Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Size: px
Start display at page:

Download "Pressure dependence of Curie temperature and resistivity of complex Heusler alloys"

Transcription

1 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 1 Pressure dependence of Curie temperature and resistivity of complex Heusler alloys Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration with Shyamal Bose, Josef Kudrnovský and Ilja Turek Czech Science Foundation Project P202/09/0775

2 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 2 STRUCTURE Heusler alloys (Ni x Cu 1 x ) 2 MnSn and (Ni x Pd 1 x ) 2 MnSn L2 1 structure fcc lattice A 1 = a ( 0, 1 2, ) 1 2 A 2 = a ( 1 2, 0, ) 1 2 A 3 = a ( 1 2, 1 2, 0) basis τ 1 = a(0, 0, 0)... (Cu, Ni) or (Pd,Ni) τ 2 = a ( 1 4, 1 4, 4) 1... Mn τ 3 = a ( 1 2, 1 2, 2) 1... (Cu, Ni) or (Pd,Ni) τ 4 = a ( 3 4, 3 4, 4) 3... Sn

3 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 3 MOTIVATION Heusler alloys have interesting physical properties and promising technological applications magnetic shape memory magnetocaloric effects spintronics effects of high pressure: increased electron kinetic energy increased overlap of orbitals and band broadening modification of Coulomb interactions changes of Fermi surface changes of magnetic moments and exchange interactions changes of transport properties high pressure brings new information on the system new degree of freedom independent probe into physical properties serves as a test of theory

4 OUTLINE ELECTRONIC STRUCTURE EXCHANGE INTERACTIONS CURIE TEMPERATURES TRANSPORT PROPERTIES DISCUSSION CONLUSIONS ab initio study of Curie temperature under pressure for nonrandom Ni 2 MnSn: Sasioglu et al. Phys. Rev. B (2005) properties at ambient pressure: Bose et al. Phys. Rev. B (2010), J. Kudrnovský at DPG Dresden 2011 properties at high pressure: Bose et al. Phys. Rev. B (2011) and present contribution DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 4

5 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 5 TB-LMTO-CPA ELECTRONIC STRUCTURE xc: Vosko-Wilk-Nusair, experimental lattice constants pressure is simulated by the reduction of lattice constant 3 % reduction corresponds approx. to 16 GPa in Ni 2 MnSn

6 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 6 classical Heisenberg Hamiltonian EXCHANGE INTERACTIONS 1 H Heis = X ij J ij e i e j e i = M i M i... unit vectors exchange interactions... J ij J ij > 0 ferromagnetic coupling J ij < 0 antiferromagnetic coupling magnetic force theorem: Liechtenstein formula: Liechtenstein et al. JMMM (1987), Turek et al. Phil. Mag (2006) J ij = 1 Z 4π Im C tr L h i (z) ḡ ij (z) j(z) ḡ ji (z) i dz i (z) = P i (z) P i (z), ḡσ ij (z)... intersite block of the Green function

7 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 7 EXCHANGE INTERACTIONS 2 exchange interactions between Mn atoms are calculated in the DLM state, then induced moments vanish 0.2 Ni 2 MnSn ambient (a) effects of high pressure: diminished moments increased overlaps and thus exchange interactions are stronger J Mn,Mn (D) (mry) pressure (-3%) bare interactions J bare ij = J ij /(M i M j ) H Heis = X ij J bare ij M i M j J Mn,Mn (D)/(M) 2 (mry/(µ B ) 2 ) (b) ambient M(ambient)= µ B pressure (-3%) M(pressure)= µ B Relative distance D=(d/a)

8 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 8 GROUND STATE the ground state of systems with one sublattice is given by a single q-vector wave which corresponds to the maximum of the Fourier transform of exchange interactions: J(q) = X j e iq R j J 0,j DLM-Ni 2 MnSn red line: ambient pressure green line: high pressure ( 3% a) the ground state character is not changed maximum at Γ-point: ferromagnet J Mn,Mn (q) (mry) L Γ X W K Γ

9 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 9 CURIE TEMPERATURE 1 k B T MFA C = 2 3 X J 0i, i 1 k B T RPA C = N X q 1 J(0) J(q) 500 (Ni 1-x Pd x ) 2 MnSn U Ni = 2.0 ev 600 (Ni 1-x Cu x ) 2 MnSn U Ni = 2 ev T c (K) ambient pressure 3% reduction of a T c (K) Lattice constant reduction: 0% (ambient pressure) 0.75% 1.5% 2.25% 3% Pd concentration (x) Cu concentration (x) Curie temperature increases with pressure in (Ni x Pd 1 x ) 2 MnSn for all x and in (Ni x Cu 1 x ) 2 MnSn for x < 0.7 while it decreases in (Ni x Cu 1 x ) 2 MnSn for x > 0.7

10 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 10 comparison with experiment: CURIE TEMPERATURE 2 data available for Ni 2 MnSn and Pd 2 MnSn shows increase of T C with pressure Austin, Mishra Phil. Mag (1967), Gavriliuk et al. J. Appl. Phys (1999) exchange mechanisms: direct exchange: not important as d(mn-mn) > 4 Å Anderson s superexchange (AFM): becomes stronger for smaller interatomic distances, tendency to lower T C, might be important, but it does not explain behavior of Heusler alloys Stearns indirect exchange between localized and itinerant d electrons: analogy to RKKY, oscillatory (FM or AFM), necessary for explanation delicate balance of superexchange and Stearns indirect exchange: only ab initio calculations can make quantitative prediction

11 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 11 TRANSPORT PROPERTIES mechanisms responsible for resistivity in magnetic metals: scattering on static atomic disorder (impurities etc.): residual resistivity ρ 0 scattering on lattice vibrations ρ vib scattering on magnetic disorder ρ mag for simplicity assume that these mechanisms are independent: ρ = ρ 0 + ρ vib + ρ mag individual contributions can be extracted from measured temperature dependence: residual resistivity ρ 0 = const. scattering on lattice vibrations ρ vib (T) T above Debye temperature (small) scattering on magnetic disorder ρ mag (T) T 2 for T < T C and ρ mag (T) const. for T > T C (large) Kubo-Greenwood: σ(e) Tr[δ(E H)Jδ(E H)J], J = i[r, H] where J is current operator and R are discrete coordinates of atomic sites Turek et al. Phys. Rev (2002) spin disorder resistivity: via disordered local moment (DLM) approach

12 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 12 SPIN DISORDER RESISTIVITY 1 at ambient pressure: ρ(t) = ρ 0 + ρ vib (T) + ρ mag (T) ρ vib (T) = at ρ mag (T) = 8 < : ct 2 ρ 0, a from experiment c from ab initio : T < T C ρ mag (T C ) : T > T C ρ( µω.cm) Ni 2 MnSn (exp.) Ni 2 MnSn (theory) Pd 2 MnSn (exp.) Pd 2 MnSn (theory) c = ρ mag(t 2 C ) T 2 C T (K)

13 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 13 SPIN DISORDER RESISTIVITY 2 disorder at E F is weak 50 (a) Ni 2 MnSn U Ni =2.0 ev two effects of pressure: ρ( µω cm) (b) (Ni 50,Pd 50 ) 2 MnSn (c) Pd 2 MnSn ambient pressure 3% reduction of a ambient pressure 3% reduction of a ambient pressure 3% reduction of a T (K) band broadening and delocalization of states leads to a smaller ρ increase of T C causes increased ρ(t) for T C (0) < T < T C (P) mostly theoretical predictions, experiment so far missing experimental data are available only for a related compound Pd 2 MnSb: increase of resistivity above T C (Austin, Mishra 1967)

14 DPG Frühjahrstagung Berlin, März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 14 CONCLUSIONS T C in (Ni x Pd 1 x ) 2 MnSn increases with pressure there are two regimes in (Ni x Cu 1 x ) 2 MnSn: T C increases with pressure for x < 0.7 T C decreases with pressure for x > 0.7 explanation in terms of Anderson superexchange and Stearns indirect d d exchange pressure dependence of spin-disorder resistivity ρ(t) ρ(t) decreases for T < T C (0) ρ(t) increases for T > T C (0)

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

First-Principles Calculation of Exchange Interactions

First-Principles Calculation of Exchange Interactions Chapter 2 First-Principles Calculation of Exchange Interactions Before introducing the first-principles methods for the calculation of exchange interactions in magnetic systems we will briefly review two

More information

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES llja TUREK Institute of Physics of Materials, Brno Academy of Sciences of the Czech Republic Vaclav DRCHAL, Josef KUDRNOVSKY Institute

More information

Ab Initio Calculation of Exchange Interactions, Adiabatic Spin-Waves, and Curie Temperature of Itinerant Ferromagnets

Ab Initio Calculation of Exchange Interactions, Adiabatic Spin-Waves, and Curie Temperature of Itinerant Ferromagnets Ab Initio Calculation of Exchange Interactions, Adiabatic Spin-Waves, and Curie Temperature of Itinerant Ferromagnets Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany People involved:

More information

Fluctuating exchange theory of dynamical electron correlations and magnetism

Fluctuating exchange theory of dynamical electron correlations and magnetism Fluctuating exchange theory of dynamical electron correlations and magnetism Václav Drchal Institute of Physics ASCR, Praha, Czech Republic Grant Agency of ASCR: project IAA11616 Workshop Frontiers in

More information

WORLD JOURNAL OF ENGINEERING

WORLD JOURNAL OF ENGINEERING Magnetism and half-metallicity of some Cr-based alloys and their potential for application in spintronic devices by Yong Liu, S. K. Bose and J. Kudrnovsk y reprinted from WORLD JOURNAL OF ENGINEERING VOLUME

More information

Exchange interactions, spin waves, and transition temperatures in itinerant magnets

Exchange interactions, spin waves, and transition temperatures in itinerant magnets 9 SCIENTIFIC HIGHLIGHT OF THE MONTH Exchange interactions, spin waves, and transition temperatures in itinerant magnets I. Turek, 1,2,5 J. Kudrnovský, 3 V. Drchal, 3 and P. Bruno 4 1 Institute of Physics

More information

Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green s function methods

Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green s function methods Curie temperatures of fcc and bcc nickel and permalloy: Supercell and Green s function methods P. Yu and X. F. Jin*, Surface Physics Laboratory, Fudan University, Shanghai 200433, China J. Kudrnovský Institute

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Antiferromagnetism in Ru2MnZ (Z=Sn, Sb, Ge, Si) full Heusler alloys: effects of magnetic frustration and chemical disorder

Antiferromagnetism in Ru2MnZ (Z=Sn, Sb, Ge, Si) full Heusler alloys: effects of magnetic frustration and chemical disorder Antiferromagnetism in Ru2MnZ (Z=Sn, Sb, Ge, Si) full Heusler alloys: effects of magnetic frustration and chemical disorder Sergii Khmelevskyi 1, Eszter Simon 1 and László Szunyogh 1,2 1 Department of Theoretical

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 4: MAGNETIC INTERACTIONS - Dipole vs exchange magnetic interactions. - Direct and indirect exchange interactions. - Anisotropic exchange interactions. - Interplay

More information

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology Magnetic Oxides Gerald F. Dionne Department of Materials Science and Engineering Massachusetts Institute of Technology Spins in Solids Summer School University of Virginia Charlottesville, VA 21 June 2006

More information

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling

Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band and Electron Mediated Exchange Coupling Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Interstitial Mn in (Ga,Mn)As: Hybridization with Conduction Band

More information

Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: General considerations and applications to NiMnSb and MnAs

Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: General considerations and applications to NiMnSb and MnAs Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: General considerations and applications to and MnAs L. M. Sandratskii* Max-Planck Institut für Mikrostrukturphysik,

More information

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Self-compensating incorporation of Mn in Ga 1 x Mn x As Self-compensating incorporation of Mn in Ga 1 x Mn x As arxiv:cond-mat/0201131v1 [cond-mat.mtrl-sci] 9 Jan 2002 J. Mašek and F. Máca Institute of Physics, Academy of Sciences of the CR CZ-182 21 Praha

More information

arxiv: v1 [cond-mat.mtrl-sci] 15 Jan 2008

arxiv: v1 [cond-mat.mtrl-sci] 15 Jan 2008 New High-T c Half-Heusler Ferromagnets NiMnZ (Z = Si, P, Ge, As) Van An DINH and Kazunori Sato and Hiroshi Katayama-Yoshida The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka

More information

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland

N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, Warszawa, Poland Ab initio studies of Co 2 FeAl 1-x Si x Heusler alloys N. Gonzalez Szwacki and Jacek A. Majewski Faculty of Physics, University of Warsaw, ul. Hoża 69, 00-681 Warszawa, Poland Abstract We present results

More information

Theory of carbon-based magnetism

Theory of carbon-based magnetism Theory of carbon-based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 22 Mar 2001

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 22 Mar 2001 Ab-initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni arxiv:cond-mat/0007441v2 [cond-mat.mes-hall] 22 Mar 2001 M. Pajda a, J. Kudrnovský

More information

Introduction to Heisenberg model. Javier Junquera

Introduction to Heisenberg model. Javier Junquera Introduction to Heisenberg model Javier Junquera Most important reference followed in this lecture Magnetism in Condensed Matter Physics Stephen Blundell Oxford Master Series in Condensed Matter Physics

More information

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4.

One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4. One-dimensional magnetism of one-dimensional metallic chains in bulk MnB 4. S. Khmelevskyi 1*, J. Redinger 1, A.B. Shick 2, and P. Mohn 1. 1 Institute of Applied Physics, CMS, Vienna University of Technology,

More information

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln Charge ordering as alternative to Jahn-Teller distortion In collaboration with Michelle Johannes 1, Daniel Khomskii 2 (theory) and Mohsen Abd-Elmeguid et al 2, Radu Coldea et al 3 (experiment) 1 Naval

More information

Computational materials design and its application to spintronics

Computational materials design and its application to spintronics Papan-Germany Joint Workshop 2009 Kyoto, 21-23 Jan. 2009 Computational materials design and its application to spintronics H. Akai, M. Ogura, and N.H. Long Department of Physics, Osaka University What

More information

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Réunion du GDR MICO Dinard 6-9 décembre 2010 1 Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram Claudine Lacroix, institut Néel, CNRS-UJF, Grenoble 1- The

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor T (K) 1 5 Fe.8 Co.2 Si ρ xy (µω cm) J.F. DiTusa N. Manyala LSU Y. Sidis D.P. Young G. Aeppli UCL Z. Fisk FSU T C 1 Nature Materials 3, 255-262 (24)

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

Impact of magnetism upon chemical interactions in Fe alloys

Impact of magnetism upon chemical interactions in Fe alloys Impact of magnetism upon chemical interactions in Fe alloys A.V. Ruban KTH, Stockholm 2009 M. Ohr, 1985 (Pettifor) C. Wolverton, 2005 Multi-scale engineering design FEM CAD-CAM Engineering design Density

More information

Electronic structure of U 5 Ge 4

Electronic structure of U 5 Ge 4 Materials Science-Poland, Vol. 25, No. 2, 2007 Electronic structure of U 5 Ge 4 A. SZAJEK * Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland U 5

More information

Intermediate valence in Yb Intermetallic compounds

Intermediate valence in Yb Intermetallic compounds Intermediate valence in Yb Intermetallic compounds Jon Lawrence University of California, Irvine This talk concerns rare earth intermediate valence (IV) metals, with a primary focus on certain Yb-based

More information

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson

Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Engineering of quantum Hamiltonians by high-frequency laser fields Mikhail Katsnelson Main collaborators: Sasha Itin Clément Dutreix Zhenya Stepanov Theory of Condensed Matter group http://www.ru.nl/tcm

More information

Unified approach to electronic, thermodynamical, and transport properties of Fe 3 Si and Fe 3 Al alloys

Unified approach to electronic, thermodynamical, and transport properties of Fe 3 Si and Fe 3 Al alloys PHYSICAL REVIEW B 9, 3448 (24) Unified approach to electronic, thermodynamical, and transport properties of Fe 3 Si and Fe 3 Al alloys J. Kudrnovský and V. Drchal Institute of Physics, Academy of Sciences

More information

Institute of Physics ASCR, Na Slovance 2, Prague, Czech Republic

Institute of Physics ASCR, Na Slovance 2, Prague, Czech Republic Mat. Res. Soc. Symp. Proc. Vol. 802 2004 Materials Research Society DD6.10.1 Pressure Dependence of Magnetic States of UGe 2 Alexander B. Shick 1, Václav Janiš 1, Václav Drchal 1 and Warren E. Pickett

More information

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects

Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 5 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Apr 2000

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 6 Apr 2000 Electronic Structure and Magnetism of Equiatomic FeN Y. Kong Department of Physics & The Applied Magnetics Laboratory of the Ministry of Education, Lanzhou University, 73 Lanzhou, China Max-Planck-Institut

More information

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Abstract D. L. Huber Department of Physics, University of Wisconsin-Madison, Madison, WI 53706

More information

Electronic structure and ferromagnetic behavior in the Mn 1-x A x As 1-y B y alloys

Electronic structure and ferromagnetic behavior in the Mn 1-x A x As 1-y B y alloys 1 Electronic structure and ferromagnetic behavior in the Mn 1-x A x As 1-y y alloys A.V.Golovchan, I.F.Gribanov Dоnetsk Institute for Physics and Engineering named after O.O.Galkin of the National Academy

More information

Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces

Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces PHYSICAL REVIEW B VOLUME 53, NUMBER 4 15 JANUARY 1996-II Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces V. S. Stepanyuk Max-Planck-Institut für Mikrostrukturphysik,

More information

Exchange interactions and Curie temperature in Ga,Mn As

Exchange interactions and Curie temperature in Ga,Mn As PHYSICAL REVIEW B 66, 134435 2002 Exchange interactions and Curie temperature in Ga,Mn As L. M. Sandratskii* and P. Bruno Max-Planck Institut für Mikrostrukturphysik, D-06120 Halle, Germany Received 28

More information

Investigation of electronic and magnetic structure of advanced magnetic materials

Investigation of electronic and magnetic structure of advanced magnetic materials Investigation of electronic and magnetic structure of advanced magnetic materials A thesis presented to Fachbereich Physik Universität Osnabrück Faculty of Physics Babes-Bolyai University by Vasile REDNIC

More information

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic. Ferromagnetism Technische Universität Graz Institute of Solid State Physics Ferromagnetism elow a critical temperature (called the Curie temperature) a magnetization spontaneously appears in a ferromagnet

More information

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study

Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study J. Pure Appl. & Ind. Phys. Vol.2 (3), 278-285 (2012) Electronic and Bonding Properties of Half-metallic PtMnSb and NiMnSb : First Principles Study I. B. SHAMEEM BANU Department of Physics, B.S. Abdur Rahman

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU

Mikhail Katsnelson. Theory of Condensed Matter Institute for Molecules and Materials RU Theory of carbon-based based magnetism Mikhail Katsnelson Theory of Condensed Matter Institute for Molecules and Materials RU Outline sp magnetism in general: why it is interesting? Defect-induced magnetism

More information

Electrical Resistance of Ferromagnetic Metals. 1. Introduction. Tadao KASUYA. Physical Institute, Nagoya University, Nagoya

Electrical Resistance of Ferromagnetic Metals. 1. Introduction. Tadao KASUYA. Physical Institute, Nagoya University, Nagoya 58 Progress of Theoretical Physics, Vol. 16, No. 1, July 1956 Electrical Resistance of Ferromagnetic Metals Tadao KASUYA Physical Institute, Nagoya University, Nagoya (Received February 13, 1956) In ferromagnetic

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Jul 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Jul 2006 Non-perturbative J pd model and ferromagnetism in dilute magnets arxiv:cond-mat/6764v1 [cond-mat.str-el] 25 Jul 26 Richard Bouzerar 1 Georges Bouzerar 2 and Timothy Ziman 3 1 Université de Picardie Jules

More information

Conductivity of a disordered ferromagnetic monoatomic film

Conductivity of a disordered ferromagnetic monoatomic film Materials Science-Poland, Vol. 6, No. 4, 008 Conductivity of a disordered ferromagnetic monoatomic film A. PAJA *, B. J. SPISAK Faculty of Physics and Applied Computer Science, AGH University of Science

More information

Finite-temperature magnetism in bcc Fe under compression. Xianwei Sha* and R. E. Cohen

Finite-temperature magnetism in bcc Fe under compression. Xianwei Sha* and R. E. Cohen Finite-temperature magnetism in bcc Fe under compression Xianwei Sha* and R. E. Cohen Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, D. C. 20015, U. S. A. We investigate the

More information

Study on Magnetic Properties of Vermiculite Intercalation compounds

Study on Magnetic Properties of Vermiculite Intercalation compounds Study on Magnetic Properties of Vermiculite Intercalation compounds M. Suzuki and I.S. Suzuki Department of Physics, State University of New York at Binghamton (October, ) I. INTRODUCTION In recent years

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions D.Khomskii Cologne University, Germany D.Kh. Physica Scripta (Comments Cond.Mat.Phys.) 72, CC8 (2005) D.Kh. Progr.Theor. Phys.

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University Magnetic neutron diffraction Rob McQueeney, Ames Laboratory and Iowa State University September 19, 2018 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit

More information

The Hubbard model for the hydrogen molecule

The Hubbard model for the hydrogen molecule INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 3 (00) 11 16 EUROPEAN JOURNAL OF PHYSICS PII:S0143-0807(0)351-6 The Hubbard model for the hydrogen molecule B Alvarez-Fernández and J A Blanco Dpto. de Física,

More information

First principle calculations of plutonium and plutonium compounds: part 1

First principle calculations of plutonium and plutonium compounds: part 1 First principle calculations of plutonium and plutonium compounds: part 1 A. B. Shick Institute of Physics ASCR, Prague, CZ Outline: u Lecture 1: Methods of Correlated band theory DFT and DFT+U u Lecture

More information

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany

* Theoretische Physik II, Universitat Dortmund, Dortmund, Germany JOURNAL DE PHYSIQUE IV Colloque C8, suppl6ment au Journal de Physique III, Volume 5, dkembre 1995 Structural Phase Transformation and Phonon Softening in Iron-Based Alloys H.C. Herper, E. Hoffmann, P.

More information

From electronic structure to magnetism

From electronic structure to magnetism From electronic structure to magnetism Olle Eriksson, Department of Physics and Astronomy, Uppsala University And School of Science and Technology, Örebro University Collaborators Abrikosov, Bergman, Bergqvist,

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

Electronic, magnetic and spectroscopic properties of free Fe clusters

Electronic, magnetic and spectroscopic properties of free Fe clusters Electronic, magnetic and spectroscopic properties of free Fe clusters O. Šipr 1, M. Košuth 2, J. Minár 2, S. Polesya 2 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic,

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Theory of magnetic interactions in real materials. Mikhail Katsnelson Theory of magnetic interactions in real materials Mikhail Katsnelson Outline 1. Introduction 2. Exchange interactions from first principles 3. Beyond DFT: correlated systems and LDA+DMFT 4. Applications:

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Exchange interactions

Exchange interactions Exchange interactions Tomasz Dietl Institute of Physics, Polish Academy of Sciences, PL-02-668Warszawa, Poland Institute of Theoretical Physics, University of Warsaw, PL-00-681Warszawa, Poland 1. POTENTIAL

More information

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated

Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated Supplementary Information Controllable chirality-induced geometrical Hall effect in a frustrated highlycorrelated metal B. G. Ueland, C. F. Miclea, Yasuyuki Kato, O. Ayala Valenzuela, R. D. McDonald, R.

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Compositional trends in Ni-Mn-Ga Heusler alloys: first-principles approach

Compositional trends in Ni-Mn-Ga Heusler alloys: first-principles approach MATEC Web of Conferences 33, 05005 ( 2015) DOI: 10.1051/ matecconf/ 20153305005 C Owned by the authors, published by EDP Sciences, 2015 Compositional trends in Ni-Mn-Ga Heusler alloys: first-principles

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002 Electronic structures of doped anatase TiO : Ti x M x O (M=Co, Mn, Fe, Ni) Min Sik Park, S. K. Kwon, and B. I. Min Department of Physics and electron Spin Science Center, Pohang University of Science and

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction 1 Lecture contents Magnetic properties Diamagnetism and paramagnetism Atomic paramagnetism Ferromagnetism Molecular field theory Exchange interaction NNSE 58 EM Lecture #1 [SI] M magnetization or magnetic

More information

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl Analele Universităţii de Vest din Timişoara Vol. LIII, 2009 Seria Fizică EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS Tomasz Dietl Institute of Physics, Polish Academy

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Determination of long range antiferromagnetic order by powder neutron diffraction

Determination of long range antiferromagnetic order by powder neutron diffraction Determination of long range antiferromagnetic order by powder neutron diffraction Practical course on powder diffraction at the neutron spallation source SINQ of the Paul Scherrer Institute Summary Antiferromagnetic

More information

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Prof. Luis Gregório Dias DFMT PG5295 Muitos Corpos 1 Electronic Transport in Quantum

More information

Interacting Spins. Chapter Weiss model of ferromagnetism

Interacting Spins. Chapter Weiss model of ferromagnetism Chapter 2 Interacting Spins 2.1 Weiss model of ferromagnetism Before considering any microscopic model for ordered magnetic systems, it is instructive to review Weiss phenomenological model [1] of ferromagnetism,

More information

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Aug 2009

arxiv: v1 [cond-mat.mtrl-sci] 6 Aug 2009 Ferromagnetism in Nitrogen-doped MgO Phivos Mavropoulos, Marjana Ležaić, and Stefan Blügel Institut für Festkörperforschung (IFF) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich,

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse Spin Density Waves This talk is based on a book-chapter on antiferromagnetism, written by Anthony Arrott in Rado-Suhl, Volume IIB,

More information

Magnetism (FM, AFM, FSM)

Magnetism (FM, AFM, FSM) Magnetism (FM, AFM, FSM) Karlheinz Schwarz Institute of Materials Chemistry TU Wien Localized vs. itinerant systems In localized systems (e.g. some rare earth) the magnetism is mainly governed by the atom

More information

Electronic correlations in models and materials. Jan Kuneš

Electronic correlations in models and materials. Jan Kuneš Electronic correlations in models and materials Jan Kuneš Outline Dynamical-mean field theory Implementation (impurity problem) Single-band Hubbard model MnO under pressure moment collapse metal-insulator

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003 1. 14 August 1996 (final accepted version arxiv:cond-mat/0311297v1 [cond-mat.mtrl-sci] 13 Nov 2003 2. Non-collinear magnetism in distorted perovskite compounds 3. I.V.Solovyev a,, N.Hamada b, K.Terakura

More information

Electronic and Magnetic properties of pure and doped manganese clusters

Electronic and Magnetic properties of pure and doped manganese clusters Electronic and Magnetic properties of pure and doped manganese clusters relevance to the IIIV semiconductor ferromagnetism Mukul Kabir Theoretical Condensed Matter Group S. N. Bose National Centre for

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES IIja TUREK Institute of Physics of Materials, Bmo Academy of Sciences

More information

Magnetism and Superconductivity on Depleted Lattices

Magnetism and Superconductivity on Depleted Lattices Magnetism and Superconductivity on Depleted Lattices 1. Square Lattice Hubbard Hamiltonian: AF and Mott Transition 2. Quantum Monte Carlo 3. The 1/4 depleted (Lieb) lattice and Flat Bands 4. The 1/5 depleted

More information

Dilute Magnetic Semiconductors

Dilute Magnetic Semiconductors John von Neumann Institute for Computing Dilute Magnetic Semiconductors L. Bergqvist, P. H. Dederichs published in NIC Symposium 28, G. Münster, D. Wolf, M. Kremer (Editors), John von Neumann Institute

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Jung Hoon Han (SungKyunKwanU, Suwon) Su Do Yi SKKU Shigeki Onoda RIKEN Naoto Nagaosa U of Tokyo arxiv:0903.3272v1 Nearly ferromagnetic

More information

Paramagnetism and Diamagnetism. Paramagnets (How do paramagnets differ fundamentally from ferromagnets?)

Paramagnetism and Diamagnetism. Paramagnets (How do paramagnets differ fundamentally from ferromagnets?) Paramagnetism and Diamagnetism Paramagnets (How do paramagnets differ fundamentally from ferromagnets?) The study of paramagnetism allows us to investigate the atomic magnetic moments of atoms almost in

More information

MAGNETIC ANISOTROPY IN TIGHT-BINDING

MAGNETIC ANISOTROPY IN TIGHT-BINDING MAGNETIC ANISOTROPY IN TIGHT-BINDING Cyrille Barreteau Magnetic Tight-Binding Workshop, London10-11 Sept. 2012 9 SEPTEMBRE 2012 CEA 10 AVRIL 2012 PAGE 1 SOMMAIRE TB Model TB 0 : Mehl & Papaconstantopoulos

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

arxiv:cond-mat/ v1 7 Aug 1996

arxiv:cond-mat/ v1 7 Aug 1996 EXCHANGE COUPLING AND MAGNETIZATION PROFILES OF BINARY AND TERNARY MAGNETIC MULTILAYERS F. Süss, U. Krey 1 Institut für Physik II der Universität, D-93040 Regensburg, Germany arxiv:cond-mat/9608037v1 7

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information