rapidly with decreasing hole density in heavily compensated samples.! NO EXTRINSIC LIMIT There is no observable limit to the amount of substitutional Mn we can put in! Define Mn eff = Mn sub -Mn Int!

28 Tc as grown and annealed samples Linear increase of Tc with Mn eff = Mn sub -Mn Int Open symbols as grown. Closed symbols annealed 8% Mn Concentration of uncompensated Mn Ga moments has to reach ~10%. Only 6.2% in the current record Tc=173K sample Charge compensation not so important unless > 40% No indication from theory or experiment that the problem is other than technological - better control of growth-t, stoichiometry

29 Tc limit in (Ga,Mn)As remains open... Ohno s 98 T c =110 K is the fundamental upper limit.. Yu et al K!! 2008 Olejnik et al T c = K independent of x Mn >10% contradicting Zener kinetic exchange... Mack et al. 08 ` Combinatorial approach to growth with fixed growth and annealing T s

30 Getting to higher Tc: Strategy A - Effective concentration of uncompensated Mn Ga moments has to increase" beyond 6% of the current record T c =173K sample. A factor of 2 needed" 12% Mn would still be a DMS" - Low solubility of group-ii Mn in III-V-host GaAs makes growth difficult" Low-temperature MBE" Strategy A: stick to (Ga,Mn)As" - alternative growth modes (i.e. with proper " substrate/interface material) allowing for larger" and still uniform incorporation of Mn in zincblende GaAs! More Mn - problem with solubility

31 Getting to higher Tc: Strategy B Find DMS system as closely related to (Ga,Mn)As as possible with" larger hole-mn spin-spin interaction" lower tendency to self-compensation by interstitial Mn" larger Mn solubility" independent control of local-moment and carrier doping (p- & n-type) "

32 Other (III,Mn)V s DMSs Kudrnovsky et al. PRB 07 Weak hybrid. Delocalized holes long-range coupl. Mean-field but low T c MF InSb d 5 Strong hybrid. Impurity-band holes short-range coupl. Large T c MF but low stiffness GaP (Al,Ga,In)(As,P) good candidates, GaAs seems close to the optimal III-V host

33 Steps so far in strategy B:" larger hole-mn spin-spin interaction : DONE BUT DANGER IN PHASE DIAGRAM" lower tendency to self-compensation by interstitial Mn: DONE" larger Mn solubility?" independent control of local-moment and carrier doping (p- & n-type)? " Using DEEP mathematics to find a new material 3=1+2

34 III = I + II Ga = Li + Zn! GaAs and LiZnAs are twin SC! LDA+U says that Mn-doped are also twin DMSs! It can be n and p doped!!!! Ga s-orb.! L! As p-orb.! E F! As p-orb.! No solubility limit for group-ii Mn substituting for group-ii Zn!!!! Masek, et al. PRB (2006)!

35 UNDERSTANDING CRITICAL BEHAVIOUR IN TRANSPORT

36 Towards spintronics in (Ga,Mn)As: FM & transport Dense-moment MS λ F << d - Dilute-moment MS λ F ~ d - Eu - chalcogenides Critical contribution to resistivity at T c ~ magnetic susceptibility Broad peak near T c disappeares with annealing (higher uniformity)???

37 When density of carriers is smaller than density of local moments what matters is the long range behavior of (which goes as susceptibility) When density of carriers is similar to density of local moments what matters is the short range behavior of (which goes as the energy) T c EuCdSe Ni T c

38 dρ/dt singularity at T c consistent with k F ~d - Annealing sequence Optimized materials with x=4-12.5% and Tc=80-185K Remarkably universal both below and above Tc V. Novak, et al Singularity in temperature derivative of resistivity in (Ga,Mn)As at the Curie point, Phys. Rev. Lett. 101, (2008).

39 OUTLINE Motivation Ferromagnetic semiconductor materials: (Ga,Mn)As - general picture Growth, physical limits on T c Related FS materials (searching for room temperature) Understanding critical behavior in transport Ferromagnetic semiconductors & spintronics Tunneling anisotropic magnetoresistive device Transistors (4 types)

40 Exchange split & SO-coupled bands: Au Exchange split bands: discovered in (Ga,Mn)As Gold et al. PRLʼ04!

41 TAMR in metal structures ab intio theory Shick, et al, PRB '06, Park, et al, PRL '08 experiment Park, et al, PRL '08 Also studied by Parkin et al., Weiss et al., etc.

42 DMS DEVICES

43 Gating of highly doped (Ga,Mn)As: p-n junction FET (Ga,Mn)As/AlOx FET with large gate voltages, Chiba et al. 06 p-n junction depletion estimates ~25% depletion feasible at low voltages Olejnik et al., 08

44 Increasing ρ and decreasing AMR and T c with depletion Tc Tc AMR

45 Persistent variations of magnetic properties with ferroelectric gates Stolichnov et al., Nat. Mat. 08

46 Electro-mechanical gating with piezo-stressors Strain & SO Rushforth et al., 08 Electrically controlled magnetic anisotropies via strain

47 (Ga,Mn)As spintronic single-electron transistor Wunderlich et al. PRL 06 Single-electron transistor Huge, gatable, and hysteretic MR Two "gates": electric and magnetic

48 Single-electron charging energy controlled by V g and M Source Q V D Drain Q 0 Q0 Gate V G e 2 /2C Σ [110] [100] [010] Φ M control of Coulomb blockade oscillations [110] [010] SO-coupling µ(m) Theory confirms chemical potential anisotropies in (Ga,Mn)As & predicts CBAMR in SO-coupled room-t c metal FMs

49 Nonvolatile programmable logic Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 1 V DD OFF ON V A OFF ON V B V A OFF ON OFF ON V B OFF ON 1 01 Vout OR ON OFF A B Vout

50 Nonvolatile programmable logic Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 1 V DD OFF ON 0 1 V A V B Vout ON OFF V B V A OR A B Vout

51 Device design Physics of SO & exchange Materials SET Chemical potential CBAMR FSs and metal FS with strong SO Tunneling device Tunneling DOS TAMR FSs metal FMs Resistor Group velocity & lifetime AMR

52 Conclusion No intrinsic or extrinsic limit to Tc so far: it is a materials growth issue In the metallic optimally doped regime GaMnAs is well described by a disordered-valence band picture: both dc-data and ac-data are consistent with this scenario. The effective Hamiltonian (MF) and weak scattering theory (no free parameters) describe (III,Mn)V metallic DMSs very well in the optimally annealed regime: Ferromagnetic transition temperatures Magneto-crystalline anisotropy and coercively Domain structure Anisotropic magneto-resistance Anomalous Hall effect MO in the visible range Non-Drude peak in longitudinal ac-conductivity Ferromagnetic resonance Domain wall resistance TAMR Transport critical behaviour Infrared MO effects BUT it is only a peace of the theoretical mosaic with many remaining challenges!! TB+CPA and LDA+U/SIC-LSDA calculations describe well chemical trends, impurity formation energies, lattice constant variations upon doping

53 Tomas Jungwirth Inst. of Phys. ASCR U. of Nottingham Hideo Ohno Tohoku Univ. Allan MacDonald U of Texas Laurens Molenkamp Wuerzburg Tomesz Dietl Institute of Physics, Polish Academy of Sciences Joerg Wunderlich Cambridge-Hitachi Ewelina Hankiewicz Fordham Univesrsity Bryan Gallagher U. Of Nottingham Other collaborators: John Cerne, Jan Masek, Karel Vyborny, Bernd Kästner, Carten Timm, Charles Gould, Tom Fox, Richard Campion, Laurence Eaves, Eric Yang, Andy Rushforth, Viet Novak

54

55 k.p Local Moment - Hamiltonian Model Anderson Hamiltonian: (s - orbitals: conduction band; p - orbitals: valence band) ELECTRONS + (Mn d - orbitals: strong on-site Hubbard int. local moment) Mn + (s,p - d hybridization) ELECTRONS-Mn Semi-phenomenological Kohn-Luttinger model for heavy, light, and spin-orbit split-off band holes Local exchange coupling: Mn: S=5/2; valence-band hole: s=1/2; J pd > 0 Large S: treat classically

56 T c LIMITS AND STRATEGIES

57 Can we have high Tc in Diluted Magnetic Semicondcutors? NO IDENTIFICATION OF AN INTRINSIC LIMIT T c linear in Mn Ga local (uncompensated) moment concentration; falls rapidly with decreasing hole density in heavily compensated samples.! NO EXTRINSIC LIMIT (lines theory, Masek et al 05) Relative Mn concentrations obtained through hole density measurements and saturation moment densities measurements. Qualitative consistent picture within LDA, TB, and k.p Define Mn eff = Mn sub -Mn Int!

58 Tc as grown and annealed samples Linear increase of Tc with Mn eff = Mn sub -Mn Int Open symbols as grown. Closed symbols annealed 8% Mn Concentration of uncompensated Mn Ga moments has to reach ~10%. Only 6.2% in the current record Tc=173K sample Charge compensation not so important unless > 40% No indication from theory or experiment that the problem is other than technological - better control of growth-t, stoichiometry

59 III = I + II Ga = Li + Zn GaAs and LiZnAs are twin SC! LDA+U says that Mn-doped are also twin DMSs! n and p type doping through Li/ Zn stoichiometry! No solubility limit for group-ii Mn substituting for group-ii Zn!!!! Masek, et al. PRB (2006)!

60 Tc limit in (Ga,Mn)As remains open Indiana & California ( 03):.. Ohno s 98 T c =110 K is the fundamental upper limit.. Yu et al. 03 California ( 08): T c = K independent of x Mn >10% contradicting Zener kinetic exchange... Mack et al. 08 Nottingham & Prague ( 08): T c up to 185K so far? Combinatorial approach to growth with fixed growth and annealing T s

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band

More information

arxiv: v1 [cond-mat.mes-hall] 14 Aug 2012

arxiv: v1 [cond-mat.mes-hall] 14 Aug 2012 arxiv:1208.2811v1 [cond-mat.mes-hall] 14 Aug 2012 The Nature of the magnetism-promoting hole state in the prototype magnetic semiconductor GaAs: Mn V. Fleurov, K. Kikoin Raymond and Beverly Sackler Faculty

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 6 Aug 2007

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 6 Aug 2007 Anisotropic magnetoresistance components in (Ga,Mn)As arxiv:cond-mat/7357v [cond-mat.mes-hall] 6 Aug 7 A. W. Rushforth, 1 K. Výborný, C. S. King, 1 K. W. Edmonds, 1 R. P. Campion, 1 C. T. Foxon, 1 J. Wunderlich,

More information

Making Semiconductors Ferromagnetic: Opportunities and Challenges

Making Semiconductors Ferromagnetic: Opportunities and Challenges Making Semiconductors Ferromagnetic: Opportunities and Challenges J.K. Furdyna University of Notre Dame Collaborators: X. Liu and M. Dobrowolska, University of Notre Dame T. Wojtowicz, Institute of Physics,

More information

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs Universal valence-band picture of the ferromagnetic semiconductor GaMnAs Shinobu Ohya *, Kenta Takata, and Masaaki Tanaka Department of Electrical Engineering and Information Systems, The University of

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Expecting the unexpected in the spin Hall effect: from fundamental to practical Expecting the unexpected in the spin Hall effect: from fundamental to practical JAIRO SINOVA Texas A&M University Institute of Physics ASCR Institute of Physics ASCR Tomas Jungwirth, Vít Novák, et al Hitachi

More information

Manipulation of the magnetic configuration of (Ga,Mn)As

Manipulation of the magnetic configuration of (Ga,Mn)As Manipulation of the magnetic configuration of (Ga,Mn)As nanostructures J.A. Haigh, M. Wang, A.W. Rushforth, E. Ahmad, K.W. Edmonds, R.P. Campion, C.T. Foxon, and B.L. Gallagher School of Physics and Astronomy,

More information

Spintronics at Nanoscale

Spintronics at Nanoscale Colloquium@NTHU Sep 22, 2004 Spintronics at Nanoscale Hsiu-Hau Lin Nat l Tsing-Hua Univ & Nat l Center for Theoretical Sciences What I have been doing Spintronics: Green s function theory for diluted magnetic

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS) Diluted Magnetic Semiconductor (DMS) 1 Properties of electron Useful! Charge Electron Spin? Mass 2 Schematic of a Spinning & Revolving Particle Spinning Revolution 3 Introduction Electronics Industry Uses

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Mn Interstitial Diffusion in GaMnAs

Mn Interstitial Diffusion in GaMnAs Mn Interstitial Diffusion in GaMnAs K.W. Edmonds 1, P. Bogusławski,3, B.L. Gallagher 1, R.P. Campion 1, K.Y. Wang 1, N.R.S. Farley 1, C.T. Foxon 1, M. Sawicki, T. Dietl, M. Buongiorno Nardelli 3, J. Bernholc

More information

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping High Temperature Ferromagnetism in GaAs-based Heterostructures with Mn Delta Doping A. M. Nazmul, 1,2 T. Amemiya, 1 Y. Shuto, 1 S. Sugahara, 1 and M. Tanaka 1,2 1. Department of Electronic Engineering,

More information

The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Supplementary Information

The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Supplementary Information The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As P. Němec, V. Novák, N. Tesařová, E. Rozkotová, H. Reichlová,, D. Butkovičová, F. Trojánek,.

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors TOPICAL REVIEW arxiv:cond-mat/0311029v2 [cond-mat.mtrl-sci] 4 Dec 2003 Disorder effects in diluted magnetic semiconductors 1. Introduction Carsten Timm Institut für Theoretische Physik, Freie Universität

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES Romanian Reports in Physics, Vol. 62, No. 1, P. 115 120, 2010 SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES M. NEGOITA, E. A. PATROI, C. V. ONICA National Institute for Research and Development

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Self-compensating incorporation of Mn in Ga 1 x Mn x As Self-compensating incorporation of Mn in Ga 1 x Mn x As arxiv:cond-mat/0201131v1 [cond-mat.mtrl-sci] 9 Jan 2002 J. Mašek and F. Máca Institute of Physics, Academy of Sciences of the CR CZ-182 21 Praha

More information

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime JAIRO SINOVA Texas A&M University Institute of Physics ASCR Texas A&M University Xiong-Jun Liu, Xin Liu (Nankai)

More information

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and

More information

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems J. Wunderlich, 1 B. Kästner, 1,2 J. Sinova, 3 T. Jungwirth 4,5 1 Hitachi Cambridge Laboratory, Cambridge

More information

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As Yuanyuan Li 1, Y. F. Cao 1, G. N. Wei 1, Yanyong Li 1, Y. i and K. Y. Wang 1,* 1 SKLSM, Institute of Semiconductors,

More information

PHYSICAL REVIEW B 75,

PHYSICAL REVIEW B 75, Magnetotransport properties of strained Ga 0.95 Mn 0.05 As epilayers close to the metal-insulator transition: Description using Aronov-Altshuler three-dimensional scaling theory J. Honolka, 1,2, * S. Masmanidis,

More information

Exchange interactions

Exchange interactions Exchange interactions Tomasz Dietl Institute of Physics, Polish Academy of Sciences, PL-02-668Warszawa, Poland Institute of Theoretical Physics, University of Warsaw, PL-00-681Warszawa, Poland 1. POTENTIAL

More information

Antiferromagnetic Spintronics

Antiferromagnetic Spintronics Lecture II Antiferromagnetic Spintronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) Interesting but useless! Nobel Lectures

More information

Mott Relation for Anomalous Hall and Nernst effects in

Mott Relation for Anomalous Hall and Nernst effects in Mott Relation for Anomalous Hall and Nernst effects in Ga -x Mn x As Ferromagnetic Semiconductors Yong Pu, Daichi Chiba 2, Fumihiro Matsukura 2, Hideo Ohno 2 and Jing Shi Department of Physics and Astronomy,

More information

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl Analele Universităţii de Vest din Timişoara Vol. LIII, 2009 Seria Fizică EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS Tomasz Dietl Institute of Physics, Polish Academy

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures

External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures External control of the direction of magnetization in ferromagnetic InMnAs/GaSb heterostructures X. Liu, a, W. L. Lim, a L. V. Titova, a T. Wojtowicz, a,b M. Kutrowski, a,b K. J. Yee, a M. Dobrowolska,

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism

Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism P.R. Stone 1,2*, K. Alberi 1,2, S.K.Z. Tardif 2, J.W. Beeman 2, K.M. Yu 2, W. Walukiewicz 2

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

2005 EDP Sciences. Reprinted with permission.

2005 EDP Sciences. Reprinted with permission. H. Holmberg, N. Lebedeva, S. Novikov, J. Ikonen, P. Kuivalainen, M. Malfait, and V. V. Moshchalkov, Large magnetoresistance in a ferromagnetic GaMnAs/GaAs Zener diode, Europhysics Letters 71 (5), 811 816

More information

Diluted Magnetic Semiconductors - An Introduction -

Diluted Magnetic Semiconductors - An Introduction - International Conference and School on Spintronics and Quantum Information Technology (Spintech VI) School Lecture 2 Diluted Magnetic Semiconductors Matsue, Japan, August 1, 2011 Diluted Magnetic Semiconductors

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin Introduction to Spintronics and Spin Caloritronics Tamara Nunner Freie Universität Berlin Outline Format of seminar How to give a presentation How to search for scientific literature Introduction to spintronics

More information

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology Magnetic Oxides Gerald F. Dionne Department of Materials Science and Engineering Massachusetts Institute of Technology Spins in Solids Summer School University of Virginia Charlottesville, VA 21 June 2006

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As

Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As Experimental probing of the interplay between ferromagnetism and localisation in (Ga,Mn)As Maciej Sawicki 1,2 *, Daichi Chiba 3,1, Anna Korbecka 4, Yu Nishitani 1, Jacek A. Majewski 4, Fumihiro Matsukura

More information

Fundamental concepts of spintronics

Fundamental concepts of spintronics Fundamental concepts of spintronics Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 24. 8. 2008 SFB 689 :outline: what is spintronics? spin injection spin-orbit

More information

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated Supplementary Information Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated metal B. G. Ueland, C. F. Miclea, Yasuyuki Kato, O. Ayala Valenzuela, R. D. McDonald, R.

More information

Lecture 18: Semiconductors - continued (Kittel Ch. 8)

Lecture 18: Semiconductors - continued (Kittel Ch. 8) Lecture 18: Semiconductors - continued (Kittel Ch. 8) + a - Donors and acceptors J U,e e J q,e Transport of charge and energy h E J q,e J U,h Physics 460 F 2006 Lect 18 1 Outline More on concentrations

More information

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011

arxiv: v1 [cond-mat.dis-nn] 31 Aug 2011 Suppression of the virtual Anderson transition in a narrow impurity band of doped quantum well structures. N.V. Agrinskaya, V.I. Kozub, and D.S. Poloskin Ioffe Physical-Technical Institute of the Russian

More information

Magnetic and transport properties of (III,Mn)V ferromagnetic semiconductors

Magnetic and transport properties of (III,Mn)V ferromagnetic semiconductors Magnetic and transport properties of (III,Mn)V ferromagnetic semiconductors T. Jungwirth,, Jairo Sinova,3,, 3, and A. H. MacDonald Institute of Physics ASCR, Cukrovarnická, 6 53 Praha 6, Czech Republic

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As

Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As Karel Výborný, Jan Kučera, Jairo Sinova,, A. W. Rushforth, 3 B. L. Gallagher, 3 and T. Jungwirth,3 Institute of Physics,

More information

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 1 Pressure dependence of Curie temperature and resistivity of complex Heusler alloys Václav Drchal Institute

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions

The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions Nikolay Bagraev a, Leonid Klyachkin a, Roman Kuzmin a, Anna Malyarenko a and Vladimir Mashkov b a Ioffe

More information

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Magnetic semiconductors. (Dilute) Magnetic semiconductors Magnetic semiconductors We saw last time that: We d like to do spintronics in semiconductors, because semiconductors have many nice properties (gateability, controllable spin-orbit effects, long spin lifetimes).

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga 1Àx Mn x As

Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga 1Àx Mn x As PHYSICAL REVIEW B 68, 165204 2003 Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga 1Àx Mn x As E. J. Singley* and K. S. Burch Department of Physics, University of California,

More information

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Transient grating measurements of spin diffusion Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab LBNL, UC Berkeley and UCSB collaboration Chris Weber, Nuh Gedik, Joel Moore, JO UC Berkeley

More information

Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As

Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As Magnetic properties of Ferromagnetic Semiconductor (Ga,Mn)As M. Sawicki Institute of Physics, Polish Academy of Sciences, Warsaw, Poland. In collaboration with: T. Dietl, et al., Warsaw B. Gallagher, et

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors Khashayar Khazen Condensed Matter National Lab-IPM IPM School of Physics School of Nano Condensed Matter National Lab Technology:

More information

MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD

MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD MAGNETIC PROPERTIES of GaMnAs SINGLE LAYERS and GaInMnAs SUPERLATTICES INVESTIGATED AT LOW TEMPERATURE AND HIGH MAGNETIC FIELD C. Hernandez 1, F. Terki 1, S. Charar 1, J. Sadowski 2,3,4, D. Maude 5, V.

More information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 12 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 20/February/2018 (P/T 005) Quick Review over the Last Lecture Origin of magnetism : ( Circular current ) is equivalent to a

More information

Ferromagnetism and transport in diluted magnetic semiconductors

Ferromagnetism and transport in diluted magnetic semiconductors Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Ferromagnetism and transport in diluted magnetic semiconductors Abdolmadjid Nili Louisiana State University

More information

Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers

Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers Highly enhanced Curie temperatures in low temperature annealed (Ga,Mn)As epilayers K. C. Ku,* S. J. Potashnik,* R. F. Wang,* M. J. Seong, E. Johnston-Halperin,# R. C. Meyers, # S. H. Chun,* A. Mascarenhas,

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002 Electronic structures of doped anatase TiO : Ti x M x O (M=Co, Mn, Fe, Ni) Min Sik Park, S. K. Kwon, and B. I. Min Department of Physics and electron Spin Science Center, Pohang University of Science and

More information

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 5 Proc. XXXVII International School of Semiconducting Compounds, Jaszowiec 2008 Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations K. Levchenko 1, T. Andrearczyk 1, J. Z. Domagala 1, J. Sadowski 1,2, L. Kowalczyk 1, M. Szot

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF PHYSICS QUESTION BANK II SEMESTER PH8252 - PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT) Regulation 2017 Academic Year

More information

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3)

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3) ESSENCE - International Journal for Environmental Rehabilitation and Conservation Panwar & Kumar/VIII [2] 2017/103 107 Volume VIII [2] 2017 [103 107] [ISSN 0975-6272] [www.essence-journal.com] Assessment

More information

Impact of disorder and topology in two dimensional systems at low carrier densities

Impact of disorder and topology in two dimensional systems at low carrier densities Impact of disorder and topology in two dimensional systems at low carrier densities A Thesis Submitted For the Degree of Doctor of Philosophy in the Faculty of Science by Mohammed Ali Aamir Department

More information

Ph.D. THESIS. High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors. Miklós CSONTOS

Ph.D. THESIS. High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors. Miklós CSONTOS Ph.D. THESIS High pressure magnetotransport study of (III,Mn)V dilute magnetic semiconductors Miklós CSONTOS Supervisor: Prof. György MIHÁLY Budapest University of Technology and Economics Institute of

More information

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Jake Koralek, Chris Weber, Joe Orenstein

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

3. Two-dimensional systems

3. Two-dimensional systems 3. Two-dimensional systems Image from IBM-Almaden 1 Introduction Type I: natural layered structures, e.g., graphite (with C nanostructures) Type II: artificial structures, heterojunctions Great technological

More information

Non-collinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 21 May 2007.

Non-collinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 21 May 2007. Non-collinear Spin Valve Effect in Ferromagnetic Semiconductor Trilayers arxiv:cond-mat/0607580v2 [cond-mat.mtrl-sci] 21 May 2007 G. Xiang, B. L. Sheu, M. Zhu, P. Schiffer, and N. Samarth Physics Department

More information

A Study of the Group-IV Diluted Magnetic Semiconductor GeMn. Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008

A Study of the Group-IV Diluted Magnetic Semiconductor GeMn. Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008 A Study of the Group-IV Diluted Magnetic Semiconductor GeMn Melissa Commisso Dolph Stu Wolf Group December 4 th, 2008 Outline Motivation and Background Our DMS : GeMn Hall Bars Summary / Future Work Motivation

More information

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract A spin Esaki diode Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University,

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

Room Temperature Planar Hall Transistor

Room Temperature Planar Hall Transistor Room Temperature Planar Hall Transistor Bao Zhang 1, Kangkang Meng 1, Mei-Yin Yang 1, K. W. Edmonds 2, Hao Zhang 1, Kai-Ming Cai 1, Yu Sheng 1,3, Nan Zhang 1, Yang Ji 1, Jian-Hua Zhao 1, Kai-You Wang 1*

More information

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE SEM and EDAX images of an integrated circuit SEM EDAX: Si EDAX: Al source: [Cal 99 / 605] M&D-.PPT, slide: 1, 12.02.02 Classification semiconductors electronic semiconductors mixed conductors ionic conductors

More information