ELASTICITY (MDM 10203)


 Peter Reeves
 1 years ago
 Views:
Transcription
1 LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia
2 Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering the axis: x = x x When looking the Poisson's ratio (Lecture Module 3), it has been shown the relation of the strain and the stress in principle axes: { x 1 y }= [ 1 x 1 1 ]{} vector vector matrix MDM Dr. Waluyo Adi Siswanto 2
3 Generalised Hooke's Law { x 1 y }= [ 1 x 1 1 ]{} which implies }=[ { x [ ]] 1 1 } { x vector (3x1) matrix (3x3) vector (3x1) MDM Dr. Waluyo Adi Siswanto 3
4 Generalised Hooke's Law When it is extended to all stresses and strains (9 components of the tensors): { x x}=[ ]{ x x} vector (6x1) matrix (6x6) vector (6x1) MDM Dr. Waluyo Adi Siswanto 4
5 Generalised Hooke's Law Constitutive Matrix { x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ x D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} { }= [ D ] { } Constitutive matrix or lasticity matrix MDM Dr. Waluyo Adi Siswanto 5
6 Generalised Hooke's Law Compliance Matrix [C ]=[ D] 1 { x C 11 C 12 C 13 C 14 C 15 C 16 x C 21 C 22 C 23 C 24 C 25 C 26 C 31 C 32 C 33 C 34 C 35 C 36 x}=[ C 41 C 42 C 43 C 44 C 45 C 46 C 51 C 52 C 53 C 54 C 55 C 56 C 61 C 62 C 63 C 64 C 65 C 66]{ x} { }= [C ] { } Compliance matrix MDM Dr. Waluyo Adi Siswanto 6
7 Generalised Hooke's Law Anisotropic very direction has different properties, but D ij =D ji There are only 21 independent elastic constants in the generalised constitutive (Hooke's) law. { x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ x D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} MDM Dr. Waluyo Adi Siswanto 7
8 Anisotropic with one plane elastic symmetry x ' z ' z y ' x xy plane (rotate 180deg about z) [Q ]=[ ] y [ ' ]=[ xx xy xz x y 0 0 1][ x y z ][ ] =[ [ ' ]=[ xy xz x y 0 0 1][ xx x y z][ ] =[ xx xx xy ] xz x y x y z ] xy xz x y x y z MDM Dr. Waluyo Adi Siswanto 8
9 Anisotropic with one plane elastic symmetry It can be written { x x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} { x D11 D12 D13 D14 D15 D16 D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 x}=[ D 41 D 42 D 43 D 44 D 45 D 46 D 51 D 52 D 53 D 54 D 55 D 56 ]{ x yz D 61 D 62 D 63 D 64 D 65 D 66 x} MDM Dr. Waluyo Adi Siswanto 9
10 Anisotropic with one plane elastic symmetry As a result: { x D11 D12 D13 D D 21 D 22 D 23 D D 31 D 32 D 33 D x}=[ D 41 D 42 D 43 D D 55 D D 65 D 66]{ x x} There are 13 independent elastic constants MDM Dr. Waluyo Adi Siswanto 10
11 xample Problem 51 Map the Constitutive matrix of anisotropic material If the symmetrical plane is yz MDM Dr. Waluyo Adi Siswanto 11
12 xample Problem 52 Map the Constitutive matrix of anisotropic material If the symmetrical plane is zx MDM Dr. Waluyo Adi Siswanto 12
13 z y ' Orthotropic (Anisotropic with three plane elastic symmetry) x ' x [Q ]=[ ] y z ' [ ' ]=[ xy xz x y 0 0 1][ xx x y z][ ] =[ xx xy ] xz x y x y z [ ' ]=[ xy xz x y 0 0 1][ xx x y z ][ ] =[ ] xx xy xz x y x y z MDM Dr. Waluyo Adi Siswanto 13
14 Orthotropic (Anisotropic with three plane elastic symmetry) { x D11 D12 D D 21 D 22 D D 31 D 32 D x}=[ D D D 66]{ x x} There are 9 independent elastic constants MDM Dr. Waluyo Adi Siswanto 14
15 Isotropic lasticity In isotropic material, the elasticity (modulus of elasticity) behaves similarly in any direction = x x = = Considering Poisson's ratio x = x = x = x G= 2 1 and shear strains or = G = 2G = G = 2G xz = xz G xz = xz 2G MDM Dr. Waluyo Adi Siswanto 15
16 Isotropic lasticity then the equation can be written in a single matrix equation: { x x}= [ x ]{ x} [C ] MDM Dr. Waluyo Adi Siswanto 16
17 Isotropic lasticity then the equation can be written in a single matrix equation: { x x}= [ x ]{ x} [C ] MDM Dr. Waluyo Adi Siswanto 17
18 Isotropic lasticity { }=[C ]{ } { }=[C ] 1 { } { x x}= { }=[ D]{ } [ ]{ x x} [ D ] MDM Dr. Waluyo Adi Siswanto 18
19 Isotropic lasticity { x x}= [ ]{ x x} [ D ] MDM Dr. Waluyo Adi Siswanto 19
20 xercise Problem 53 In tensor notation, ij = kk ij 2G ij ij = 1 ij kk ij Write in full matrix notation MDM Dr. Waluyo Adi Siswanto 20
21 ij = kk ij 2G ij xx = xx y z 2G xx y = xx y z 2G y z = xx y z 2G z =2G =2G x =2G x In matrix, the same with that in page 19 MDM Dr. Waluyo Adi Siswanto 21
22 ij = 1 ij kk ij xx = 1 y = 1 z = 1 = 1 = 1 x = 1 xx xx y z y xx y z z xx y z x In matrix, the same with that in page 17 MDM Dr. Waluyo Adi Siswanto 22
23 xample Problem 54 The component of the strain tensor at a point in a body are given by x =0.005, =0.004, = =0.001, =0.0005, x =0.002 If the modulus of elasticity = N / mm 2 and the Poisson's ratio =0.25 a) Determine the component of stress tensor. b) Write the codes in Freemat so that you can use for future calculation with different variables. MDM Dr. Waluyo Adi Siswanto 23
24 Orthotropic lasticity There are three moduli of elasticity: x y z There are three moduli of rigidity: G xy G yz G zx There are six Poisson's ratio: = x, =, x = x x = x, y =, xz = x MDM Dr. Waluyo Adi Siswanto 24
25 Orthotropic lasticity { x x}=[ 1 x y x x 1 y x x xz z z y y 1 z G xy G yz 0 1 G zx ] { x x} MDM Dr. Waluyo Adi Siswanto 25
26 xample Problem 55 Write Freemat codes to calculate stress tensor of orthotropic material with 12 independent variables as written in page 19. MDM Dr. Waluyo Adi Siswanto 26
27 Strain nergy Density Function In simple axial problem Strain energy is calculated by the area of proportional area 1 2 pl pl 1 2 pl pl In matrix system to obtain scalar U = 1 2 { }T [ D]{ } This is the Strain nergy Density Function MDM Dr. Waluyo Adi Siswanto 27
28 Thermoelastic Constitutive Law The total strain consists of two component: mechanical and thermal M ij = T ij ij M ij = 1 ij kk ij T ij = T T o ij ij = 1 ij kk ij T T o ij ij = kk ij 2G ij 3 2G T T o ij DuhamelNeumann thermoelastic constitutive law MDM Dr. Waluyo Adi Siswanto 28
29 MDM Dr. Waluyo Adi Siswanto 29
Understand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More information3D and Planar Constitutive Relations
3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationConstitutive models: Incremental (Hypoelastic) Stress Strain relations. and
Constitutive models: Incremental (Hypoelastic) Stress Strain relations Example 5: an incremental relation based on hyperelasticity strain energy density function and 14.11.2007 1 Constitutive models:
More informationContinuum Mechanics. Continuum Mechanics and Constitutive Equations
Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationLecture 7. Properties of Materials
MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization
More informationContinuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms
Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive
More informationTensor Visualization. CSC 7443: Scientific Information Visualization
Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationTRESS  STRAIN RELATIONS
TRESS  STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationConstitutive models: Incremental plasticity Drücker s postulate
Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity  plastic flow law associated with the limit (loading) surface Prager
More information2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
More informationMODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations
MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #2: Nonlinear Elastic Models Isotropic Elastic Models: Invariant vs Principal Formulations Elastic
More informationDESIGN OF LAMINATES FOR INPLANE LOADING
DESIGN OF LAMINATES FOR INPLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily
More informationStress Integration for the DruckerPrager Material Model Without Hardening Using the Incremental Plasticity Theory
Journal of the Serbian Society for Computational Mechanics / Vol. / No., 008 / pp. 8089 UDC: 59.74:004.0 Stress Integration for the Druckerrager Material Model Without Hardening Using the Incremental
More informationStrain Transformation equations
Strain Transformation equations R. Chandramouli Associate DeanResearch SASTRA University, Thanjavur613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation
More informationBasic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008
Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Righthanded coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and
More informationModule 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
More informationMATERIAL ELASTIC ANISOTROPIC command
MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The
More informationChapter 2  Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.
Chapter  Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.
More informationComputational Biomechanics Lecture 2: Basic Mechanics 2. Ulli Simon, Frank Niemeyer, Martin Pietsch
Computational Biomechanics 016 Lecture : Basic Mechanics Ulli Simon, Frank Niemeyer, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents .7 Static Equilibrium Important: Freebody
More informationSolid State Theory Physics 545
olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and
More informationProblem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1
Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2ad,g,h,j 2.6, 2.9; Chapter 3: 1ad,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate
More informationIn this section, thermoelasticity is considered. By definition, the constitutive relations for Gradθ. This general case
Section.. Thermoelasticity In this section, thermoelasticity is considered. By definition, the constitutive relations for F, θ, Gradθ. This general case such a material depend only on the set of field
More informationSEISMOLOGY I. Laurea Magistralis in Physics of the Earth and of the Environment. Elasticity. Fabio ROMANELLI
SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Elasticity Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it 1 Elasticity and Seismic
More informationPlane and axisymmetric models in Mentat & MARC. Tutorial with some Background
Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
50 Module 4: Lecture 1 on Stressstrain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin pq space; MohrCoulomb failure
More informationME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)
ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,
More information2 Introduction to mechanics
21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy
More informationCOURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.)
Narvik University College (Høgskolen i Narvik) EXAMINATION TASK COURSE STE6289 Modern Materials and Computations (Moderne materialer og beregninger 7.5 stp.) CLASS: Master students in Engineering Design
More informationMECHANICS OF MATERIALS. EQUATIONS AND THEOREMS
1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 20110114 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal
More informationσ = F/A ε = L/L σ ε a σ = Eε
Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke
More informationChapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
More informationTHEORY OF PLATES AND SHELLS
THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKYKRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAWHILL
More informationTHE MECHANICAL BEHAVIOR OF ORIENTED 3D FIBER STRUCTURES
Lappeenranta University of Technology School of Engineering Science Degree Program in Computational Engineering and Technical Physics Master s Thesis Alla Kliuzheva THE MECHANICAL BEHAVIOR OF ORIENTED
More informationConcept Question Comment on the general features of the stressstrain response under this loading condition for both types of materials
Module 5 Material failure Learning Objectives review the basic characteristics of the uniaxial stressstrain curves of ductile and brittle materials understand the need to develop failure criteria for
More informationThe Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials
11th European Conference on NonDestructive Testing (ECNDT 214), October 61, 214, Prague, Czech Republic The Power of Ultrasonic Characterisation for Completely Assessing the Elastic Properties of Materials
More informationPEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II
PEAT8002  SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II Nick Rawlinson Research School of Earth Sciences Australian National University Waveform modelling Pwave firstmotions
More informationReference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",
Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity
More information(MPa) compute (a) The traction vector acting on an internal material plane with normal n ( e1 e
EN10: Continuum Mechanics Homework : Kinetics Due 1:00 noon Friday February 4th School of Engineering Brown University 1. For the Cauchy stress tensor with components 100 5 50 0 00 (MPa) compute (a) The
More informationTensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)
Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array
More informationElasticité de surface. P. Muller and A. Saul Surf. Sci Rep. 54, 157 (2004).
Elasticité de surface P. Muller and A. Saul Surf. Sci Rep. 54, 157 (2004). The concept I Physical origin Definition Applications Surface stress and crystallographic parameter of small crystals Surface
More informationMATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f
MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown
More informationEFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES
EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC
More informationBending of Simply Supported Isotropic and Composite Laminate Plates
Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto GutierrezMiravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,
More informationChapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
More informationTHE BENDING STIFFNESSES OF CORRUGATED BOARD
AMDVol. 145/MDVol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,
More informationBone Tissue Mechanics
Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue
More informationLecture Notes 3
12.005 Lecture Notes 3 Tensors Most physical quantities that are important in continuum mechanics like temperature, force, and stress can be represented by a tensor. Temperature can be specified by stating
More informationComputational models of diamond anvil cell compression
UDC 519.6 Computational models of diamond anvil cell compression A. I. Kondrat yev Independent Researcher, 5944 St. Alban Road, Pensacola, Florida 32503, USA Abstract. Diamond anvil cells (DAC) are extensively
More informationChapter 16: Elastic Solids
Chapter 16: Elastic Solids Chapter 16: Elastic Solids... 366 16.1 Introduction... 367 16.2 The Elastic Strain... 368 16.2.1 The displacement vector... 368 16.2.2 The deformation gradient... 368 16.2.3
More informationFEM Modeling of a 3D Printed Carbon Fiber Pylon
FEM Modeling of a 3D Printed Carbon Fiber Pylon I. López G.*, B. Chiné, and J.L. León S. Costa Rica Institute of Technology, School of Materials Science and Engineering, Cartago, Costa Rica *Corresponding
More informationValidation of the Resonalyser method: an inverse method for material identification
Validation of the Resonalyser method: an inverse method for material identification T. Lauwagie, H. Sol,. Roebben 3, W. Heylen and Y. Shi Katholieke Universiteit Leuven (KUL) Department of Mechanical ngineering
More informationON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS
Materials Physics and Mechanics 32 (2017) 213221 Received: November 7, 2017 ON CALCULATION OF EFFECTIVE ELASTIC PROPERTIES OF MATERIALS WITH CRACKS Ruslan L. Lapin 1, Vitaly A. Kuzkin 1,2 1 Peter the
More informationComputational Biomechanics Lecture 2: Basic Mechanics 2. Ulli Simon, Martin Pietsch, Lucas Engelhardt
Computational Biomechanics 2017 Lecture 2: Basic Mechanics 2 Ulli Simon, Martin Pietsch, Lucas Engelhardt Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Temperature 1.3
More information1.1 Stress, strain, and displacement! wave equation
32 geophysics 3: introduction to seismology. Stress, strain, and displacement wave equation From the relationship between stress, strain, and displacement, we can derive a 3D elastic wave equation. Figure.
More informationCellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).
1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475477 (1996). Abstract Material microstructures are presented which can exhibit coefficients
More informationCalculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites
Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.6167, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.
More information6. 3D Kinematics DE2EA 2.1: M4DE. Dr Connor Myant
DE2EA 2.1: M4DE Dr Connor Myant 6. 3D Kinematics Comments and corrections to connor.myant@imperial.ac.uk Lecture resources may be found on Blackboard and at http://connormyant.com Contents ThreeDimensional
More informationDEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS
DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS Mohsen Safaei, Wim De Waele Ghent University, Laboratory Soete, Belgium Abstract The present work relates to the
More informationProblem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:
Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein
More informationDESIGN OF COMPOSITE LAMINATED STRUCTURES BY POLAR METHOD AND TOPOLOGY OPTIMISATION
DESIGN OF COMPOSIE LAMINAED SUCUES BY POLA MEOD AND OPOLOGY OPIMISAION A. Jibawy,,3, C. Julien,,3, B. Desmorat,,4, (*), A. Vincenti UPMC Univ Paris 6, UM 79, Institut Jean Le ond d Alembert B.P. 6 4, place
More informationStresses and Strains in flexible Pavements
Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same
More informationComputer simulation of the Poisson's ratio of soft polydisperse discs at zero temperature
Computer simulation of the Poisson's ratio of soft polydisperse discs at zero temperature JAKUB NAROJCZYK KRZYSZTOF W. WOJCIECHOWSKI Institute of Molecular Physics Polish Academy of Sciences ul. M. Smoluchowskiego
More informationRicci tensor and curvature scalar, symmetry
13 Mar 2012 Equivalence Principle. Einstein s path to his field equation 15 Mar 2012 Tests of the equivalence principle 20 Mar 2012 General covariance. Math. Covariant derivative 22 Mar 2012 RiemannChristoffel
More informationCIVL4332 L1 Introduction to Finite Element Method
CIVL L Introduction to Finite Element Method CIVL L Introduction to Finite Element Method by Joe Gattas, Faris Albermani Introduction The FEM is a numerical technique for solving physical problems such
More informationChem8028(1314)  Spin Dynamics: Spin Interactions
Chem8028(1314)  Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipoledipole coupling 4 Jcoupling 5 Nuclear
More informationDynamics of Glaciers
Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers
More informationMECHANICS OF MATERIALS
CHAPTER 2 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Stress and Strain Axial Loading 2.1 An Introduction
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationMicromeso draping modelling of noncrimp fabrics
Micromeso draping modelling of noncrimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Noncrimp fabrics (NCFs) are
More informationBasic concepts to start Mechanics of Materials
Basic concepts to start Mechanics of Materials Georges Cailletaud Centre des Matériaux Ecole des Mines de Paris/CNRS Notations Notations (maths) (1/2) A vector v (element of a vectorial space) can be seen
More informationLectures on. Constitutive Modelling of Arteries. Ray Ogden
Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics
More information1 Stress and Strain. Introduction
1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may
More informationSect Least Common Denominator
4 Sect.3  Least Common Denominator Concept #1 Writing Equivalent Rational Expressions Two fractions are equivalent if they are equal. In other words, they are equivalent if they both reduce to the same
More informationEnhancing Prediction Accuracy In Sift Theory
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department
More informationResource reading (If you would like to brush up on stress, strain, and elasticity):
12.108 Struct. & Prop s. of Earth Mat. Lecture 9 1 Singlecrystal elasticity Assigned Reading: Nye JF (1957) Physical Properties of Crystals. Oxford University Press, Oxford, UK (Chapters 5 and 6). Nye,
More information6.730 Physics for Solid State Applications
6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3D Elastic Continuum 3D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific
More informationMANY BILLS OF CONCERN TO PUBLIC
 6 8 96 8 9 6 9 XXX 4 > ?  8 9 x 4 z )  ! x  x   X      x 00      x z    x x  x      ) x       0 >  00090   4 0 x 00  ? z 8 & x   8? > 9     64 49 9 x  
More informationCOMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction
COMPRESSION AND BENDING STIFFNESS OF FIBERREINFORCED ELASTOMERIC BEARINGS HsiangChuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,
More informationMATERIAL ELASTIC HERRMANN INCOMPRESSIBLE command.
MATERIAL ELASTIC HERRMANN INCOMPRESSIBLE command Synopsis The MATERIAL ELASTIC HERRMANN INCOMPRESSIBLE command is used to specify the parameters associated with an isotropic, linear elastic material idealization
More informationPEAT SEISMOLOGY Lecture 3: The elastic wave equation
PEAT8002  SEISMOLOGY Lecture 3: The elastic wave equation Nick Rawlinson Research School of Earth Sciences Australian National University Equation of motion The equation of motion can be derived by considering
More informationUnit M1.5 Statically Indeterminate Systems
Unit M1.5 Statically Indeterminate Systems Readings: CDL 2.1, 2.3, 2.4, 2.7 16.001/002  Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology LEARNING OBJECTIVES
More informationMaterial parameters for electrostriction
Material parameters for electrostriction Yuri M. Shkel and Daniel J. Klingenberg a) Department of Chemical Engineering and Rheology Research Center, University of Wisconsin, Madison, Wisconsin 53706 Received
More informationPLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, twodimensional structural components of which
More informationUSING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE
Volume II: Fatigue, Fracture and Ceramic Matrix Composites USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE A. D. Resnyansky and
More informationA Finite Element Model for Numerical Analysis of Sintering
A Finite Element Model for Numerical Analysis of Sintering DANIELA CÂRSTEA HighSchool Group of Railways, Craiova ION CÂRSTEA Department of Computer Engineering and Communication University of Craiova
More informationMeasurement of local elastic modulus with CLUE
Measurement of local elastic modulus with CLUE Alexander A.Karabutov 1, Alexander A.Karabutov (Jr.) 2, Elena V.Savateeva 3 1 International Laser Center of Moscow State University aak@ilc.edu.ru 2 Deptm.of
More informationLAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
More informationEective properties of the octettruss lattice material
Journal of the Mechanics Physics of Solids 49 (2001) 1747 1769 www.elsevier.com/locate/jmps Eective properties of the octettruss lattice material V.S. Deshpe, N.A. Fleck, M.F. Ashby Department of Engineering,
More informationBeam Models. Wenbin Yu Utah State University, Logan, Utah April 13, 2012
Beam Models Wenbin Yu Utah State University, Logan, Utah 8434130 April 13, 01 1 Introduction If a structure has one of its dimensions much larger than the other two, such as slender wings, rotor blades,
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More informationCORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS
CORRELATING OFFAXIS TENSION TESTS TO SHEAR MODULUS OF WOODBASED PANELS By Edmond P. Saliklis 1 and Robert H. Falk ABSTRACT: The weakness of existing relationships correlating offaxis modulus of elasticity
More informationTuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & FreeBody Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
More informationMaterial Property Definition
LESSON 12 Material Property Definition Objective: a material that has temperature dependent properties. PATRAN301ExerciseWorkbookRelease7.5 121 122 PATRAN 301 Exercise Workbook  Release 7.5 LESSON
More informationLab Exercise #3: Torsion
Lab Exercise #3: Prelab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round
More informationCRYSTALLOGRAPHIC POINT AND SPACE GROUPS. Andy Elvin June 10, 2013
CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013 Contents Point and Space Groups Wallpaper Groups XRay Diffraction Electron Wavefunction Neumann s Principle Magnetic Point Groups Point
More informationANALYSIS OF STRAINS CONCEPT OF STRAIN
ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an
More information