Genome 541 Introduction to Computational Molecular Biology. Max Libbrecht

Size: px
Start display at page:

Download "Genome 541 Introduction to Computational Molecular Biology. Max Libbrecht"

Transcription

1 Genome 541 Introduction to Computational Molecular Biology Max Libbrecht

2 Genome 541 units Max Libbrecht: Gene regulation and epigenomics Postdoc, Bill Noble s lab Yi Yin: Bayesian statistics Postdoc, Jay Shendure s lab Adrian Verster: Analysis of the microbiome Postdoc, Elhanan Borenstein s lab Jesse Bloom: Molecular phylogenetics Professor, Fred Hutch Basic Sciences division Frank DiMaio: Protein structure Professor, Biochemistry

3 Course requirements The entire course grade is based on the homework assignments. The homeworks involve writing programs for data analysis, and running them on a computer that you have access to (we cannot provide computers). We don t require a specific language. Unless otherwise specified, homeworks are assigned on Thursday and due before class the following Thursday. Late homework will be penalized. Specifically, each assignment is worth 100 points, from which 10 points will be deducted for each day (or fraction thereof) that you turn it in late. The maximum deduction for being late is 60 points. It is OK to run your program on someone else s input data file, and compare outputs to see if you get the same results. However, it is not OK to share programs or to get someone else to debug your program. A key part of the course is being able to write and debug your own program. Homework assignments should be turned in using the Catalyst Tools Dropbox. Please submit your code along with your answers.

4 Have you seen ChIP-seq? ChIP-exo? DamID? ATAC-seq? DNase-FLASH? Chromatin state annotation (Segway, ChromHMM)? Peak calling from ChIP-seq? 3C? Hi-C? ChIA-PET? 3D architecture inference? Topological domain inference? Convexity? Gradient descent? Newton s method? Stochastic or coordinate-wise optimization? Lagrange multipliers? EM algorithm? Central path optimization? Multidimensional scaling (MDS)? Neural networks?

5 One-minute class responses At the end of class, please write a brief response describing: Something you found confusing A question for next class What you found most interesting

6 Unit 1: Gene regulation and epigenomics This unit

7 Unit 1: Gene regulation and epigenomics Lecture 1: Transcription factor binding (sequence) Lecture 2: Transcription factor binding (genomics assays) Lecture 3: Integrating genomics assays Lecture 4: Chromatin conformation

8 Methods focus: the generative framework Model Train Predict Data

9 Lecture 1: Transcription factor binding from genome sequence Sequence models of transcription factor binding Method: The EM algorithm for sequence motifs Method: Neural networks (deep learning)

10 Lecture 1: Transcription factor binding from genome sequence Sequence models of transcription factor binding Method: The EM algorithm for sequence motifs Method: Neural networks (deep learning)

11 Motifs

12 Motifs Motif (n): a succession of notes that has some special importance in or is characteristic of a composition

13 Sequence-specific transcription factors drive gene regulation Motif (n): a recurring genomic sequence pattern CTCCACGGC

14 The most common model of sequence motifs is the position-specific frequency matrix (PSFM) A C G T

15 Motivating question: How accurately does a PSFM predict the binding of a given transcription factor?

16 Lecture 1: Transcription factor binding from genome sequence Sequence models of transcription factor binding Method: The EM algorithm for sequence motifs Method: Neural networks (deep learning)

17 MEME problem statement Input: Collection of sequences. Assumption: One TFBS per sequence TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT ATGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCGAAATGACTCAACG CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAATATTTTTT TGCGAACAAAAGAGTCATTACAACGAGGAAATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC ACAAAGGTACCTTCCTGGCCAATCTCACAGATTTAATATAGTAAATTGTCATGCATATGACTCATCCCGAACATGAAA ATTGATTGACTCATTTTCCTCTGACTACTACCAGTTCAAAATGTTAGAGAAAAATAGAAAAGCAGAAAAAATAAATAA GGCGCCACAGTCCGCGTTTGGTTATCCGGCTGACTCATTCTGACTCTTTTTTGGAAAGTGTGGCATGTGCTTCACACA Output: High-likelihood PSFM

18 MEME likelihood model TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT P (sequence motif starts at position i, PSFM) = i+l Y j=i PSFM(sequence j,j i) Y j/2[i,i+l] background(sequence j ) TFBS starti sequencei

19 The EM algorithm optimizes latent variable (missing data) models TFBS start position C A T G G

20 The EM algorithm optimizes latent variable (missing data) models TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT X Y θ P (sequence motif starts at position i, PSFM) = i+l Y j=i PSFM(sequence j,j i) Y j/2[i,i+l] background(sequence j )

21 The EM algorithm optimizes latent variable (missing data) models TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT X Y θ P (sequence motif starts at position i, PSFM) = Want to optimize: i+l Y j=i PSFM(sequence j,j i) Y j/2[i,i+l] background(sequence j ) P (X ) = X Y P (X, Y )

22 The EM algorithm optimizes latent variable (missing data) models TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT X Y θ P (sequence motif starts at position i, PSFM) = Want to optimize: i+l Y j=i PSFM(sequence j,j i) Y j/2[i,i+l] background(sequence j ) P (X ) = X Y P (X, Y ) Easier to optimize: E-step: M-step: Q(Y X, ) P (Y X, ) 0 argmax 0E Y Q(Y X, ) [log P (X Y, 0 )]

23 Idea #1: Compute probability distribution jointly over all TFBS Y1 Y2 TFBS starts (Y) sequence (X) E-step: Q(Y X, ) P (Y X, ) P (Y 1:N = y 1:N X 1:N, )= Q P i P (X i Y i = y i, ) Q i P (X i Y i = yi 0) y 0 i

24 In order to efficiently compute a probability distribution over many variables, that distribution must be factorizable Independent: Chain-structure: Tree-structure: Related terms: Junction tree algorithm Belief propagation Factor graph Tree-width Running intersection property

25 The MEME probability distribution is efficiently computable because each sequence is independent given θ Yi θ Xi: TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT E-step: Distribution for sequence i: Q i (Y i = y i X i, )= P (X i Y i = y i, ) P yi 0 P (X i Y i = yi 0) TFBS start i (Y i ) sequence i (X i )

26 MEME update rule Yi θ Xi: TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT M-step: 0 argmax 0E Y Q(Y X, ) [log P (X Y, 0 )] Update rule: PSFM(A,j)= Sequence # P i P Position # Indicator function k Q(Y i = k) 1(X i,k+j = A) P P i k Q(Y i = k)

27 MEME initializes EM separately using each subsequence as a starting point TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT A C G T One round of EM Choose highest-likelihood initializations run EM to convergence

28 Lecture 1: Transcription factor binding from genome sequence Sequence models of transcription factor binding Method: The EM algorithm for sequence motifs Method: Neural networks (deep learning)

29 How can we get a better model than sequence motifs? DNA physical shape Variable gaps Cooperativity between TFs Nucleosome interactions

30 Supervised framework CTCF binds in this sequence? f(sequence) TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATCGAAACATACAT CTCF ChIP-seq peak sequence (~150 bp)

31 Sequence representation: one-hot encoding A C C G T One-hot encoding Input sequence ACCGTCGGTATAGGCTTATAAATCTCGG

32 Idea #1: linear classifier f (x) = sign X i i x i! A C C G T One-hot encoding

33 Neural networks f 3,1 (x 2 ) = sign(w 3,1 x 2 ) x 3 x 2 f 2,1 (x 1 )=W 2,1 x 1 x 1 f 1,1 (x 0 )=W 1,1 x 0 f 1,2 (x 0 )=W 1,2 x 0 x A C C G T

34 A nonlinear activation function is applied at each layer Logistic function: f 1,1 (x 0 ) = logistic(w 1,1 x 0 ) Rectifier-linear (ReLu) function: A C C G T

35 Neural networks Output Higher-level intermediate features (binding subdomains, cofactor binding) Intermediate features (DNA shape) A C C G T Raw features

36 A convolutional network applies the same function across portions of the input f(x 1:4 ) = logistic(wx 1:4 ) A C C G T C G G T A T A

37 A multi-task approach shares representations between factors Binds Doesn t bind Prediction CTCF classifier NRSF classifier Intermediate representation Shared feature extraction TCTCTCTCCACGGCTAATTAGGTGATCATGA Input sequence

38 DeepSEA architecture TF-specific layers Shared fullyconnected layers Shared convolutional layers ACCGTCGGTATAGGCTTATAAATCTCGG Zhou et al, Nature Methods 2015

39 Deep neural network accurately predicts TF binding and DNase hypersensitivity Reference sequence ACCGTCGGTATATCGTCGG CTCF binding in liver cells (ChIP-seq) Train Test DeepSEA model Mean AUC: Zhou et al, Nature Methods 2015

40 Deep neural network accurately predicts known regulatory variants Reference sequence Genetic variant ACCGTCGGTATATTCGTCCCGTCGGTATAGGCACCGTCGGTATA ACCGTCGGTATATTCGTCCCGTCGGTATTGGCACCGTCGGTATA Trained neural network Predicted change in binding strength?

41 When should you use a complex model (DeepSEA) over a simpler model (MEME)? Complex models generally: Have higher accuracy Need lots of training data Simpler models generally: Are interpretable Are generalizable Neural networks specifically generally: Require lots of compute (GPUs) Work well with structured input (DNA sequence, images, audio)

42 Administrivia Lecture notes are posted on the lab web page. I sent out an this morning to the class mailing list; talk to me if you didn t get it. HW1 out soon: Learning motif PSFMs with EM. Please write a one-minute response before you leave.

Genome 541! Unit 4, lecture 3! Genomics assays

Genome 541! Unit 4, lecture 3! Genomics assays Genome 541! Unit 4, lecture 3! Genomics assays Much easier to follow with slides. Good pace.! Having the slides was really helpful clearer to read and easier to follow the trajectory of the lecture.!!

More information

Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics

Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics Genome 541 Gene regulation and epigenomics Lecture 2 Transcription factor binding using functional genomics I believe it is helpful to number your slides for easy reference. It's been a while since I took

More information

Genome 541! Unit 4, lecture 2! Transcription factor binding using functional genomics

Genome 541! Unit 4, lecture 2! Transcription factor binding using functional genomics Genome 541 Unit 4, lecture 2 Transcription factor binding using functional genomics Slides vs chalk talk: I m not sure why you chose a chalk talk over ppt. I prefer the latter no issues with readability

More information

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007 Understanding Science Through the Lens of Computation Richard M. Karp Nov. 3, 2007 The Computational Lens Exposes the computational nature of natural processes and provides a language for their description.

More information

An overview of deep learning methods for genomics

An overview of deep learning methods for genomics An overview of deep learning methods for genomics Matthew Ploenzke STAT115/215/BIO/BIST282 Harvard University April 19, 218 1 Snapshot 1. Brief introduction to convolutional neural networks What is deep

More information

Chapter 7: Regulatory Networks

Chapter 7: Regulatory Networks Chapter 7: Regulatory Networks 7.2 Analyzing Regulation Prof. Yechiam Yemini (YY) Computer Science Department Columbia University The Challenge How do we discover regulatory mechanisms? Complexity: hundreds

More information

#33 - Genomics 11/09/07

#33 - Genomics 11/09/07 BCB 444/544 Required Reading (before lecture) Lecture 33 Mon Nov 5 - Lecture 31 Phylogenetics Parsimony and ML Chp 11 - pp 142 169 Genomics Wed Nov 7 - Lecture 32 Machine Learning Fri Nov 9 - Lecture 33

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Lecture 15: Exploding and Vanishing Gradients

Lecture 15: Exploding and Vanishing Gradients Lecture 15: Exploding and Vanishing Gradients Roger Grosse 1 Introduction Last lecture, we introduced RNNs and saw how to derive the gradients using backprop through time. In principle, this lets us train

More information

Homework 6: Image Completion using Mixture of Bernoullis

Homework 6: Image Completion using Mixture of Bernoullis Homework 6: Image Completion using Mixture of Bernoullis Deadline: Wednesday, Nov. 21, at 11:59pm Submission: You must submit two files through MarkUs 1 : 1. a PDF file containing your writeup, titled

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April

Probabilistic Graphical Models. Guest Lecture by Narges Razavian Machine Learning Class April Probabilistic Graphical Models Guest Lecture by Narges Razavian Machine Learning Class April 14 2017 Today What is probabilistic graphical model and why it is useful? Bayesian Networks Basic Inference

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

CSC321 Lecture 4: Learning a Classifier

CSC321 Lecture 4: Learning a Classifier CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 31 Overview Last time: binary classification, perceptron algorithm Limitations of the perceptron

More information

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 1 Sequence Motifs what is a sequence motif? a sequence pattern of biological significance typically

More information

Alignment. Peak Detection

Alignment. Peak Detection ChIP seq ChIP Seq Hongkai Ji et al. Nature Biotechnology 26: 1293-1300. 2008 ChIP Seq Analysis Alignment Peak Detection Annotation Visualization Sequence Analysis Motif Analysis Alignment ELAND Bowtie

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Professor Ameet Talwalkar November 12, 2015 Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16 Outline 1 Review of last lecture AdaBoost

More information

Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning)

Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning) Exercises Introduction to Machine Learning SS 2018 Series 6, May 14th, 2018 (EM Algorithm and Semi-Supervised Learning) LAS Group, Institute for Machine Learning Dept of Computer Science, ETH Zürich Prof

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

CSC321 Lecture 4: Learning a Classifier

CSC321 Lecture 4: Learning a Classifier CSC321 Lecture 4: Learning a Classifier Roger Grosse Roger Grosse CSC321 Lecture 4: Learning a Classifier 1 / 28 Overview Last time: binary classification, perceptron algorithm Limitations of the perceptron

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

CIS519: Applied Machine Learning Fall Homework 5. Due: December 10 th, 2018, 11:59 PM

CIS519: Applied Machine Learning Fall Homework 5. Due: December 10 th, 2018, 11:59 PM CIS59: Applied Machine Learning Fall 208 Homework 5 Handed Out: December 5 th, 208 Due: December 0 th, 208, :59 PM Feel free to talk to other members of the class in doing the homework. I am more concerned

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści

Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, Spis treści Deep learning / Ian Goodfellow, Yoshua Bengio and Aaron Courville. - Cambridge, MA ; London, 2017 Spis treści Website Acknowledgments Notation xiii xv xix 1 Introduction 1 1.1 Who Should Read This Book?

More information

CSC321 Lecture 5: Multilayer Perceptrons

CSC321 Lecture 5: Multilayer Perceptrons CSC321 Lecture 5: Multilayer Perceptrons Roger Grosse Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 1 / 21 Overview Recall the simple neuron-like unit: y output output bias i'th weight w 1 w2 w3

More information

Lecture 16 Deep Neural Generative Models

Lecture 16 Deep Neural Generative Models Lecture 16 Deep Neural Generative Models CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 22, 2017 Approach so far: We have considered simple models and then constructed

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

Lecture 3 Feedforward Networks and Backpropagation

Lecture 3 Feedforward Networks and Backpropagation Lecture 3 Feedforward Networks and Backpropagation CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 3, 2017 Things we will look at today Recap of Logistic Regression

More information

Neural Networks in Structured Prediction. November 17, 2015

Neural Networks in Structured Prediction. November 17, 2015 Neural Networks in Structured Prediction November 17, 2015 HWs and Paper Last homework is going to be posted soon Neural net NER tagging model This is a new structured model Paper - Thursday after Thanksgiving

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35

Neural Networks. David Rosenberg. July 26, New York University. David Rosenberg (New York University) DS-GA 1003 July 26, / 35 Neural Networks David Rosenberg New York University July 26, 2017 David Rosenberg (New York University) DS-GA 1003 July 26, 2017 1 / 35 Neural Networks Overview Objectives What are neural networks? How

More information

Gene Regula*on, ChIP- X and DNA Mo*fs. Statistics in Genomics Hongkai Ji

Gene Regula*on, ChIP- X and DNA Mo*fs. Statistics in Genomics Hongkai Ji Gene Regula*on, ChIP- X and DNA Mo*fs Statistics in Genomics Hongkai Ji (hji@jhsph.edu) Genetic information is stored in DNA TCAGTTGGAGCTGCTCCCCCACGGCCTCTCCTCACATTCCACGTCCTGTAGCTCTATGACCTCCACCTTTGAGTCCCTCCTC

More information

CSCI567 Machine Learning (Fall 2018)

CSCI567 Machine Learning (Fall 2018) CSCI567 Machine Learning (Fall 2018) Prof. Haipeng Luo U of Southern California Sep 12, 2018 September 12, 2018 1 / 49 Administration GitHub repos are setup (ask TA Chi Zhang for any issues) HW 1 is due

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

CSC321 Lecture 7 Neural language models

CSC321 Lecture 7 Neural language models CSC321 Lecture 7 Neural language models Roger Grosse and Nitish Srivastava February 1, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 7 Neural language models February 1, 2015 1 / 19 Overview We

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 6: Monday, Mar 7. e k+1 = 1 f (ξ k ) 2 f (x k ) e2 k.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 6: Monday, Mar 7. e k+1 = 1 f (ξ k ) 2 f (x k ) e2 k. Problem du jour Week 6: Monday, Mar 7 Show that for any initial guess x 0 > 0, Newton iteration on f(x) = x 2 a produces a decreasing sequence x 1 x 2... x n a. What is the rate of convergence if a = 0?

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Supervised Learning. George Konidaris

Supervised Learning. George Konidaris Supervised Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom Mitchell,

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Yongjin Park 1 Goal of Feedforward Networks Deep Feedforward Networks are also called as Feedforward neural networks or Multilayer Perceptrons Their Goal: approximate some function

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS

CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS CS 179: LECTURE 16 MODEL COMPLEXITY, REGULARIZATION, AND CONVOLUTIONAL NETS LAST TIME Intro to cudnn Deep neural nets using cublas and cudnn TODAY Building a better model for image classification Overfitting

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

CSE 241 Class 1. Jeremy Buhler. August 24,

CSE 241 Class 1. Jeremy Buhler. August 24, CSE 41 Class 1 Jeremy Buhler August 4, 015 Before class, write URL on board: http://classes.engineering.wustl.edu/cse41/. Also: Jeremy Buhler, Office: Jolley 506, 314-935-6180 1 Welcome and Introduction

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Lecture 3 Feedforward Networks and Backpropagation

Lecture 3 Feedforward Networks and Backpropagation Lecture 3 Feedforward Networks and Backpropagation CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 3, 2017 Things we will look at today Recap of Logistic Regression

More information

CSC242: Intro to AI. Lecture 21

CSC242: Intro to AI. Lecture 21 CSC242: Intro to AI Lecture 21 Administrivia Project 4 (homeworks 18 & 19) due Mon Apr 16 11:59PM Posters Apr 24 and 26 You need an idea! You need to present it nicely on 2-wide by 4-high landscape pages

More information

arxiv: v3 [cs.lg] 14 Jan 2018

arxiv: v3 [cs.lg] 14 Jan 2018 A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation Gang Chen Department of Computer Science and Engineering, SUNY at Buffalo arxiv:1610.02583v3 [cs.lg] 14 Jan 2018 1 abstract We describe

More information

Introduction to Machine Learning Midterm Exam Solutions

Introduction to Machine Learning Midterm Exam Solutions 10-701 Introduction to Machine Learning Midterm Exam Solutions Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes,

More information

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms

Comments. Assignment 3 code released. Thought questions 3 due this week. Mini-project: hopefully you have started. implement classification algorithms Neural networks Comments Assignment 3 code released implement classification algorithms use kernels for census dataset Thought questions 3 due this week Mini-project: hopefully you have started 2 Example:

More information

Ch.6 Deep Feedforward Networks (2/3)

Ch.6 Deep Feedforward Networks (2/3) Ch.6 Deep Feedforward Networks (2/3) 16. 10. 17. (Mon.) System Software Lab., Dept. of Mechanical & Information Eng. Woonggy Kim 1 Contents 6.3. Hidden Units 6.3.1. Rectified Linear Units and Their Generalizations

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Topic 3: Neural Networks

Topic 3: Neural Networks CS 4850/6850: Introduction to Machine Learning Fall 2018 Topic 3: Neural Networks Instructor: Daniel L. Pimentel-Alarcón c Copyright 2018 3.1 Introduction Neural networks are arguably the main reason why

More information

Lecture 5 Neural models for NLP

Lecture 5 Neural models for NLP CS546: Machine Learning in NLP (Spring 2018) http://courses.engr.illinois.edu/cs546/ Lecture 5 Neural models for NLP Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center Office hours: Tue/Thu 2pm-3pm

More information

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann

Neural Networks with Applications to Vision and Language. Feedforward Networks. Marco Kuhlmann Neural Networks with Applications to Vision and Language Feedforward Networks Marco Kuhlmann Feedforward networks Linear separability x 2 x 2 0 1 0 1 0 0 x 1 1 0 x 1 linearly separable not linearly separable

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE JOHN P DICKERSON Lecture #13 3/9/2017 CMSC320 Tuesdays & Thursdays 3:30pm 4:45pm ANNOUNCEMENTS Mini-Project #1 is due Saturday night (3/11): Seems like people are able to do

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Introduction to Machine Learning Spring 2018 Note Neural Networks

Introduction to Machine Learning Spring 2018 Note Neural Networks CS 189 Introduction to Machine Learning Spring 2018 Note 14 1 Neural Networks Neural networks are a class of compositional function approximators. They come in a variety of shapes and sizes. In this class,

More information

RegML 2018 Class 8 Deep learning

RegML 2018 Class 8 Deep learning RegML 2018 Class 8 Deep learning Lorenzo Rosasco UNIGE-MIT-IIT June 18, 2018 Supervised vs unsupervised learning? So far we have been thinking of learning schemes made in two steps f(x) = w, Φ(x) F, x

More information

Deep Learning Lab Course 2017 (Deep Learning Practical)

Deep Learning Lab Course 2017 (Deep Learning Practical) Deep Learning Lab Course 207 (Deep Learning Practical) Labs: (Computer Vision) Thomas Brox, (Robotics) Wolfram Burgard, (Machine Learning) Frank Hutter, (Neurorobotics) Joschka Boedecker University of

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

Introduction to Convolutional Neural Networks (CNNs)

Introduction to Convolutional Neural Networks (CNNs) Introduction to Convolutional Neural Networks (CNNs) nojunk@snu.ac.kr http://mipal.snu.ac.kr Department of Transdisciplinary Studies Seoul National University, Korea Jan. 2016 Many slides are from Fei-Fei

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

Lecture 4: Training a Classifier

Lecture 4: Training a Classifier Lecture 4: Training a Classifier Roger Grosse 1 Introduction Now that we ve defined what binary classification is, let s actually train a classifier. We ll approach this problem in much the same way as

More information

Discovering MultipleLevels of Regulatory Networks

Discovering MultipleLevels of Regulatory Networks Discovering MultipleLevels of Regulatory Networks IAS EXTENDED WORKSHOP ON GENOMES, CELLS, AND MATHEMATICS Hong Kong, July 25, 2018 Gary D. Stormo Department of Genetics Outline of the talk 1. Transcriptional

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) Machine Learning and NLP NER WordNet Usually machine learning

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

Feature Engineering, Model Evaluations

Feature Engineering, Model Evaluations Feature Engineering, Model Evaluations Giri Iyengar Cornell University gi43@cornell.edu Feb 5, 2018 Giri Iyengar (Cornell Tech) Feature Engineering Feb 5, 2018 1 / 35 Overview 1 ETL 2 Feature Engineering

More information

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav Neural Networks 30.11.2015 Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav 1 Talk Outline Perceptron Combining neurons to a network Neural network, processing input to an output Learning Cost

More information

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1)

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1) 11/3/15 Machine Learning and NLP Deep Learning for NLP Usually machine learning works well because of human-designed representations and input features CS224N WordNet SRL Parser Machine learning becomes

More information

Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn

Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn Homework 1 Solutions Probability, Maximum Likelihood Estimation (MLE), Bayes Rule, knn CMU 10-701: Machine Learning (Fall 2016) https://piazza.com/class/is95mzbrvpn63d OUT: September 13th DUE: September

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Neural Networks Varun Chandola x x 5 Input Outline Contents February 2, 207 Extending Perceptrons 2 Multi Layered Perceptrons 2 2. Generalizing to Multiple Labels.................

More information

Programming Assignment 4: Image Completion using Mixture of Bernoullis

Programming Assignment 4: Image Completion using Mixture of Bernoullis Programming Assignment 4: Image Completion using Mixture of Bernoullis Deadline: Tuesday, April 4, at 11:59pm TA: Renie Liao (csc321ta@cs.toronto.edu) Submission: You must submit two files through MarkUs

More information

Introduction to Logistic Regression and Support Vector Machine

Introduction to Logistic Regression and Support Vector Machine Introduction to Logistic Regression and Support Vector Machine guest lecturer: Ming-Wei Chang CS 446 Fall, 2009 () / 25 Fall, 2009 / 25 Before we start () 2 / 25 Fall, 2009 2 / 25 Before we start Feel

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Lecture 9 Numerical optimization and deep learning Niklas Wahlström Division of Systems and Control Department of Information Technology Uppsala University niklas.wahlstrom@it.uu.se

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Machine Learning (CS 567) Lecture 3

Machine Learning (CS 567) Lecture 3 Machine Learning (CS 567) Lecture 3 Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 3 Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Linear Classifiers: predictions Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due Friday of next

More information