Solid State Theory Physics 545


 Erica Marilyn Whitehead
 1 years ago
 Views:
Transcription
1 olid tate Theory hysics 545
2 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and elasticity tensor. Relations between the strength of chemical bonds and elasticity. Thermal expansion.
3 Deformation is change of linear dimensions under external force. ELATI DEFORMATION is reversible and involves bond stretching. Bond stretching Relaxed stressfree solid Material in compression. The springs resist tension. Material in tension. The springs resist elongation.
4 F Bond springs. train. F F F Irrespective of the number of the springs in the chain, each spring carriers the same load! Each individual spring will elongate by the same amount! Hence, strain is defined as elongation for given unit! > strain is dimensionless! F F L L elongation train original length L L
5 Bond springs. tress. F train Force cross sectional area a b ross sectional area F
6 Z Y tress. General case. X zz zy normal stresses: xx ; yy ; zz zx yz yy xz xy yx xz shear stresses: xz ; yz ; xy z x z y z z onditions of equilibrium : ) zz  z z, xx  x x, yy  y y ) xy yx ; xz zx ; zy yx xx yx zx xy yy zy xz yz zz ik ki
7 train. General case. Z Y X u uu x +u y +u z + x u x u x x xx + x u y u y x xy + i k k i ik x u x u ik ki zz zy zx yz yy yx xz xy xx
8 tresstrain relations. In general, stress causes displacement in the directions that are parallel and perpendicular to the stress direction. Therefore: xx xx xxxx + yy xxyy + zz xxzz + xy xxxy ik are elastic compliances ik are elastic coefficients (stiffness constants) xz xxxz + i ik k k k ik k i yz xxyz
9 Number of independent elastic constants. ik and c ik are not independent.. ince the stress is invariant with respect to inversion: ik ki ik ki and matrices contain no more than independent element.. ymmetry of crystals further restricts the number independent elements of and matrices. Triclinic Monoclini c Orthorho mbic Tetragonal Trigonal (rhomboh edral) Hexagonal ubic (Isotropic) ymmetry none 4 ( I) 3 ( I) 6 ( or 6 ) 4 3 Number of ik and ik 3 9 7(6) 6(7) 5 3
10 Examples. Trigonal (rhombohedral) symmetry (quartz). ubic crystal ( 4 How to deduce the relations between ik from symmetry? ) (see rystallographic tables. Example: in cubic crystals xxyyzz> 33 ) Isotropic case
11 Elastic constants (Ga) for different crystals Na B K B Be H Mg H Al F In Tetr Dmd i Dmd u F Au F B Ta B W B Fe B o H Lil Nal Nal Nal A is the anisotropy ratio. A B F H Dmd Nal
12 Generalized Hooke s law. For a certain direction under uniaxial loading E is called Young s modulus (uniaxial modulus). For a cubic crystal load in () direction E is i i E E ( )( + ) ( + ) For shear stresses one can write the same relation G ( ) i i G ( ) G is called shear modulus.
13 ompressibility. If body is subjected by the compressive stress equal in all directions (hydrostatic pressure) it will deform without changing its shape. The change of the volume defines isothermal compressibility. K B/K is called bulk modulus. For a cubic crystal Where does the resistance to compression comes from? B + 3 For metals resistance to compression comes from the electrostatic repulsion of electrons. Homework: try to prove that BnE f /3. Hint: estimate change of the free energy of electrons due to change of volume. In ionic crystals resistance to compression comes from the mutual repulsion of inner shell electrons. Homework: which crystal do you expect to be more compressible LiF or si?
14 oisson ratio. Let us consider a solid under uniaxial stress xx. Then the deformations are given as xx xx xxxx ( ) yy xx xxyy ( ) tress along one direction causes deformation along other directions! The ratio ν yy xx xxyy xxxxx ν. If a body is isotropic and does not change its volume then ν ½.. If a body does not change its shape then ν. is called oisson ratio 3. ν is a function of direction! In B lattices ν() >, whereas v() <! Example uzn (βbrass): ν().39, v().39. > tension along () causes expansion of the crystal in the transverse direction! Hardsphere model predicts v(, ) and v(,)+. (The same model does not predict such a large values for F and H). 4. Most of the materials have ν..4. Homework: rove both claims.
15 Isotropic crystals. For isotropic crystals there are only two independent elastic constants normal modulus E (Young s modulus) and shear modulus G. G ( ) E E ν G E G( ν + ). Most of the polycrystalline materials (metals, ceramics, polymers, glasses) are isotropic.. ast majority of crystals is anisotropic. 3. Elastic (fully recoverable) deformations are usually very small for metals, ceramics and glasses (<.). 4. olids with a very large range of elastic deformations(~.5) are called rubbers.
16 Relations between crystal structure and elastic properties. Al r u Fe Nb Ta W E(Ga) G(Ga) B(Ga) ν
17 Thermal expansion. Gruneisen constant. Thermal expansion is a result of anharmonic atomic interactions. Linear thermal expansion coefficient as: T α 3 Homework: why is necessary to put /3 in the definition of α? The mechanical energy associated with thermal expansion is 3Bα. ince T U T U U T T B α 3 For most of the materials Gruneisen constant, γ, is ~, positive, independent of temperature and represents the degree of unharmonicity of atomic interactions. Materials with large bulk modulus (hard) have small thermal expansion coefficient. B 3 γ α Fe u Al γ α 6 K  J/(molK) B Ga γ α U U B 3 T T T
18 Thermal expansion. Materials aspects. For most of the materials α polymers >α metals α ionic >α covalent 5.4 α( 6 K  ) Ag 8.9 Au 4. Mg 4.8 Ni 3.4 t 8.8 Ti 8.6 Diamond.8 Graphite 6.7 Graphite . i 4.68 Ge 5.8 GaAs i 3 N 4.7 Nal 39.6 olystyrene 7 olypropylene 68 γ For most of the materials γ> and α >. However, since thermal expansion reflects unharmonicity of atomic interactions it is not obligatory for α and γ to be positive
19 Negative thermal expansion of ZrW O 8. Lattice parameter a (open circles) Grüneisen parameter, γ, (crosses) honon energy The roomtemperature crystal structure of ZrW O 8 is a primitive cubic Bravais lattice with 44 atoms per unit cell arranged according to space group 3. ZrW O 8 consists of cornersharing WO 4 tetrahedra and ZrO 6 octahedra. Each corner of the ZrO 6 octahedra is shared with one WO 4 tetrahedron, whereas one corner of each WO 4 tetrahedra remains unshared.
Continuum Mechanics. Continuum Mechanics and Constitutive Equations
Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform
More information3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS
3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,
More informationLecture 7. Properties of Materials
MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization
More informationIntroduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationUnderstand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More informationEE C247B ME C218 Introduction to MEMS Design Spring 2017
247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T. Reading: Senturia, Chpt. 8 Lecture Topics:
More informationChapter 2. Rubber Elasticity:
Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber
More information3D and Planar Constitutive Relations
3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace
More informationElasticité de surface. P. Muller and A. Saul Surf. Sci Rep. 54, 157 (2004).
Elasticité de surface P. Muller and A. Saul Surf. Sci Rep. 54, 157 (2004). The concept I Physical origin Definition Applications Surface stress and crystallographic parameter of small crystals Surface
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationMATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?
MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition
More informationTensor Visualization. CSC 7443: Scientific Information Visualization
Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its
More informationCOMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction
COMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS HsiangChuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,
More information2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationObjectives: After completion of this module, you should be able to:
Chapter 12 Objectives: After completion of this module, you should be able to: Demonstrate your understanding of elasticity, elastic limit, stress, strain, and ultimate strength. Write and apply formulas
More informationA DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
More informationIntroduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
More informationHow materials work. Compression Tension Bending Torsion
Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons () B. Neutral charge, i.e., # electrons = #
More informationELASTICITY (MDM 10203)
LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering
More informationContinuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms
Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive
More informationCrystal Structure and Chemistry
Crystal Structure and Chemistry Controls on Crystal Structure Metallic bonding closest packing Covalent bonding depends on orbital overlap and geometry Ionic bonding Pauling s Rules Coordination Principle
More informationChapter 5 Elastic Strain, Deflection, and Stability 1. Elastic StressStrain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic StressStrain Relationship A stress in the xdirection causes a strain in the xdirection by σ x also causes a strain in the ydirection & zdirection
More informationBuckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate
Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical
More informationCrystal Relaxation, Elasticity, and Lattice Dynamics
http://excitingcode.org Crystal Relaxation, Elasticity, and Lattice Dynamics Pasquale Pavone HumboldtUniversität zu Berlin http://excitingcode.org PART I: Structure Optimization Pasquale Pavone HumboldtUniversität
More information2 Introduction to mechanics
21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationMECHANICS OF MATERIALS. EQUATIONS AND THEOREMS
1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 20110114 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal
More informationBasic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008
Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Righthanded coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and
More informationAtomic Arrangement. Primer in Materials Spring
Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to
More information5 Symmetries and point group in a nut shell
30 Phys520.nb 5 Symmetries and point group in a nut shell 5.1. Basic ideas: 5.1.1. Symmetry operations Symmetry: A system remains invariant under certain operation. These operations are called symmetry
More informationResource reading (If you would like to brush up on stress, strain, and elasticity):
12.108 Struct. & Prop s. of Earth Mat. Lecture 9 1 Singlecrystal elasticity Assigned Reading: Nye JF (1957) Physical Properties of Crystals. Oxford University Press, Oxford, UK (Chapters 5 and 6). Nye,
More informationTRESS  STRAIN RELATIONS
TRESS  STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple
More informationStatic Equilibrium; Elasticity & Fracture
Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationfive Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture
ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS
More informationStructure and Dynamics : An Atomic View of Materials
Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic
More informationProblem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1
Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2ad,g,h,j 2.6, 2.9; Chapter 3: 1ad,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate
More informationChapter 3. The structure of crystalline solids 3.1. Crystal structures
Chapter 3. The structure of crystalline solids 3.1. Crystal structures 3.1.1. Fundamental concepts 3.1.2. Unit cells 3.1.3. Metallic crystal structures 3.1.4. Ceramic crystal structures 3.1.5. Silicate
More informationElectromagnetic Properties of Materials Part 2
ECE 5322 21 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #3 Electromagnetic Properties of Materials Part 2 Nonlinear
More information1 Stress and Strain. Introduction
1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may
More informationAtomic Arrangement. Primer Materials For Science Teaching Spring
Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling
More informationBone Tissue Mechanics
Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationRaman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova
University of Hamburg, Institute of Mineralogy and Petrology Raman and IR spectroscopy in materials science. Symmetry analysis of normal phonon modes Boriana Mihailova Outline. The dynamics of atoms in
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationProblem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:
Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein
More informationChapter 7. Highlights:
Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true
More informationReview of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis
uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods
More informationTwodimensional ternary locally resonant phononic crystals with a comblike coating
Twodimensional ternary locally resonant phononic crystals with a comblike coating YanFeng Wang, YueSheng Wang,*, and Litian Wang Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing,
More informationChapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson)
Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson) Outline: 3.1 Strain, stress and Young modulus 3. Energy density 3.3 Typical stressstrain curve
More informationSurface stress and relaxation in metals
J. Phys.: Condens. Matter 12 (2000) 5541 5550. Printed in the UK PII: S09538984(00)113864 Surface stress and relaxation in metals P M Marcus, Xianghong Qian and Wolfgang Hübner IBM Research Center, Yorktown
More informationChapter 13 ELASTIC PROPERTIES OF MATERIALS
Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions
More information**********************************************************************
Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 333 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235
More informationCHEM. Ch. 12 Notes ~ STATES OF MATTER
CHEM. Ch. 12 Notes ~ STATES OF MATTER NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 12.1 topics States of Matter: SOLID, LIQUID, GAS, PLASMA I. Kinetic Theory
More informationLecture Outline: Atomic Structure
Lecture Outline: Atomic Structure Electronic Structure of the Atom Periodic Table Types of Atomic Bonding, primary/secondary bonds Coordination and next neighbors Binding Energy, Interatomic Spacing, &
More informationSolid State Physics 1. Vincent Casey
Solid State Physics 1 Vincent Casey Autumn 2017 Contents 1 Crystal Mechanics 1 1.1 Stress and Strain Tensors...................... 2 1.1.1 Physical Meaning...................... 6 1.1.2 Simplification
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationStress Integration for the DruckerPrager Material Model Without Hardening Using the Incremental Plasticity Theory
Journal of the Serbian Society for Computational Mechanics / Vol. / No., 008 / pp. 8089 UDC: 59.74:004.0 Stress Integration for the Druckerrager Material Model Without Hardening Using the Incremental
More informationElements of Rock Mechanics
Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider
More informationT R Anantharaman Education and Research Foundation Elastic modulus. Basics and significance
T R Anantharaman Education and Research Foundation www.traerf.org Elastic modulus Basics and significance P Rama Rao and V Chandrasekaran ARCI, Hyderabad We claim no originality for the material presented.
More informationQuestion 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and crosssectional area of 4.0 10 5 m 2 under a given load.
More informationMechanical properties 1 Elastic behaviour of materials
MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical
More informationSymmetry. 2D Symmetry. 2D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.
Symmetry a. Twofold rotation = 30 o /2 rotation a. Twofold rotation = 30 o /2 rotation Operation Motif = the symbol for a twofold rotation EESC 2100: Mineralogy 1 a. Twofold rotation = 30 o /2 rotation
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationOutline. TensileTest Specimen and Machine. StressStrain Curve. Review of Mechanical Properties. Mechanical Behaviour
TensileTest Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress  true strain (flow curve) mechanical properties:  Resilience  Ductility  Toughness  Hardness A standard
More informationStrain Transformation equations
Strain Transformation equations R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation
More informationClass XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions
Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount
More informationIntroduction to Engineering Materials ENGR2000 Chapter 12: Structures and Properties of Ceramics. Dr. Coates
Introduction to Engineering Materials ENGR2000 Chapter 12: Structures and Properties of Ceramics Dr. Coates 12.1 Introduction Ceramics Compounds between metallic & nonmetallic elements Predominantly ionic
More informationRubber Elasticity (Indented text follows Strobl, other follows Doi)
Rubber Elasticity (Indented text follows Strobl, other follows Doi) Elasticity of A Single Chain: The spring constant associated with a single polymer chain is of importance in a wide range of situations
More informationBasic concepts to start Mechanics of Materials
Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen
More informationHigh Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )
Course KGP003 Ch. 12 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Ceramic materials
More informationSolids / Crystal Structure
The first crystal analysis proved that in the typical inorganic salt, NaCl, there is no molecular grouping. The inference that the structure consists of alternate ions of sodium and chlorine was an obvious
More informationGeology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)
Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties:  elastic modulii Outline of this Lecture 1. Uniaxial rock
More informationIntroduction to Crystal Structure and Bonding. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India
Introduction to Crystal Structure and Bonding 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Fundamental Properties of matter 2 Matter:
More informationPhysics. Assignment1(UNITS AND MEASUREMENT)
Assignment1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical
More informationLectures on. Constitutive Modelling of Arteries. Ray Ogden
Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics
More informationOrientation of Piezoelectric Crystals and Acoustic Wave Propagation
Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering
More informationProperties of the stress tensor
Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress
More informationDFT EXERCISES. FELIPE CERVANTES SODI January 2006
DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a
More informationCHAPTER 4. Crystal Structure
CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms
More informationThe structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures
Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?
More informationStructure of Crystalline Solids
Structure of Crystalline Solids Solids Effect of IMF s on Phase Kinetic energy overcome by intermolecular forces C 60 molecule llotropes of Carbon NetworkCovalent solid Molecular solid Does not flow
More informationANALYSIS OF STRAINS CONCEPT OF STRAIN
ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an
More informationLecture 9. StrainedSi Technology I: Device Physics
Strain Analysis in Daily Life Lecture 9 StrainedSi Technology I: Device Physics Background Planar MOSFETs FinFETs Reading: Y. Sun, S. Thompson, T. Nishida, Strain Effects in Semiconductors, Springer,
More informationDynamics of Glaciers
Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers
More informationQuestion 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of crosssection of the steel wire, A 1 = m 2
Question 9.1: A steel wire of length 4.7 m and crosssectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and crosssectional area of 4.0 10 5 m 2 under a given load.
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
50 Module 4: Lecture 1 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; MohrCoulomb failure
More informationRESEARCH PROJECT NO. 26
RESEARCH PROJECT NO. 26 DETERMINATION OF POISSON'S RATIO IN AD1 TESTING BY UNIVERSITY OF MICHIGAN REPORT PREPARED BY BELA V. KOVACS and JOHN R. KEOUGH \ MEMBER / / DUCTILE IRON \ SOCIETY Issued by the
More informationQuestion Figure shows the strainstress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material?
Question. A steel wire of length 4.7 m and crosssectional area 3.0 x 105 m 2 stretches by the same amount as a copper wire of length 3.5 m and crosssectional area of 4.0 x 105 m 2 under a given load.
More informationChapter 16: Elastic Solids
Chapter 16: Elastic Solids Chapter 16: Elastic Solids... 366 16.1 Introduction... 367 16.2 The Elastic Strain... 368 16.2.1 The displacement vector... 368 16.2.2 The deformation gradient... 368 16.2.3
More informationChem8028(1314)  Spin Dynamics: Spin Interactions
Chem8028(1314)  Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipoledipole coupling 4 Jcoupling 5 Nuclear
More informationGame Physics. Game and Media Technology Master Program  Utrecht University. Dr. Nicolas Pronost
Game and Media Technology Master Program  Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit
More information1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.
Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation
More information6.730 Physics for Solid State Applications
6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3D Elastic Continuum 3D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific
More informationStrength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
More informationSEISMOLOGY I. Laurea Magistralis in Physics of the Earth and of the Environment. Elasticity. Fabio ROMANELLI
SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Elasticity Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it 1 Elasticity and Seismic
More informationFollowed by metals and inert gases  closepacked structures Deviations: BCC metals 'Ionic' compounds strive to follow the principles.
Reading: West 7 &8 Principles of Laves 1.Space Principle: Space is used most efficiently 2.Symmetry Principle: Highest possible symmetry is adopted 3.Connection Principle: There will be the most possible
More informationReference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",
Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity
More information