Gas Pipeline Hydraulics: Pressure Drop

Size: px
Start display at page:

Download "Gas Pipeline Hydraulics: Pressure Drop"

Transcription

1 COURSE NUMBER: ME 423 Fluids Engineering Gas Pipeline Hydraulics: Pressure Drop Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1

2 FLOW EQUATIONS Several equations are available that relate the gas flow rate with gas properties, pipe diameter and length, and upstream and downstream pressures. These equations are listed as follows: 1. General Flow equation 2. Colebrook-White equation 3. Modified Colebrook-White equation 4. AGA equation 5. Weymouth equation 6. Panhandle A equation 7. Panhandle B equation 8. IGT equation 9. Spitzglass equation 10. Mueller equation 11. Fritzsche equation Acomparison of these equations will also be discussed using an example pipeline. 2

3 The General Flow equation, also called the Fundamental Flow equation, for the steady-state isothermal flow in a gas pipeline is the basic equation for relating the pressure drop with flow rate. The most common form of this equation in the U.S. Customary System (USCS) of units is given in terms of the pipe diameter, gas properties, pressures, temperatures, and flow rate as fll follows. It must be noted tdthatt for the pipe segment from section 1 to section 2, the gas temperature T f is assumed to be constant (isothermal flow). In SI units, the General Flow equation is stated as follows: 3

4 Sometimes the General Flow equation is represented in terms of the transmission factor F instead of the friction factor f. This form of the equation is as follows. where the transmission factor F and friction factor f are related by and in SI units 4

5 When there is elevation difference between the ends of a pipe segment, the General Flow equation needs further modification. AVERAGE PIPE SEGMENT PRESSURE In the General Flow equation, the compressibility factor Z is used. This must be calculated ltdat the gas flowing temperaturet and average pressure in the pipe segment. Therefore, it is important to first calculate the average pressure in a pipe segment. Consider a pipe segment with upstream pressure P 1 and downstream pressure P 2. An average pressure for this segment must be used to calculate the compressibility factor of gas at the average gas temperature T f. As a first approximation, we may use an arithmetic average of (P 1 +P 2 )/2. However, it has been found that a more accurate value of the average gas pressure in a pipesegment pp is Another form of the average pressure in a pipe segment is 5

6 VELOCITY OF GAS IN A PIPELINE Unlike a liquid pipeline, due to compressibility, the gas velocity depends upon the pressure and, hence, will vary along the pipeline even if the pipe diameter is constant. The highest velocity will be at the downstream end, where the pressure is the least. Correspondingly, the least velocity will be at the upstream end, where the pressure is higher. Consider a pipe transporting gas from point A to point B. Under steady state flow, at A, themassflowrateofgas is designated as M and will bethesame as the mass flow rate at point B, if between A and B there is no injection or delivery of gas. We can write the following relationship for point A: The volume rate Q can be expressed in terms of the flow velocity u and pipe cross sectional area A as follows: Therefore, combining i Equation 2.16 and Equation 2.17 and applying li the conservation of mass to points A and B, we get If the pipe is of uniform cross section between A and B, the velocities at A and B are related by the following equation: 6

7 Since the flow of gas in a pipe can result in variation of temperature from point A to point B, the gas density will also vary with temperature and pressure. If the density and velocity at one point are known, the corresponding velocity at the other point can be calculated using Equation If inlet conditions are represented by point A and the volume flow rate Q at standard conditions (60 F and 14.7 psia) are known, we can calculate the velocity at any point along the pipeline at which the pressure and temperature of the gas are P and T, respectively. The mass flow rate M at section 1 and 2 is the same for steady-state state flow. Therefore, where Q b is the gas flow rate at standard conditions and ρ b is the corresponding gas density. Therefore, simplifying Equation 2.20, Applying the gas law, we get or 7

8 where P 1 and T 1 are the pressure and temperature at pipe section 1. Similarly, at standard conditions, 8

9 9

10 EROSIONAL VELOCITY As flow rate increases, so does the gas velocity. How high can the gas velocity be in a pipeline? As the velocity increases, vibration and noise are evident. In addition, higher velocities will cause erosion of the pipe interior over a long period of time. The upper limit of the gas velocity is usually calculated approximately from the following equation: 10

11 11

12 12

13 In the preceding Examples 1 and 2, we have assumed the value of compressibility factor Z to the constant. t A more accurate solution will be to calculate the value of Z using CNGA or Standing-Katz method. The inlet and outlet gas velocities then will be modified. 13

14 REYNOLDS NUMBER OF FLOW The Reynolds number is a function of the gas flow rate, pipe inside diameter, and the gas density and viscosity it and is calculated ltdfrom the following equation: In gas pipeline hydraulics, using customary units, a more suitable equation for the Reynolds number is as follows: In SI units, the Reynolds number is 14

15 15

16 COMPARISON OF FLOW EQUATIONS In Figure 2.5, we consider a pipeline 100 mile long, NPS 16 with in. wall thickness, operating at a flow rate of 100 MMSCFD. The gas flowing temperature is 80 F. With the upstream pressure fixed at 1400 psig, the downstream pressure was calculated using the different flow equations. By examining Figure 2.5, it is clear that the highest pressure drop is predicted by the Weymouth equation and the lowest pressure drop is predicted by the Panhandle B equation. It must be noted that we used a pipe roughness of 700 µin. for both the AGA and Colebrook equations, whereas a pipeline efficiency of 0.95 was used in the Panhandle and Weymouth equations. 16

17 Figure 2.6 shows a comparison of the flow equations from a different perspective. In this case, we calculated the upstream pressure required for an NPS 30 pipeline, 100 miles long, hldi holding the dli delivery pressure constant tat 800 psig. The upstream pressure required for various flow rates, ranging from 200 to 600 MMSCFD, was calculated using the five flow equations. Again it can be seen that the Weymouth equation predicts the highest upstream pressure at any flow rate, whereas the Panhandle A equation calculates the least pressure. We therefore conclude that the most conservative flow equation that predicts the highest pressure drop is the Weymouth equation and the least conservative flow equation is Panhandle A. 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 The wall thickness required for this pipe diameter and pressure will be dictated by the pipe material 25

26 26

27 27

28 28

29 29

30 EQUIVALENT LENGTH METHOD: Pipes in Series The equivalent length method can be applied when the sameuniform flow exists throughout the pipeline consisting of pipe segments of different diameter, with no intermediate deliveries or injections. Consider the same flow rate Q through all pipe segments. The first pipe segment has an inside diameter D 1 and length L 1,followedbythesecond segment of inside diameter D 2 and length L 2 and so on. We calculate the equivalent length of the second pipe segment based on the diameter D 1 such that the pressure drop in the equivalent length matches that in the original pipe pp segment of diameter D 2. The pressure drop in diameter D 2 and length L 2 equals the pressure drop in diameter D 1 and equivalent length Le 2. Thus, the second segment can be replaced with a piece of pipe of length Le 2 and diameter D 1. Similarly, the third pipe segment with diameter D 3 and length L 3 will be replaced with a piece of pipe of Le 3 and diameter D 1. Thus, we have converted the three segments of pipe in terms of diameter D 1 as follows: 30

31 We now have the series piping system reduced to one constant-diameter (D 1 ) pipe of total equivalent length given by For the same flow rate and gas properties, neglecting elevation effects, the pressure difference (P 12 P 22 ) is inversely proportional to the fifth power of the pipe diameter and directly proportional to the pipe length. Therefore, we can state that, approximately, From Equation 3.2 we conclude that the equivalent length for the same pressure drop is proportional to the fifth power of the diameter. Therefore, in the series piping discussed in the foregoing, the equivalent length of the second pipe segment of diameter D 2 and length L 2 is or 31

32 Similarly, for the third pipe segment of diameter D 3 equivalent length is and length L 3,the Therefore, the total equivalent length Le for all three pipe segments in terms of diameter D 1 is It can be seen from Equation 3.6 that if D 1 =D 2 =D 3, the total equivalent length reduces to (L 1 +L 2 +L 3 ), as expected. 32

33 33

34 34

35 35

36 PARALLEL PIPING Sometimes two or more pipes are connected such that the gas flow splits among the branch pipes and eventually combines downstream into a single pipe, as illustrated in Figure 3.7. The reason for installing parallel pipes or loops is toreduce pressure drop inacertain section of the pipeline due to pipe pressure limitation or for increasing the flow rate in a bottleneck section. By installing a pipe loop from B to E, in Figure 3.7 we are effectively reducing the overall pressure drop in the pipeline from A to F, since between B and E the flow is split through twopipes. pp Applying the principle of flow conservation, at junction B, the incoming flow into B must exactly equal the total outflow at B through the parallel pipes. Therefore, at junction B, 36

37 Where, Q = inlet flow at A, Q 1 = flow through pipe branch BCE and Q 2 = flow through pipe branch BDE. Both pipe branches have a common starting point (B) and common ending point (E). Therefore, the pressure drop in the branch pipe BCE and branch pipe BDE are each equal to (P B P E ), where P B and P E are the pressuresat junctions B and E, respectively. Therefore, we can write The pressure drop due to friction in branch BCE can be calculated from Where, K 1 =aparameter that depends on gas properties, gas temperature, etc., L 1 = length of pipe branch BCE, D 1 = inside diameter of pipe branch BCE and Q 1 = flow rate through pipe branch BCE. Similarly, the pressure drop due to friction in branch BDE is calculated from In Eq and Eq. 3.11, the constants K 1 and K 2 are equal, since they do not depend on the diameter or length of the branch pipes BCE and BDE. 37

38 Combining both equations, we can state the following for common pressure drop through each branch: Simplifying further, we get the following relationship between the two flow rates Q 1 and Q 2 : In equivalent diameter method, we replace the pipe loops BCE and BDE with a certain length of an equivalent diameter pipe that has the same pressure drop as one of the branch pipes. Since the pressure drop in the equivalent diameter pipe, which flows the full volume Q, is the same as that in any of the branch pipes, from Eq. 3.10, we can state the following: where Q = Q 1 +Q 2 from Equation 3.7 and K e represents the constant for the equivalent diameter pipe of length L e flowing the full volume Q. We get, using Eq. 3.10, Eq. 3.11, and Eq. 3.14: 38

39 Setting K 1 =K 2 =K e and L e =L 1, we simplify Equation 3.15 as follows: Using Equation 3.16 in conjunction with Equation 3.7, we solve for the equivalent diameter D e as Where and the individual flow rates Q 1 and Q 2 are calculated from and 39

40 40

41 41

42 42

43 Solving for the outlet pressure at E, we get P 2 = psia, which is almost thesameaswhatwecalculatedbefore. Therefore, using the equivalent diameter method, the parallel pipes BCE and BDE can be replaced with a single pipe 24 mi long, having an inside diameter of in. 43

44 LOCATING PIPE LOOP How do we determine where a loop should be placed for optimum results? Should it be located upstream, downstream, or in a midsection of the pipe? Three looping scenarios are presented in Figure 3.8. In case (a), a pipeline of length L is shown looped with X miles of pipe, beginning at the upstream end A. In case (b), the same length X of pipe is looped, but it is located on the downstream end B. Case (c) shows the midsection of the pipeline being looped. 44

45 For most practical purposes, we can say that the cost of all three loops will be the same as long as the loop length is the same. Which of these cases is optimum,? It is found that if the gas temperature is constant throughout, at locations near the upstream end, the pressure drops at a slower rate than at the downstream end. Therefore, there is more pressure drop in the downstream section compared to that in the upstream section. Hence, to reduce the overall pressure drop, the loop must be installed toward the downstream end of the pipe. This argument is valid only if the gas temperature is constant throughout the pipeline. In reality, due to heat transfer between the flowing gas and the surrounding soil (buried pipe) or the outside air (above-ground pipe), the gas temperature will change along the length of the pipeline. If the gas temperature at the pipe inlet is higher than that of the surrounding soil (buried pipe), the gas will lose heat to the soil and the temperature will drop from the pipe inlet to the pipe outlet. If the gas is compressed at the inlet using a compressor, r then the gas temperature will be much higher than that of the soil immediately downstream of the compressor.the hotter gas will cause higher pressure 45

46 drops. Hence, in this case the upstream segment will have a larger pressure drop compared to the downstream segment. Therefore, considering heat transfer effects, the pipe loop should be installed in the upstream portion for maximum benefit. The installation of the pipe loop in the midsection of the pipeline, as in case (c) in Figure 3.8, will not be the optimum location, based on the preceding discussion. It can therefore be concluded that if the gas temperature is fairly constant along the pipeline, the loop should be installed toward the downstream end, as in case (b). If heat transfer is taken into account and the gas temperature varies along the pipeline, with the hotter gas being upstream, the better location for the pipe loop will be on the upstream end, as in case (a). HYDRAULIC PRESSURE GRADIENT Since pressure in a gas pipeline is nonlinear compared to liquid pipelines, the hydraulic gradient for a gas pipeline appears to be a slightly curved line instead of a straight line. The slope of the hydraulic gradient at any point represents the pressure loss due to friction per unit length of pipe. This slope is more pronounced as we move toward the downstream end of the 46

47 pipeline, since the pressure drop is larger toward the end of the pipeline. If there are intermediate deliveries or injections along the pipeline, the hydraulic gradient will be a series of broken lines, as indicated in Figure A similar broken hydraulic gradient can also be seen in the case of a pipeline with variable pipe diameters and wall thicknesses, even if the flow rate is constant. Unlike liquid pipelines, the breaks in hydraulic pressure gradient are not as conspicuous in gas pipelines. In a long-distance gas pipeline, due to limitations of pipe pressure, intermediate compressor stations will be installed to boost the gas pressure to the required value so the gas can be delivered at the contract delivery pressure at the end of the pipeline. 47

48 PRESSURE REGULATORS AND RELIEF VALVES In a long-distance gas pipeline with intermediate delivery points, there may be a need to regulate the gas pressure at certain delivery points in order to satisfy the customer requirements. Suppose the pressure at a delivery point is 800 psig, whereas the customer requirement is only 500 psig. Obviously, some means of reducing the gas pressure must be provided so that the customer can utilize the gas for his or her requirements at the correct pressure. This is achieved by means of a pressure regulator that will ensure a constant pressure downstream of the delivery point, regardless of the pressure on the upstream side of the pressure regulator. This concept is further illustrated using the above example. The main pipeline from A to C has a branch pipe BE. The flowrate from A to B is 100 MMSCFD, with an inlet pressure of 1200 psig at A. At B, gas is delivered into a branch line BE at the rate of 30 MMSCFD. 48

49 The remaining volume of 70 MMSCFD is delivered to the pipeline terminus C at a delivery pressure of 600 psig. Based on the delivery pressure requirement of 600 psig at C and a takeoff of 30 MMSCFD at point B, the calculated pressure at B is 900 psig. Starting with 900 psig on the branch line at B, at 30 MMSCFD, gas is delivered to point E at 600 psig. If the actual requirement at E is only 400 psig, a pressure regulator will be installed at E to reduce the delivery pressure by 200 psig. 49

50 50

51 51

52 52

53 53

54 LINE PACK The quantity of gas contained within the pipeline pp under pressure, measured at standard conditions (generally 14.7 psia and 60 F), is termed the line pack volume. Consider a segment of pipe, of length L, with upstream pressure and temperature of P1 and T1 and downstream values of P2 and T2, respectively. Suppose the inside diameter of the pipe is D; then the physical volume of the pipe section is This volume is the gas volume at pressures and temperatures ranging from P1, T1 at the upstream end to P2, T2 at the downstream end of the pipe length L. In order to convert this volume to standard conditions of pressure, Pb, and temperature,tb, we apply the gas law Equation as follows: 54

55 From Equation 3.31, solving for line pack Vb at standard conditions, we get Substituting the value ofvp from Equation 3.30 and simplifying, we get Equation 3.33 is modified in terms of commonly used units as follows: Where, equation in SI units is Vb is in standard ft 3, D in inch and L in mi. The corresponding Where, Vb is in standard m 3, D in mm and L in km. 55

56 56

57 57

PDHengineer.com Course O-5001

PDHengineer.com Course O-5001 Hengineer.com Course O-500 Gas ipeline Hydraulics To receive credit for this course This document is the course text. You may review this material at your leisure either before or after you purchase the

More information

Fluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

Fluids Engineering. Pipeline Systems 2. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 423 Fluids Engineering Pipeline Systems 2 Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 SERIES PIPE FLOW WITH PUMP(S) 2 3 4 Colebrook-

More information

Sizing of Gas Pipelines

Sizing of Gas Pipelines Sizing of Gas Pipelines Mavis Nyarko MSc. Gas Engineering and Management, BSc. Civil Engineering Kumasi - Ghana mariiooh@yahoo.com Abstract-In this study, an effective approach for calculating the size

More information

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013

Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Determining Liquid Capacity 4 th Annual Pipeline Knowledge Retention Chris Sonneborn November 7, 2013 Outline What is important? Liquid Properties Thermal Conditions Hydraulic Gradient Flow Regime in Liquids

More information

Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC

Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC Hydraulic modeling assessment Copyright 2010, Optimized Technical Solutions, LLC Name: Date: Please answer the following questions with the complete piping configuration shown in Figure 1 below. Assume

More information

Fluid Mechanics II 3 credit hour. Fluid flow through pipes-minor losses

Fluid Mechanics II 3 credit hour. Fluid flow through pipes-minor losses COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipes-minor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular

More information

Comparative Analysis of Multiphase Pressure Drop Equations

Comparative Analysis of Multiphase Pressure Drop Equations Comparative Analysis of Multiphase Pressure Drop Equations Okologume Chinedu Wilfred Department of Petroleum and Natural Gas Engineering Federal University of Petroleum Resources, Effurun, Nigeria. wilfredokologume@yahoo.com

More information

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).

When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses). PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS

CVE 372 HYDROMECHANICS EXERCISE PROBLEMS VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take

More information

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics

COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

TransCanada / Daniel Using Advances Diagnostics to Identify Measurement Uncertainties

TransCanada / Daniel Using Advances Diagnostics to Identify Measurement Uncertainties TransCanada / Daniel Using Advances Diagnostics to Identify Measurement Uncertainties Thomas Hart, TransCanada Martin Schlebach, Emerson/Daniel April 2018 Introduction Columbia Gulf is a subsidiary of

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering STEADY STATE FLOW STUDIES OF SECTIONS IN

The Pennsylvania State University. The Graduate School. Department of Energy and Mineral Engineering STEADY STATE FLOW STUDIES OF SECTIONS IN The Pennsylvania State University The Graduate School Department of Energy and Mineral Engineering STEADY STATE FLOW STUDIES OF SECTIONS IN NATURAL GAS PIPELINE NETWORKS A Thesis in Petroleum and Natural

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

WATER DISTRIBUTION NETWORKS

WATER DISTRIBUTION NETWORKS WATER DISTRIBUTION NETWORKS CE 370 1 Components of Water Supply System 2 1 Water Distribution System Water distribution systems are designed to adequately satisfy the water requirements for a combinations

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

Pressure and Flow Characteristics

Pressure and Flow Characteristics Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

The effect of geometric parameters on the head loss factor in headers

The effect of geometric parameters on the head loss factor in headers Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract

More information

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE

FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE 11 ACPPA TECHNICAL SERIES FLOW FRICTION CHARACTERISTICS OF CONCRETE PRESSURE PIPE This paper presents formulas to assist in hydraulic design of concrete pressure pipe. There are many formulas to calculate

More information

2 Internal Fluid Flow

2 Internal Fluid Flow Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS

CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS CFD MODELLING AND VALIDATION OF HEAD LOSSES IN PIPE BIFURCATIONS Kasturi Sukhapure* a, Alan Burns a, Tariq Mahmud a, Jake Spooner b. a School of Chemical and Process Engineering, University of Leeds, Leeds

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

More information

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow:

Two-Fluid Model 41. Simple isothermal two-fluid two-phase models for stratified flow: Two-Fluid Model 41 If I have seen further it is by standing on the shoulders of giants. Isaac Newton, 1675 3 Two-Fluid Model Simple isothermal two-fluid two-phase models for stratified flow: Mass and momentum

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Chapter 6. Losses due to Fluid Friction

Chapter 6. Losses due to Fluid Friction Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

More information

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics AEROSPACE ENGINEERING DEPARTMENT Second Year - Second Term (2008-2009) Fluid Mechanics & Gas Dynamics Similitude,Dimensional Analysis &Modeling (1) [7.2R*] Some common variables in fluid mechanics include:

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Lecture 22. Mechanical Energy Balance

Lecture 22. Mechanical Energy Balance Lecture 22 Mechanical Energy Balance Contents Exercise 1 Exercise 2 Exercise 3 Key Words: Fluid flow, Macroscopic Balance, Frictional Losses, Turbulent Flow Exercise 1 It is proposed to install a fan to

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Only if handing in. Name: Student No.: Page 2 of 7

Only if handing in. Name: Student No.: Page 2 of 7 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Mass of fluid leaving per unit time

Mass of fluid leaving per unit time 5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.

More information

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:

For example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then: Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chapter Four fluid flow mass, energy, Bernoulli and momentum 4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering

More information

Friction Factors and Drag Coefficients

Friction Factors and Drag Coefficients Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

More information

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL

THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt 281 THE HYDRAULIC PERFORMANCE OF ORIENTED SPUR DIKE IMPLEMENTATION IN OPEN CHANNEL Karima Attia 1 and Gamal El Saied 2 1

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Turbulent Compressible Flow in a Slender Tube

Turbulent Compressible Flow in a Slender Tube Turbulent Compressible Flow in a Slender Tube Kurt O. Lund* 1, and Christine M. Lord 2 1 COMSOL Consultant, 2 Lord Engineering Corp. *Corresponding author: 135 Sixth Street, Del Mar, CA 92014, kurtlund@roadrunner.com

More information

Thermal Fluid System Design. Team Design #1

Thermal Fluid System Design. Team Design #1 Thermal Fluid System Design Team Design #1 Table of Contents Nomenclature Listing.3 Executive Summary.6 Introduction.7 Analysis.8 Results/Discussion..18 Conclusion..29 References..29 Appendix A: Detailed

More information

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

More information

CHAPTER EIGHT P U M P I N G O F L I Q U I D S

CHAPTER EIGHT P U M P I N G O F L I Q U I D S CHAPTER EIGHT P U M P I N G O F L I Q U I D S Pupmps are devices for supplying energy or head to a flowing liquid in order to overcome head losses due to friction and also if necessary, to raise liquid

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

The Pennsylvania State University The Graduate School John and Willie Leone Family Department of Energy and Mineral Engineering

The Pennsylvania State University The Graduate School John and Willie Leone Family Department of Energy and Mineral Engineering The Pennsylvania State University The Graduate School John and Willie Leone Family Department of Energy and Mineral Engineering A ROBUST LINEAR-PRESSURE ANALOG FOR THE ANALYSIS OF NATURAL GAS TRANSPORTATION

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved

More information

Compressible Duct Flow with Friction

Compressible Duct Flow with Friction Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady one-dimensional adiabatic flow 2. Perfect gas with

More information

Review of pipe flow: Friction & Minor Losses

Review of pipe flow: Friction & Minor Losses ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Experiment No.4: Flow through Venturi meter. Background and Theory

Experiment No.4: Flow through Venturi meter. Background and Theory Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters

More information

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University CIVE 401 - HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with

More information

Lesson 37 Transmission Of Air In Air Conditioning Ducts

Lesson 37 Transmission Of Air In Air Conditioning Ducts Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).

More information

CHAPTER THREE FLUID MECHANICS

CHAPTER THREE FLUID MECHANICS CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook Reference Manual 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com Reference Manual 405 and 1595 405 Compact Orifice Series and 1595 Conditioning

More information

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW

Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Fluid Mechanics - Course 123 COMPRESSIBLE FLOW Flow of compressible fluids in a p~pe involves not only change of pressure in the downstream direction but also a change of both density of the fluid and

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 and 1595 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test

More information

PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout

PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout Proyectos Consultoría Formación PIPING SYSTEMS FOR INDUSTRIAL PLANTS, Part I: Fluid Mechanics, Materials, Piping Systems, Piping Layout STUDY NOTES Instructor: Javier Tirenti training@arvengconsulting.com

More information

Analysis of the possibility to optimize the passive pressure pulsations dampers using CFD

Analysis of the possibility to optimize the passive pressure pulsations dampers using CFD Analysis of the possibility to optimize the passive pressure pulsations dampers using CFD MSc eng. Przemysław Młynarczyk Supervisor: Prof. dr hab. inż. Piotr Cyklis Abstract Vibration and noise caused

More information

Computation of Natural Gas Pipeline Hydraulics

Computation of Natural Gas Pipeline Hydraulics pubs.acs.org/iecr Computation of Natural Gas Pipeline Hydraulics Miguel Bagajewicz*,, and Gary Valtinson epartment of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

Interphase Transport in Isothermal Systems

Interphase Transport in Isothermal Systems Transport Phenomena Interphase Transport in Isothermal Systems 1 Interphase Transport in Isothermal Systems 1. Definition of friction factors 2. Friction factors for flow in tubes 3. Friction factors for

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book NOTICE Read

More information

MONITOR REGULATOR SIZING AND OTHER CONSIDERATIONS

MONITOR REGULATOR SIZING AND OTHER CONSIDERATIONS MONITOR REGULATOR SIZING AND OTHER CONSIDERATIONS 6" 4" 6" 4" 4" 8" 4" 6" 6" 8" 6" 6" OGA 015 Regulator Fundamentals Seminar Monitor Regulator Sizing Theory FLOW in m out USTREAM MONITOR REGULATOR DOWNSTREAM

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

A Model Answer for. Problem Set #7

A Model Answer for. Problem Set #7 A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Cartographic displacement

Cartographic displacement Title of Paper: Integrating GIS with Pipeline Simulation Software Authors' Name: Clay Noble, PE Abstract: Over the last ten years, energy companies, including gas gatherers, transmission and distribution

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Engineers Edge, LLC PDH & Professional Training

Engineers Edge, LLC PDH & Professional Training 510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 266-6915 fax (678) 643-1758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe Flow-Friction Factor

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters For Liquid and Gas Flow by Harlan H. Bengtson, PhD, P.E. 1. Introduction Orifice and Venturi Pipe Flow Meters The flow rate of a fluid flowing in a pipe under pressure

More information

Pipe Flow. Lecture 17

Pipe Flow. Lecture 17 Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves

Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Guidelines for the Installation of SYGEF Pipes, Fittings and Valves Calculation of Length Changes Length changes which occur in SYGEF can be calculated in the usual manner, taking into consideration the

More information

Lecture Note for Open Channel Hydraulics

Lecture Note for Open Channel Hydraulics Chapter -one Introduction to Open Channel Hydraulics 1.1 Definitions Simply stated, Open channel flow is a flow of liquid in a conduit with free space. Open channel flow is particularly applied to understand

More information

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical

More information

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS

EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II - FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:

More information

DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER

DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER Metrol. Meas. Syst., Vol. XVIII (011), No. 1, pp. 19-136 METROLOGY AND MEASUREMENT SYSTEMS Index 330930, ISSN 0860-89 www.metrology.pg.gda.pl DESIGN AND PERFORMANCE OF THE CONVERGING-DIVERGING VORTEX FLOWMETER

More information