Ins?tute for Computa?onal Biomedicine. ChIP- seq. Olivier Elemento, PhD TA: Jenny Giannopoulou, PhD

Size: px
Start display at page:

Download "Ins?tute for Computa?onal Biomedicine. ChIP- seq. Olivier Elemento, PhD TA: Jenny Giannopoulou, PhD"

Transcription

1 Ins?tute for Computa?onal Biomedicine ChIP- seq Olivier Elemento, PhD TA: Jenny Giannopoulou, PhD

2 Plan 1. ChIP- seq 2. Quality Control of ChIP- seq data 3. ChIP- seq Peak detec?on 4. Peak Analysis and Interpreta?on 5. A few interes?ng ChIP- seq papers

3 1. ChIP- seq

4 ChIP-seq Transcrip?on factor of interest (or histone modifica?on) An?body Illumina

5 Control: input DNA Can use IgG as addi?onal control Illumina

6 ACCAATAACCGAGGCTCATGCTAAGGCGTTAGCCACAGATGGAAGTCCGACGGCTTGATCCAGAATGGTGTGTGGATTGCCTTGGAACTGATTAGTGAATTC! TGGTTATTGGCTCCGAGTACGATTCCGCAATCGGTGTCTACCTTCAGGCTGCCGAACTAGGTCTTACCACACACCTAACGGAACCTTGACTAATCACTTAAG! Average length ~ 170bp

7 40-100bp ACCAATAACCGAGGCTCATGCTAAGGCGTTAGCCACAGATGGAAGTCCGACGGCTTGATCCAGAATGGTGTGTGGATTGCCTTGGAACTGATTAGTGAATTC! TGGTTATTGGCTCCGAGTACGATTCCGCAATCGGTGTCTACCTTCAGGCTGCCGAACTAGGTCTTACCACACACCTAACGGAACCTTGACTAATCACTTAAG! Average length ~ 170bp

8 40-100bp ACCAATAACCGAGGCTCATGCTAAGGCGTTAGCCACAGATGGAAGTCCGACGGCTTGATCCAGAATGGTGTGTGGATTGCCTTGGAACTGATTAGTGAATTC! TGGTTATTGGCTCCGAGTACGATTCCGCAATCGGTGTCTACCTTCAGGCTGCCGAACTAGGTCTTACCACACACCTAACGGAACCTTGACTAATCACTTAAG! Average length ~ 170bp

9 BWA tutorial (for aligning single end reads to genome) Get genome, e.g., from UCSC hxp://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigzips/chromfa.tar.gz Combine into 1 file tar zvfx chromfa.tar.gz cat *.fa > wg.fa Indexing the genome bwa index - p hg19bwaidx - a bwtsw wg.fa Align ChIP reads to reference genome bwa aln - t 4 hg19bwaidx s_3_sequence.txt.gz > s_3_sequence.txt.bwa Convert to SAM format bwa samse hg19bwaidx s_3_sequence.txt.bwa s_3_sequence.txt.gz > s_3_sequence.txt.sam Align input reads to same reference genome bwa aln - t 4 hg19bwaidx s_4_sequence.txt.gz > s_4_sequence.txt.bwa Convert to SAM format bwa samse hg19bwaidx s_4_sequence.txt.bwa s_4_sequence.txt.gz > s_4_sequence.txt.sam

10 Reads can map to multiple locations/chromosomes Read 1 Read 2 Reference Human Genome (hg18)

11 Reads map to one strand or the other Read 1 Read 2 hg18

12 SAM format DH1608P1_0130:6:1103:10579:166379#TTAGGC 16 chr M * 0 0 GGGCGTGACTCTGATCTCAGGCATCGTCTCCGCCGCGCTCCCGGACCCGCG eb`xxybzdadee^cev]x][cctcc^ebeece eeewbeeeeeeeceeaee XX:Z:NM_017871,32 NM:i:0 MD:Z:51 DH1608P1_0130:6:1102:3415:150915#TTAGGC 16 chr M * 0 0 GGGCGGGACTCTGATCTCAGGCATCGTCTCCGCCGCGCTCCCGGACCCGCG BBBBBBBBBBBac]bbbceedaeddeZceeea_ba_\_eee eeeedaeeee XX:Z:NM_017871,32 NM:i:1 MD:Z:5T45 DH1608P1_0130:6:1102:13118:62644#TTAGGC 16 chr M * 0 0 GGGCGTGCCTCGGATCTCAGGCATCGTCTCCGCCGCGCTCCCGGACCCGCG BBBBBBBBBBBBBBBBBBBBB`XTbSa`cffegdggeccbe effdeggggg XX:Z:NM_017871,32 NM:i:2 MD:Z:7A3T39 DH1608P1_0130:6:1203:3012:157120#TTAGGC 16 chr M * 0 0 AAGGCCGTGACTCTGATCTCAGCCCTCGTCTCCGCCGCGCTCCCGGACCCG BBBBBBBB^`QWZZ]UXYSZSTFRU]Z SO[adcc[acdV \`Y]YWY][_ XX:Z:NM_017871,34 NM:i:3 MD:Z:4G17G1A26 DH1608P1_0130:6:2206:4445:12756#TTAGGC 16 chr M3487N50M * 0 0 CCAAAGGGTGTGACTCTGATCTCGGGCATCGTCTCCGCCGCGCTCCCGGAC BBBBBBBBBBBBBBBBBBBBBBBB`YdddYdc\ cacanddddcdddaeeee XX:Z:NM_017871,37 NM:i:3 MD:Z:2C5C14A27 DH1608P1_0130:6:2203:7903:43788#TTAGGC 16 chr M3487N50M * 0 0 CCCAAGGGCGTGACTCTGATCTCAGGCATCGTCTCCGCCGCGCTCCCGGAC adbe[rcbccb_cb^cb^^c^edgegggggdf ggefffgrfggggegeg XX:Z:NM_017871,37 NM:i:0 MD:Z:51 CIGAR string, eg 5M3487N46M = 5bp- long block, 3487 insert, 46bp- long block MD tag, e.g, MD:Z:4T46 = 5 matches, 1 mismatch (T in read), 46 matches XT tag, e.g. XT:A:U = unique mapper; XT:A:R = more than 1 high- scoring matches

13 Quality Control

14 Clonal reads hxp://biowhat.ucsd.edu/homer/chipseq/qc.html

15 Fragment size analysis

16 Fragment size analysis

17 Fragment size analysis using opposite strand autocorrela?on hxp://biowhat.ucsd.edu/homer/chipseq/qc.html

18 Fragment size analysis hxp://biowhat.ucsd.edu/homer/chipseq/qc.html

19 GC- content analysis hxp://biowhat.ucsd.edu/homer/chipseq/qc.html

20 GC- content analysis hxp://biowhat.ucsd.edu/homer/chipseq/qc.html

21 Other QC measures Number of peaks: 0 or very few peaks, even at permissive peak calling thresholds = bad experiment Mo?f enrichment is expected mo?f enriched in peaks?

22 ChIP- seq peak calling

23 MACS

24 Es?mate d based on high quality peaks MACS 2d The Poisson distribu?on x 1 0 P(X x) =1 λ x e λ x! λ=expected # of reads within an interval of 2d bp # in R P(X>=5 λ=0.001) is 1- sum(dpois(0:4, 0.001))

25 BayesPeak

26 BayesPeak (Bayesian Hidden Markov Models) Observed variable Hidden states Parameters es?mated using Bayesian treatment

27 BayesPeak

28 Peak detection using ChIPseeqer hxp://icb.med.cornell.edu/wiki/index.php/elementolab/chipseeqer_tutorial (Elemento and Giannopoulou, 2011)

29

30 A nice peak

31 Not all peaks are that nice

32 Peak detection Calculate read count at each position (bp) in genome (we don t use a sliding window) Determine if read count is greater than expected (at each position - bp)

33 Peak detection We need to correct for input DNA reads (control) - non-uniformaly distributed (form peaks too) - vastly different numbers of reads between ChIP and input

34 Use Bioanalyzer (remove adapter lengths) genome Read count Expected read count T A T T A A T T A T C C C C A T A T A T G A T A T genome Expected read count = total number of reads * extended fragment length / chr length

35 Is the observed read count at a given genomic position greater than expected? Read counts follow a Poisson distribu?on Frequency P(X x) =1 x 1 0 λ x e λ x = observed read count λ = expected read count x! Read count The Poisson distribu?on

36 Is the observed read count at a given genomic position greater than expected? P(X x) =1 x 1 0 x = 10 reads (observed) λ = 0.5 reads (expected) λ x e λ x! genome The Poisson distribu?on P(X>=10) = 1.7 x log10 P(X>=10) = log10 P(X>=10) = 9.77 # in R P(X>=10 λ=0.5) is 1- sum(dpois(0:9, 0.5))

37 Read count Expected read count P c (X x) =1 x 1 0 λ c x e λ c x! - Log(p) Expected read count = total number of reads * extended frag len / chr len

38 Read count Expected read count - Log(p) Expected read count = total number of reads * extended frag len / chr len Input reads

39 ChIP INPUT Read count Expected read count Read count Expected read count Genome posi?ons (bp) Genome posi?ons (bp) P c (X x) =1 x 1 0 λ c x e λ c x! P i (X x) =1 x 1 0 λ i x e λ i x! - Log(P c ) - Log(P i ) [- Log(P c )] - [- Log(P i )] Threshold

40 Normalized Peak score (at each bp) P(X ChIP ) R = - log10 P(Xinput ) Will detect peaks with high read counts in ChIP, low in Input Works when no input DNA! (x=0) P i (X x) =1 x 1 0 λ i x e λ i x!

41 Mappability

42 Non-mappable fraction of the genome We enumerated all 30-mers, counted # occurrences, calculated non-unique fraction of genome chr / (=12%) chr / chr / chr / chr / chr / chr / chr / chr / chr / chr / chr / chr / chrx / chr / chr / chr / chr / chrm 4628/ chr / chr / chr / chr / chr / chry / (=74%) Unique/mappable frac?on = 1 non- unique frac?on

43 Read count Expected read count P c (X x) =1 x 1 0 λ c x e λ c x! - Log(p) Expected read count = total number of reads * extended frag len / ( chr len * mappable frac?on)

44 Peak detection Determine all genomic regions with R>=15 Merge peaks separated by less than 100bp Output all peaks with length >= 100bp Process 23M reads in <5mins

45 BCL6 ChIP-seq Lymphoma cell line (OCI-Ly1) Illumina 6 GA2x lanes for ChIP, 1 for input DNA, 1 for QC 36nt long sequences 32 Million reads Aligned/mapped to hg18 with BWA With Melnick lab at WCMC

46 BCL6: 18,814 peaks ChIP reads Input reads Detected Peaks 80% are within <20kb of a known gene

47

48 Loading peaks into GRange system( split_samfile s_1_sequence.txt.sam outdir CHIP/ )! system( split_samfile s_2_sequence.txt.sam outdir INPUT/ )! system( ChIPseeqer.bin chipdir CHIP inputdir INPUT t 15 fold 2 outfile peaks.txt )! tpeaks = read.table(paste(datafolder, peaks.txt, sep = ""), header = F)! peaks = RangedData(ranges = IRanges(start = tpeaks[, 2], end = tpeaks[, 3]), space = tpeaks[, 1], summit = tpeaks[, 6], score = tpeaks[, 5])!...!

49 Other peak finders

50 Promoter- based analysis (not peak- based) 2kb h1 h1 h2 h2 All TSS h3 h3 h4 h5 h5 Maximum peak height in 2kb promoter

51 4. Peak analysis and interpreta?on

52 Gene- based peak annota?on

53 Integra?on of mul?ple peak lists RangeData in R

54 Conserva?on analysis fixedstep chrom=chr1 start= step=1! 0.005! 0.009! 0.023! 0.036! 0.048! 0.059! 0.068! 0.077! 0.084! 0.091! 0.097! 0.102! 0.107! 0.110! 0.113! 0.115! 0.116! 0.116! fixedstep chrom=chr1 start= step=1! 0.114! 0.112! 0.109! 0.105! 0.101!...! hxp://hgdownload.cse.ucsc.edu/goldenpath/hg18/phastcons17way/

55 What is the cis-regulatory code of each factor? Does they require any cofactors? DNA Ac:va:on Repression

56 hxp://meme.nbcr.net/meme4_6_1/intro.html

57

58 Discovering regulatory sequences associated with peak regions True TF binding peak? Target regions Yes Yes Yes Yes correla:on is quan:fied using the mutual informa,on True TF peak Random regions Yes Yes No No No No No No Mo?f Absent Present No Yes I(motif ; groups) = P(i, j)log 2 2 i=1 j=1 P(i, j) P(i)P( j)

59 Motif Search Algorithm Highly informa?ve Not informa?ve k-mer MI CTCATCG TCATCGC AAAATTT GATGAGC AAAAATT ATGAGCT TTGCCAC TGCCACC ATCTCAT ACGCGCG CGACGCG TACGCTA ACCCCCT CCACGGC TTCAAAA AGACGCG CGAGAGC CTTATTA MI=0.081 MI=0.045 MI=0.040

60 Discovered Mo?fs Mo?f co- occurrence anallysis Deple?on Enrichment FIRE automa?cally compares discovered mo?fs to known mo?fs in TRANSFAC and JASPAR

61 5. A few interes?ng papers

62 First ChIP- seq paper

63 Epigene?c modifica?ons at enhancer regions

64 Chroma?n states

65 Nucleosome localiza?on

66 Whole-genome nucleosome location mapping in B cells Principal Component Analysis of Nucleosome profiles Yanwen Jiang, PhD

ChIP seq peak calling. Statistical integration between ChIP seq and RNA seq

ChIP seq peak calling. Statistical integration between ChIP seq and RNA seq Institute for Computational Biomedicine ChIP seq peak calling Statistical integration between ChIP seq and RNA seq Olivier Elemento, PhD ChIP-seq to map where transcription factors bind DNA Transcription

More information

Gene Regula*on, ChIP- X and DNA Mo*fs. Statistics in Genomics Hongkai Ji

Gene Regula*on, ChIP- X and DNA Mo*fs. Statistics in Genomics Hongkai Ji Gene Regula*on, ChIP- X and DNA Mo*fs Statistics in Genomics Hongkai Ji (hji@jhsph.edu) Genetic information is stored in DNA TCAGTTGGAGCTGCTCCCCCACGGCCTCTCCTCACATTCCACGTCCTGTAGCTCTATGACCTCCACCTTTGAGTCCCTCCTC

More information

Transcrip:on factor binding mo:fs

Transcrip:on factor binding mo:fs Transcrip:on factor binding mo:fs BMMB- 597D Lecture 29 Shaun Mahony Transcrip.on factor binding sites Short: Typically between 6 20bp long Degenerate: TFs have favorite binding sequences but don t require

More information

ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier

ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier Data visualization, quality control, normalization & peak calling Peak annotation Presentation () Practical session

More information

ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier

ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier ChIP-seq analysis M. Defrance, C. Herrmann, S. Le Gras, D. Puthier, M. Thomas.Chollier Visualization, quality, normalization & peak-calling Presentation (Carl Herrmann) Practical session Peak annotation

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Principles of Gene Expression

Principles of Gene Expression Principles of Gene Expression I. Introduc5on Genome : the en*re set of genes (transcrip*on units) of an organism Transcriptome : the en*re set of marns found in a cell at a given *me Proteome : the en*re

More information

Genome 541! Unit 4, lecture 2! Transcription factor binding using functional genomics

Genome 541! Unit 4, lecture 2! Transcription factor binding using functional genomics Genome 541 Unit 4, lecture 2 Transcription factor binding using functional genomics Slides vs chalk talk: I m not sure why you chose a chalk talk over ppt. I prefer the latter no issues with readability

More information

High-throughput sequencing: Alignment and related topic

High-throughput sequencing: Alignment and related topic High-throughput sequencing: Alignment and related topic Simon Anders EMBL Heidelberg HTS Platforms E s ta b lis h e d p la tfo rm s Illu m in a H is e q, A B I S O L id, R o c h e 4 5 4 N e w c o m e rs

More information

Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics

Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics I believe it is helpful to number your slides for easy reference. It's been a while since I took

More information

Genome 541! Unit 4, lecture 3! Genomics assays

Genome 541! Unit 4, lecture 3! Genomics assays Genome 541! Unit 4, lecture 3! Genomics assays Much easier to follow with slides. Good pace.! Having the slides was really helpful clearer to read and easier to follow the trajectory of the lecture.!!

More information

Annotation of Plant Genomes using RNA-seq. Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA)

Annotation of Plant Genomes using RNA-seq. Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA) Annotation of Plant Genomes using RNA-seq Matteo Pellegrini (UCLA) In collaboration with Sabeeha Merchant (UCLA) inuscu1-35bp 5 _ 0 _ 5 _ What is Annotation inuscu2-75bp luscu1-75bp 0 _ 5 _ Reconstruction

More information

Priors in Dependency network learning

Priors in Dependency network learning Priors in Dependency network learning Sushmita Roy sroy@biostat.wisc.edu Computa:onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

Our typical RNA quantification pipeline

Our typical RNA quantification pipeline RNA-Seq primer Our typical RNA quantification pipeline Upload your sequence data (fastq) Align to the ribosome (Bow>e) Align remaining reads to genome (TopHat) or transcriptome (RSEM) Make report of quality

More information

Prac%cal Bioinforma%cs for Life Scien%sts. Week 14, Lecture 28. István Albert Bioinforma%cs Consul%ng Center Penn State

Prac%cal Bioinforma%cs for Life Scien%sts. Week 14, Lecture 28. István Albert Bioinforma%cs Consul%ng Center Penn State Prac%cal Bioinforma%cs for Life Scien%sts Week 14, Lecture 28 István Albert Bioinforma%cs Consul%ng Center Penn State Final project A group of researchers are interested in studying protein binding loca%ons

More information

High-throughput sequence alignment. November 9, 2017

High-throughput sequence alignment. November 9, 2017 High-throughput sequence alignment November 9, 2017 a little history human genome project #1 (many U.S. government agencies and large institute) started October 1, 1990. Goal: 10x coverage of human genome,

More information

MODEL-BASED APPROACHES FOR THE DETECTION OF BIOLOGICALLY ACTIVE GENOMIC REGIONS FROM NEXT GENERATION SEQUENCING DATA. Naim Rashid

MODEL-BASED APPROACHES FOR THE DETECTION OF BIOLOGICALLY ACTIVE GENOMIC REGIONS FROM NEXT GENERATION SEQUENCING DATA. Naim Rashid MODEL-BASED APPROACHES FOR THE DETECTION OF BIOLOGICALLY ACTIVE GENOMIC REGIONS FROM NEXT GENERATION SEQUENCING DATA Naim Rashid A dissertation submitted to the faculty of the University of North Carolina

More information

Genome Assembly. Sequencing Output. High Throughput Sequencing

Genome Assembly. Sequencing Output. High Throughput Sequencing Genome High Throughput Sequencing Sequencing Output Example applications: Sequencing a genome (DNA) Sequencing a transcriptome and gene expression studies (RNA) ChIP (chromatin immunoprecipitation) Example

More information

Alignment. Peak Detection

Alignment. Peak Detection ChIP seq ChIP Seq Hongkai Ji et al. Nature Biotechnology 26: 1293-1300. 2008 ChIP Seq Analysis Alignment Peak Detection Annotation Visualization Sequence Analysis Motif Analysis Alignment ELAND Bowtie

More information

Package NarrowPeaks. September 24, 2012

Package NarrowPeaks. September 24, 2012 Package NarrowPeaks September 24, 2012 Version 1.0.1 Date 2012-03-15 Type Package Title Functional Principal Component Analysis to Narrow Down Transcription Factor Binding Site Candidates Author Pedro

More information

Ch. 18 Regula'on of Gene Expression BIOL 222

Ch. 18 Regula'on of Gene Expression BIOL 222 Ch. 18 Regula'on of Gene Expression BIOL 222 Overview: Conduc'ng the Gene'c Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In mul@cellular eukaryotes

More information

Hidden Markov Models and Applica2ons. Spring 2017 February 21,23, 2017

Hidden Markov Models and Applica2ons. Spring 2017 February 21,23, 2017 Hidden Markov Models and Applica2ons Spring 2017 February 21,23, 2017 Gene finding in prokaryotes Reading frames A protein is coded by groups of three nucleo2des (codons): ACGTACGTACGTACGT ACG-TAC-GTA-CGT-ACG-T

More information

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

Lecture 18 June 2 nd, Gene Expression Regulation Mutations Lecture 18 June 2 nd, 2016 Gene Expression Regulation Mutations From Gene to Protein Central Dogma Replication DNA RNA PROTEIN Transcription Translation RNA Viruses: genome is RNA Reverse Transcriptase

More information

Inferring Models of cis-regulatory Modules using Information Theory

Inferring Models of cis-regulatory Modules using Information Theory Inferring Models of cis-regulatory Modules using Information Theory BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 26 Anthony Gitter gitter@biostat.wisc.edu Overview Biological question What is causing

More information

A DNA Sequence 2017/12/6 1

A DNA Sequence 2017/12/6 1 A DNA Sequence ccgtacgtacgtagagtgctagtctagtcgtagcgccgtagtcgatcgtgtgg gtagtagctgatatgatgcgaggtaggggataggatagcaacagatgagc ggatgctgagtgcagtggcatgcgatgtcgatgatagcggtaggtagacttc gcgcataaagctgcgcgagatgattgcaaagragttagatgagctgatgcta

More information

JMJ14-HA. Col. Col. jmj14-1. jmj14-1 JMJ14ΔFYR-HA. Methylene Blue. Methylene Blue

JMJ14-HA. Col. Col. jmj14-1. jmj14-1 JMJ14ΔFYR-HA. Methylene Blue. Methylene Blue Fig. S1 JMJ14 JMJ14 JMJ14ΔFYR Methylene Blue Col jmj14-1 JMJ14-HA Methylene Blue Col jmj14-1 JMJ14ΔFYR-HA Fig. S1. The expression level of JMJ14 and truncated JMJ14 with FYR (FYRN + FYRC) domain deletion

More information

RNA- seq read mapping

RNA- seq read mapping RNA- seq read mapping Pär Engström SciLifeLab RNA- seq workshop October 216 IniDal steps in RNA- seq data processing 1. Quality checks on reads 2. Trim 3' adapters (opdonal (for species with a reference

More information

Genomics and bioinformatics summary. Finding genes -- computer searches

Genomics and bioinformatics summary. Finding genes -- computer searches Genomics and bioinformatics summary 1. Gene finding: computer searches, cdnas, ESTs, 2. Microarrays 3. Use BLAST to find homologous sequences 4. Multiple sequence alignments (MSAs) 5. Trees quantify sequence

More information

Exhaustive search. CS 466 Saurabh Sinha

Exhaustive search. CS 466 Saurabh Sinha Exhaustive search CS 466 Saurabh Sinha Agenda Two different problems Restriction mapping Motif finding Common theme: exhaustive search of solution space Reading: Chapter 4. Restriction Mapping Restriction

More information

Matrix-based pattern discovery algorithms

Matrix-based pattern discovery algorithms Regulatory Sequence Analysis Matrix-based pattern discovery algorithms Jacques.van.Helden@ulb.ac.be Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe)

More information

Introduc)on to RNA- Seq Data Analysis. Dr. Benilton S Carvalho Department of Medical Gene)cs Faculty of Medical Sciences State University of Campinas

Introduc)on to RNA- Seq Data Analysis. Dr. Benilton S Carvalho Department of Medical Gene)cs Faculty of Medical Sciences State University of Campinas Introduc)on to RNA- Seq Data Analysis Dr. Benilton S Carvalho Department of Medical Gene)cs Faculty of Medical Sciences State University of Campinas Material: hep://)ny.cc/rnaseq Slides: hep://)ny.cc/slidesrnaseq

More information

Inferring Models of cis-regulatory Modules using Information Theory

Inferring Models of cis-regulatory Modules using Information Theory Inferring Models of cis-regulatory Modules using Information Theory BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 28 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material,

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

for the Analysis of ChIP-Seq Data

for the Analysis of ChIP-Seq Data Supplementary Materials: A Statistical Framework for the Analysis of ChIP-Seq Data Pei Fen Kuan Departments of Statistics and of Biostatistics and Medical Informatics Dongjun Chung Departments of Statistics

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98)

Hidden Markov Models. Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) Hidden Markov Models Main source: Durbin et al., Biological Sequence Alignment (Cambridge, 98) 1 The occasionally dishonest casino A P A (1) = P A (2) = = 1/6 P A->B = P B->A = 1/10 B P B (1)=0.1... P

More information

Probabilistic models of biological sequence motifs

Probabilistic models of biological sequence motifs Probabilistic models of biological sequence motifs Discovery of new motifs Master in Bioinformatics UPF 2015-2016 Eduardo Eyras Computational Genomics Pompeu Fabra University - ICREA Barcelona, Spain what

More information

DNA Feature Sensors. B. Majoros

DNA Feature Sensors. B. Majoros DNA Feature Sensors B. Majoros What is Feature Sensing? A feature is any DNA subsequence of biological significance. For practical reasons, we recognize two broad classes of features: signals short, fixed-length

More information

Graph structure learning for network inference

Graph structure learning for network inference Graph structure learning for network inference Sushmita Roy sroy@biostat.wisc.edu Computa9onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

CSE 527 Autumn Lectures 8-9 (& part of 10) Motifs: Representation & Discovery

CSE 527 Autumn Lectures 8-9 (& part of 10) Motifs: Representation & Discovery CSE 527 Autumn 2006 Lectures 8-9 (& part of 10) Motifs: Representation & Discovery 1 DNA Binding Proteins A variety of DNA binding proteins ( transcription factors ; a significant fraction, perhaps 5-10%,

More information

Chapter 7: Regulatory Networks

Chapter 7: Regulatory Networks Chapter 7: Regulatory Networks 7.2 Analyzing Regulation Prof. Yechiam Yemini (YY) Computer Science Department Columbia University The Challenge How do we discover regulatory mechanisms? Complexity: hundreds

More information

DNA Binding Proteins CSE 527 Autumn 2007

DNA Binding Proteins CSE 527 Autumn 2007 DNA Binding Proteins CSE 527 Autumn 2007 A variety of DNA binding proteins ( transcription factors ; a significant fraction, perhaps 5-10%, of all human proteins) modulate transcription of protein coding

More information

Whole Genome Alignments and Synteny Maps

Whole Genome Alignments and Synteny Maps Whole Genome Alignments and Synteny Maps IINTRODUCTION It was not until closely related organism genomes have been sequenced that people start to think about aligning genomes and chromosomes instead of

More information

Matrix-based pattern matching

Matrix-based pattern matching Regulatory sequence analysis Matrix-based pattern matching Jacques van Helden Jacques.van-Helden@univ-amu.fr Aix-Marseille Université, France Technological Advances for Genomics and Clinics (TAGC, INSERM

More information

Предсказание и анализ промотерных последовательностей. Татьяна Татаринова

Предсказание и анализ промотерных последовательностей. Татьяна Татаринова Предсказание и анализ промотерных последовательностей Татьяна Татаринова Eukaryotic Transcription 2 Initiation Promoter: the DNA sequence that initially binds the RNA polymerase The structure of promoter-polymerase

More information

Is inversion symmetry of chromosomes a law of nature?

Is inversion symmetry of chromosomes a law of nature? Is inversion symmetry of chromosomes a law of nature? David Horn TAU Safra bioinformatics retreat, 28/6/2018 Lecture based on Inversion symmetry of DNA k-mer counts: validity and deviations. Shporer S,

More information

INTEGRATING EPIGENETIC PRIORS FOR IMPROVING COMPUTATIONAL IDENTIFICATION OF TRANSCRIPTION FACTOR BINDING SITES AFFAN SHOUKAT

INTEGRATING EPIGENETIC PRIORS FOR IMPROVING COMPUTATIONAL IDENTIFICATION OF TRANSCRIPTION FACTOR BINDING SITES AFFAN SHOUKAT INTEGRATING EPIGENETIC PRIORS FOR IMPROVING COMPUTATIONAL IDENTIFICATION OF TRANSCRIPTION FACTOR BINDING SITES AFFAN SHOUKAT A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

Introduction to Hidden Markov Models for Gene Prediction ECE-S690

Introduction to Hidden Markov Models for Gene Prediction ECE-S690 Introduction to Hidden Markov Models for Gene Prediction ECE-S690 Outline Markov Models The Hidden Part How can we use this for gene prediction? Learning Models Want to recognize patterns (e.g. sequence

More information

Going Beyond SNPs with Next Genera5on Sequencing Technology Personalized Medicine: Understanding Your Own Genome Fall 2014

Going Beyond SNPs with Next Genera5on Sequencing Technology Personalized Medicine: Understanding Your Own Genome Fall 2014 Going Beyond SNPs with Next Genera5on Sequencing Technology 02-223 Personalized Medicine: Understanding Your Own Genome Fall 2014 Next Genera5on Sequencing Technology (NGS) NGS technology Discover more

More information

The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps Covariance (2.4) and indicators (2.

The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps Covariance (2.4) and indicators (2. The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps Covariance (2.4) and indicators (2.9) Prof. Tesler Math 283 Fall 2016 Prof. Tesler # occurrences of a word

More information

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on

CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on CSCI 360 Introduc/on to Ar/ficial Intelligence Week 2: Problem Solving and Op/miza/on Professor Wei-Min Shen Week 13.1 and 13.2 1 Status Check Extra credits? Announcement Evalua/on process will start soon

More information

From genes to func.on Gene regula.on and transcrip.on

From genes to func.on Gene regula.on and transcrip.on From genes to func.on Gene regula.on and transcrip.on Systems biology for system engineers Part 2 Sofia Pe(ersson Informa.on Coding Dept. of Electrical Engineering Linköping University The eukaryo.c cell

More information

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Likun Wang Zhixing Feng i Wang iaowo Wang * and uegong Zhang * MOE Key Laboratory of Bioinformatics and Bioinformatics

More information

Quantitative Bioinformatics

Quantitative Bioinformatics Chapter 9 Class Notes Signals in DNA 9.1. The Biological Problem: since proteins cannot read, how do they recognize nucleotides such as A, C, G, T? Although only approximate, proteins actually recognize

More information

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

More information

Stochastic processes and

Stochastic processes and Stochastic processes and Markov chains (part II) Wessel van Wieringen w.n.van.wieringen@vu.nl wieringen@vu nl Department of Epidemiology and Biostatistics, VUmc & Department of Mathematics, VU University

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Comparative Gene Finding. BMI/CS 776 Spring 2015 Colin Dewey

Comparative Gene Finding. BMI/CS 776  Spring 2015 Colin Dewey Comparative Gene Finding BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 2015 Colin Dewey cdewey@biostat.wisc.edu Goals for Lecture the key concepts to understand are the following: using related genomes

More information

GBS Bioinformatics Pipeline(s) Overview

GBS Bioinformatics Pipeline(s) Overview GBS Bioinformatics Pipeline(s) Overview Getting from sequence files to genotypes. Pipeline Coding: Ed Buckler Jeff Glaubitz James Harriman Presentation: Terry Casstevens With supporting information from

More information

Ion Torrent. The chip is the machine

Ion Torrent. The chip is the machine Ion Torrent Introduction The Ion Personal Genome Machine [PGM] is simple, more costeffective, and more scalable than any other sequencing technology. Founded in 2007 by Jonathan Rothberg. Part of Life

More information

Isoform discovery and quantification from RNA-Seq data

Isoform discovery and quantification from RNA-Seq data Isoform discovery and quantification from RNA-Seq data C. Toffano-Nioche, T. Dayris, Y. Boursin, M. Deloger November 2016 C. Toffano-Nioche, T. Dayris, Y. Boursin, M. Isoform Deloger discovery and quantification

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

express: Streaming read deconvolution and abundance estimation applied to RNA-Seq

express: Streaming read deconvolution and abundance estimation applied to RNA-Seq express: Streaming read deconvolution and abundance estimation applied to RNA-Seq Adam Roberts 1 and Lior Pachter 1,2 1 Department of Computer Science, 2 Departments of Mathematics and Molecular & Cell

More information

The Research Plan. Functional Genomics Research Stream. Transcription Factors. Tuning In Is A Good Idea

The Research Plan. Functional Genomics Research Stream. Transcription Factors. Tuning In Is A Good Idea Functional Genomics Research Stream The Research Plan Tuning In Is A Good Idea Research Meeting: March 23, 2010 The Road to Publication Transcription Factors Protein that binds specific DNA sequences controlling

More information

Statistical analysis of genomic binding sites using high-throughput ChIP-seq data

Statistical analysis of genomic binding sites using high-throughput ChIP-seq data Statistical analysis of genomic binding sites using high-throughput ChIP-seq data Ibrahim Ali H Nafisah Department of Statistics University of Leeds Submitted in accordance with the requirments for the

More information

Web-based Supplementary Materials for BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data

Web-based Supplementary Materials for BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data Web-based Supplementary Materials for BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data Yuan Ji 1,, Yanxun Xu 2, Qiong Zhang 3, Kam-Wah Tsui 3, Yuan Yuan 4, Clift Norris 1, Shoudan

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Predictive Genome Analysis Using Partial DNA Sequencing Data

Predictive Genome Analysis Using Partial DNA Sequencing Data Predictive Genome Analysis Using Partial DNA Sequencing Data Nauman Ahmed, Koen Bertels and Zaid Al-Ars Computer Engineering Lab, Delft University of Technology, Delft, The Netherlands {n.ahmed, k.l.m.bertels,

More information

CHAPTER : Prokaryotic Genetics

CHAPTER : Prokaryotic Genetics CHAPTER 13.3 13.5: Prokaryotic Genetics 1. Most bacteria are not pathogenic. Identify several important roles they play in the ecosystem and human culture. 2. How do variations arise in bacteria considering

More information

Supporting Information

Supporting Information Supporting Information Weghorn and Lässig 10.1073/pnas.1210887110 SI Text Null Distributions of Nucleosome Affinity and of Regulatory Site Content. Our inference of selection is based on a comparison of

More information

RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology"

RNA Search and! Motif Discovery Genome 541! Intro to Computational! Molecular Biology RNA Search and! Motif Discovery" Genome 541! Intro to Computational! Molecular Biology" Day 1" Many biologically interesting roles for RNA" RNA secondary structure prediction" 3 4 Approaches to Structure

More information

Moreover, the circular logic

Moreover, the circular logic Moreover, the circular logic How do we know what is the right distance without a good alignment? And how do we construct a good alignment without knowing what substitutions were made previously? ATGCGT--GCAAGT

More information

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm,

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, with pairwise alignment of sequences as an example 1,2 1

More information

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 1 Sequence Motifs what is a sequence motif? a sequence pattern of biological significance typically

More information

Genome 541 Introduction to Computational Molecular Biology. Max Libbrecht

Genome 541 Introduction to Computational Molecular Biology. Max Libbrecht Genome 541 Introduction to Computational Molecular Biology Max Libbrecht Genome 541 units Max Libbrecht: Gene regulation and epigenomics Postdoc, Bill Noble s lab Yi Yin: Bayesian statistics Postdoc, Jay

More information

Chapter 3 Class Notes Word Distributions and Occurrences

Chapter 3 Class Notes Word Distributions and Occurrences Chapter 3 Class Notes Word Distributions and Occurrences 3.1. The Biological Problem: restriction endonucleases provide[s] the means for precisely and reproducibly cutting the DNA into fragments of manageable

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Phylogene)cs. IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, Joyce Nzioki

Phylogene)cs. IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, Joyce Nzioki Phylogene)cs IMBB 2016 BecA- ILRI Hub, Nairobi May 9 20, 2016 Joyce Nzioki Phylogenetics The study of evolutionary relatedness of organisms. Derived from two Greek words:» Phle/Phylon: Tribe/Race» Genetikos:

More information

Sequence motif analysis

Sequence motif analysis Sequence motif analysis Alan Moses Associate Professor and Canada Research Chair in Computational Biology Departments of Cell & Systems Biology, Computer Science, and Ecology & Evolutionary Biology Director,

More information

Intro Gene regulation Synteny The End. Today. Gene regulation Synteny Good bye!

Intro Gene regulation Synteny The End. Today. Gene regulation Synteny Good bye! Today Gene regulation Synteny Good bye! Gene regulation What governs gene transcription? Genes active under different circumstances. Gene regulation What governs gene transcription? Genes active under

More information

Package ChIPtest. July 20, 2016

Package ChIPtest. July 20, 2016 Type Package Package ChIPtest July 20, 2016 Title Nonparametric Methods for Identifying Differential Enrichment Regions with ChIP-Seq Data Version 1.0 Date 2017-07-07 Author Vicky Qian Wu ; Kyoung-Jae

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

Ch. 9 Multiple Sequence Alignment (MSA)

Ch. 9 Multiple Sequence Alignment (MSA) Ch. 9 Multiple Sequence Alignment (MSA) - gather seqs. to make MSA - doing MSA with ClustalW - doing MSA with Tcoffee - comparing seqs. that cannot align Introduction - from pairwise alignment to MSA -

More information

Measuring TF-DNA interactions

Measuring TF-DNA interactions Measuring TF-DNA interactions How is Biological Complexity Achieved? Mediated by Transcription Factors (TFs) 2 Regulation of Gene Expression by Transcription Factors TF trans-acting factors TF TF TF TF

More information

De novo identification of motifs in one species. Modified from Serafim Batzoglou s lecture notes

De novo identification of motifs in one species. Modified from Serafim Batzoglou s lecture notes De novo identification of motifs in one species Modified from Serafim Batzoglou s lecture notes Finding Regulatory Motifs... Given a collection of genes that may be regulated by the same transcription

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Hidden Markov Models Luke Ze@lemoyer - University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

A Combined Motif Discovery Method

A Combined Motif Discovery Method University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-6-2009 A Combined Motif Discovery Method Daming Lu University of New Orleans Follow

More information

Gibbs Sampling Methods for Multiple Sequence Alignment

Gibbs Sampling Methods for Multiple Sequence Alignment Gibbs Sampling Methods for Multiple Sequence Alignment Scott C. Schmidler 1 Jun S. Liu 2 1 Section on Medical Informatics and 2 Department of Statistics Stanford University 11/17/99 1 Outline Statistical

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Genotyping By Sequencing (GBS) Method Overview

Genotyping By Sequencing (GBS) Method Overview enotyping By Sequencing (BS) Method Overview RJ Elshire, JC laubitz, Q Sun, JV Harriman ES Buckler, and SE Mitchell http://wwwmaizegeneticsnet/ Topics Presented Background/oals BS lab protocol Illumina

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Whole-genome analysis of GCN4 binding in S.cerevisiae

Whole-genome analysis of GCN4 binding in S.cerevisiae Whole-genome analysis of GCN4 binding in S.cerevisiae Lillian Dai Alex Mallet Gcn4/DNA diagram (CREB symmetric site and AP-1 asymmetric site: Song Tan, 1999) removed for copyright reasons. What is GCN4?

More information

Bias in RNA sequencing and what to do about it

Bias in RNA sequencing and what to do about it Bias in RNA sequencing and what to do about it Walter L. (Larry) Ruzzo Computer Science and Engineering Genome Sciences University of Washington Fred Hutchinson Cancer Research Center Seattle, WA, USA

More information

Normal and Compound Poisson Approximations for Pattern Occurrences in NGS Reads

Normal and Compound Poisson Approximations for Pattern Occurrences in NGS Reads JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 6, 2012 # Mary Ann Liebert, Inc. Pp. 839 854 DOI: 10.1089/cmb.2012.0029 Normal and Compound Poisson Approximations for Pattern Occurrences in NGS Reads

More information

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim Gene Regulatory Networks II 02-710 Computa.onal Genomics Seyoung Kim Goal: Discover Structure and Func;on of Complex systems in the Cell Identify the different regulators and their target genes that are

More information

Geert Geeven. April 14, 2010

Geert Geeven. April 14, 2010 iction of Gene Regulatory Interactions NDNS+ Workshop April 14, 2010 Today s talk - Outline Outline Biological Background Construction of Predictors The main aim of my project is to better understand the

More information

Bioinformatics and Computerscience

Bioinformatics and Computerscience Bioinformatics and Computerscience Systems Biology Data collection Network Inference Network-based dataintegration 1. ARRAY BASED 2. NEXT-GEN SEQUENCING RNA-Seq analysis ChIP-seq Bulked segregant analysis

More information

Joint modelling of ChIP-seq data via a Markov random field model

Joint modelling of ChIP-seq data via a Markov random field model Joint modelling of ChIP-seq data via a Markov random field model Y. Bao 1, V. Vinciotti 1,, E. Wit 2 and P. t Hoen 3,4 1 School of Information Systems, Computing and Mathematics, Brunel University, UK

More information