ELASTICITY (MDM 10203)


 Peter Reeves
 1 years ago
 Views:
Transcription
1 LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia
2 Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering the axis: x = x x When looking the Poisson's ratio (Lecture Module 3), it has been shown the relation of the strain and the stress in principle axes: { x 1 y }= [ 1 x 1 1 ]{} vector vector matrix MDM Dr. Waluyo Adi Siswanto 2
3 Generalised Hooke's Law { x 1 y }= [ 1 x 1 1 ]{} which implies }=[ { x [ ]] 1 1 } { x vector (3x1) matrix (3x3) vector (3x1) MDM Dr. Waluyo Adi Siswanto 3
4 Generalised Hooke's Law When it is extended to all stresses and strains (9 components of the tensors): { x x}=[ ]{ x x} vector (6x1) matrix (6x6) vector (6x1) MDM Dr. Waluyo Adi Siswanto 4
5 Generalised Hooke's Law Constitutive Matrix { x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ x D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} { }= [ D ] { } Constitutive matrix or lasticity matrix MDM Dr. Waluyo Adi Siswanto 5
6 Generalised Hooke's Law Compliance Matrix [C ]=[ D] 1 { x C 11 C 12 C 13 C 14 C 15 C 16 x C 21 C 22 C 23 C 24 C 25 C 26 C 31 C 32 C 33 C 34 C 35 C 36 x}=[ C 41 C 42 C 43 C 44 C 45 C 46 C 51 C 52 C 53 C 54 C 55 C 56 C 61 C 62 C 63 C 64 C 65 C 66]{ x} { }= [C ] { } Compliance matrix MDM Dr. Waluyo Adi Siswanto 6
7 Generalised Hooke's Law Anisotropic very direction has different properties, but D ij =D ji There are only 21 independent elastic constants in the generalised constitutive (Hooke's) law. { x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ x D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} MDM Dr. Waluyo Adi Siswanto 7
8 Anisotropic with one plane elastic symmetry x ' z ' z y ' x xy plane (rotate 180deg about z) [Q ]=[ ] y [ ' ]=[ xx xy xz x y 0 0 1][ x y z ][ ] =[ [ ' ]=[ xy xz x y 0 0 1][ xx x y z][ ] =[ xx xx xy ] xz x y x y z ] xy xz x y x y z MDM Dr. Waluyo Adi Siswanto 8
9 Anisotropic with one plane elastic symmetry It can be written { x x D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 D 41 D 42 D 43 D 44 D 45 D 46 D 61 D 62 D 63 D 64 D 65 D 66]{ D11 D12 D13 D14 D15 D16 x}=[ D 51 D 52 D 53 D 54 D 55 D 56 x} { x D11 D12 D13 D14 D15 D16 D 21 D 22 D 23 D 24 D 25 D 26 D 31 D 32 D 33 D 34 D 35 D 36 x}=[ D 41 D 42 D 43 D 44 D 45 D 46 D 51 D 52 D 53 D 54 D 55 D 56 ]{ x yz D 61 D 62 D 63 D 64 D 65 D 66 x} MDM Dr. Waluyo Adi Siswanto 9
10 Anisotropic with one plane elastic symmetry As a result: { x D11 D12 D13 D D 21 D 22 D 23 D D 31 D 32 D 33 D x}=[ D 41 D 42 D 43 D D 55 D D 65 D 66]{ x x} There are 13 independent elastic constants MDM Dr. Waluyo Adi Siswanto 10
11 xample Problem 51 Map the Constitutive matrix of anisotropic material If the symmetrical plane is yz MDM Dr. Waluyo Adi Siswanto 11
12 xample Problem 52 Map the Constitutive matrix of anisotropic material If the symmetrical plane is zx MDM Dr. Waluyo Adi Siswanto 12
13 z y ' Orthotropic (Anisotropic with three plane elastic symmetry) x ' x [Q ]=[ ] y z ' [ ' ]=[ xy xz x y 0 0 1][ xx x y z][ ] =[ xx xy ] xz x y x y z [ ' ]=[ xy xz x y 0 0 1][ xx x y z ][ ] =[ ] xx xy xz x y x y z MDM Dr. Waluyo Adi Siswanto 13
14 Orthotropic (Anisotropic with three plane elastic symmetry) { x D11 D12 D D 21 D 22 D D 31 D 32 D x}=[ D D D 66]{ x x} There are 9 independent elastic constants MDM Dr. Waluyo Adi Siswanto 14
15 Isotropic lasticity In isotropic material, the elasticity (modulus of elasticity) behaves similarly in any direction = x x = = Considering Poisson's ratio x = x = x = x G= 2 1 and shear strains or = G = 2G = G = 2G xz = xz G xz = xz 2G MDM Dr. Waluyo Adi Siswanto 15
16 Isotropic lasticity then the equation can be written in a single matrix equation: { x x}= [ x ]{ x} [C ] MDM Dr. Waluyo Adi Siswanto 16
17 Isotropic lasticity then the equation can be written in a single matrix equation: { x x}= [ x ]{ x} [C ] MDM Dr. Waluyo Adi Siswanto 17
18 Isotropic lasticity { }=[C ]{ } { }=[C ] 1 { } { x x}= { }=[ D]{ } [ ]{ x x} [ D ] MDM Dr. Waluyo Adi Siswanto 18
19 Isotropic lasticity { x x}= [ ]{ x x} [ D ] MDM Dr. Waluyo Adi Siswanto 19
20 xercise Problem 53 In tensor notation, ij = kk ij 2G ij ij = 1 ij kk ij Write in full matrix notation MDM Dr. Waluyo Adi Siswanto 20
21 ij = kk ij 2G ij xx = xx y z 2G xx y = xx y z 2G y z = xx y z 2G z =2G =2G x =2G x In matrix, the same with that in page 19 MDM Dr. Waluyo Adi Siswanto 21
22 ij = 1 ij kk ij xx = 1 y = 1 z = 1 = 1 = 1 x = 1 xx xx y z y xx y z z xx y z x In matrix, the same with that in page 17 MDM Dr. Waluyo Adi Siswanto 22
23 xample Problem 54 The component of the strain tensor at a point in a body are given by x =0.005, =0.004, = =0.001, =0.0005, x =0.002 If the modulus of elasticity = N / mm 2 and the Poisson's ratio =0.25 a) Determine the component of stress tensor. b) Write the codes in Freemat so that you can use for future calculation with different variables. MDM Dr. Waluyo Adi Siswanto 23
24 Orthotropic lasticity There are three moduli of elasticity: x y z There are three moduli of rigidity: G xy G yz G zx There are six Poisson's ratio: = x, =, x = x x = x, y =, xz = x MDM Dr. Waluyo Adi Siswanto 24
25 Orthotropic lasticity { x x}=[ 1 x y x x 1 y x x xz z z y y 1 z G xy G yz 0 1 G zx ] { x x} MDM Dr. Waluyo Adi Siswanto 25
26 xample Problem 55 Write Freemat codes to calculate stress tensor of orthotropic material with 12 independent variables as written in page 19. MDM Dr. Waluyo Adi Siswanto 26
27 Strain nergy Density Function In simple axial problem Strain energy is calculated by the area of proportional area 1 2 pl pl 1 2 pl pl In matrix system to obtain scalar U = 1 2 { }T [ D]{ } This is the Strain nergy Density Function MDM Dr. Waluyo Adi Siswanto 27
28 Thermoelastic Constitutive Law The total strain consists of two component: mechanical and thermal M ij = T ij ij M ij = 1 ij kk ij T ij = T T o ij ij = 1 ij kk ij T T o ij ij = kk ij 2G ij 3 2G T T o ij DuhamelNeumann thermoelastic constitutive law MDM Dr. Waluyo Adi Siswanto 28
29 MDM Dr. Waluyo Adi Siswanto 29
16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5  Constitutive Equations
6.2 Techniques of Structural Analysis and Design Spring 2003 Unit #5  Constitutive quations Constitutive quations For elastic materials: If the relation is linear: Û σ ij = σ ij (ɛ) = ρ () ɛ ij σ ij =
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationLecture 8. Stress Strain in Multidimension
Lecture 8. Stress Strain in Multidimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]
More informationUnderstand basic stressstrain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stressstrain response of engineering materials. Quantify the linear elastic stressstrain response in terms of tensorial quantities
More informationEE C247B ME C218 Introduction to MEMS Design Spring 2017
247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T. Reading: Senturia, Chpt. 8 Lecture Topics:
More informationBasic Equations of Elasticity
A Basic Equations of Elasticity A.1 STRESS The state of stress at any point in a loaded bo is defined completely in terms of the nine components of stress: σ xx,σ yy,σ zz,σ xy,σ yx,σ yz,σ zy,σ zx,andσ
More information3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship
3.2 Hooke s law anisotropic elasticity Robert Hooke (16351703) Most general relationship σ = C ε + C ε + C ε + C γ + C γ + C γ 11 12 yy 13 zz 14 xy 15 xz 16 yz σ = C ε + C ε + C ε + C γ + C γ + C γ yy
More informationMECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso
MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Thermodynamics Derivation Hooke s Law: Anisotropic Elasticity
More informationConstitutive Relations
Constitutive Relations Dr. Andri Andriyana Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of field
More information3D and Planar Constitutive Relations
3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace
More informationPEAT SEISMOLOGY Lecture 2: Continuum mechanics
PEAT8002  SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationChapter 2: Elasticity
OHP 1 Mechanical Properties of Materials Chapter 2: lasticity Prof. Wenjea J. Tseng ( 曾文甲 ) Department of Materials ngineering National Chung Hsing University wenjea@dragon.nchu.edu.tw Reference: W.F.
More informationConstitutive models: Incremental (Hypoelastic) Stress Strain relations. and
Constitutive models: Incremental (Hypoelastic) Stress Strain relations Example 5: an incremental relation based on hyperelasticity strain energy density function and 14.11.2007 1 Constitutive models:
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More information2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials
Chapter : lastic Constitutive quations of a Laminate.0 Introduction quations of Motion Symmetric of Stresses Tensorial and ngineering Strains Symmetry of Constitutive quations. ThreeDimensional Constitutive
More information16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity
6.20 HANDOUT #2 Fall, 2002 Review of General Elasticity NOTATION REVIEW (e.g., for strain) Engineering Contracted Engineering Tensor Tensor ε x = ε = ε xx = ε ε y = ε 2 = ε yy = ε 22 ε z = ε 3 = ε zz =
More informationModule 3: 3D Constitutive Equations Lecture 10: Constitutive Relations: Generally Anisotropy to Orthotropy. The Lecture Contains: Stress Symmetry
The Lecture Contains: Stress Symmetry Strain Symmetry Strain Energy Density Function Material Symmetry Symmetry with respect to a Plane Symmetry with respect to two Orthogonal Planes Homework References
More informationA short review of continuum mechanics
A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationConstitutive Relations
Constitutive Relations Andri Andriyana, Ph.D. Centre de Mise en Forme des Matériaux, CEMEF UMR CNRS 7635 École des Mines de Paris, 06904 Sophia Antipolis, France Spring, 2008 Outline Outline 1 Review of
More informationProblem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn
Problem 0. Three cables are attached as shown. Determine the reactions in the supports. Assume R B as redundant. Also, L AD L CD cos 60 m m. uation of uilibrium: + " Â F y 0 ) R A cos 60 + R B + R C cos
More informationMacroscopic theory Rock as 'elastic continuum'
Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationELASTICITY (MDM 10203)
ELASTICITY () Lecture Module 3: Fundamental Stress and Strain University Tun Hussein Onn Malaysia Normal Stress inconstant stress distribution σ= dp da P = da A dimensional Area of σ and A σ A 3 dimensional
More informationConstitutive Equations
Constitutive quations David Roylance Department of Materials Science and ngineering Massachusetts Institute of Technology Cambridge, MA 0239 October 4, 2000 Introduction The modules on kinematics (Module
More informationContinuum Mechanics. Continuum Mechanics and Constitutive Equations
Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform
More informationENGINEERING MATHEMATICS 4 (BDA 34003)
ENGINEERING MATHEMATICS 4 (BDA 34003) Lecture Module 7: Eigenvalue and Eigenvector Waluyo Adi Siswanto Universiti Tun Hussein Onn Malaysia This work is licensed under a Creative Commons Attribution 3.0
More informationCONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
More informationVariational principles in mechanics
CHAPTER Variational principles in mechanics.1 Linear Elasticity n D Figure.1: A domain and its boundary = D [. Consider a domain Ω R 3 with its boundary = D [ of normal n (see Figure.1). The problem of
More informationLecture 7. Properties of Materials
MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization
More informationNDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.
CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of ElastoDynamics 6.2. Principles of Measurement 6.3. The PulseEcho
More informationMECHANICS OF MATERIALS
CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced
More informationLecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23
1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji
More informationIntroduction, Basic Mechanics 2
Computational Biomechanics 18 Lecture : Introduction, Basic Mechanics Ulli Simon, Lucas Engelhardt, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents Mechanical Basics Moment
More informationContinuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms
Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive
More informationME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites
ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress
More informationLearning Units of Module 3
Module Learning Units of Module M. tresstrain oncepts in Three Dimension M. Introduction to Anisotropic lasticity M. Tensorial oncept and Indicial Notations M.4 Plane tress oncept Action of force (F)
More informationSolving the torsion problem for isotropic matrial with a rectangular cross section using the FEM and FVM methods with triangular elements
Solving the torsion problem for isotropic matrial with a rectangular cross section using the FEM and FVM methods with triangular elements Nasser M. Abbasi. June 0, 04 Contents Introduction. Problem setup...................................
More informationTensor Visualization. CSC 7443: Scientific Information Visualization
Tensor Visualization Tensor data A tensor is a multivariate quantity Scalar is a tensor of rank zero s = s(x,y,z) Vector is a tensor of rank one v = (v x,v y,v z ) For a symmetric tensor of rank 2, its
More informationFundamentals of Linear Elasticity
Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy
More informationFrequently Asked Questions
Frequently Asked Questions Why do we have to make the assumption that plane sections plane? How about bars with nonaxis symmetric cross section? The formulae derived look very similar to beam and axial
More informationStress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning
Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1
More informationTABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA
Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925
More informationCIE4145 : STRESS STRAIN RELATION LECTURE TOPICS
CI445 : STRSS STRAIN RLATION LCTUR TOPICS Stress tensor Stress definition Special stress situations Strain tensor Relative displacements Strain definition Strain tensor 3 Tensor properties Introduction
More informationComposite Structures. Indian Institute of Technology Kanpur
Mechanics of Laminated Composite Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 23 Analysis of an Orthotropic Ply Lecture Overview Introduction Engineering constants for an 2
More informationNumerical Modelling in Geosciences. Lecture 6 Deformation
Numerical Modelling in Geosciences Lecture 6 Deformation Tensor Secondrank tensor stress ), strain ), strain rate ) Invariants quantities independent of the coordinate system):  First invariant trace:!!
More informationIntroduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain
More informationMechanical Properties of Materials
Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationStress, Strain, Mohr s Circle
Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected
More informationGG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS
GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS I Main Topics A Why deal with tensors? B Order of scalars, vectors, and tensors C Linear transformation of scalars and vectors (and tensors) II Why
More informationTRESS  STRAIN RELATIONS
TRESS  STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple
More informationSmart Materials, Adaptive Structures, and Intelligent Mechanical Systems
Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems Bishakh Bhattacharya & Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 19 Analysis of an Orthotropic Ply References
More informationASSIGNMENT1 GURU JAMBHESHWARUNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR DIRECTORATE OF DISTANCE EDUCATION
ASSIGNMENT1 GURU JAMBHESHWARUNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR Paper Code: MAL631 Nomenclature of Paper:TOPOLOGY Q.1 Prove that in a topological space, E E d E E X. Q.2Characterize topology in
More information[5] Stress and Strain
[5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law
More informationA STUDY OF HYDRAULIC FRACTURE INITIATION IN TRANSVERSELY ISOTROPIC ROCKS. A Thesis VAHID SERAJIAN
A STUDY OF HYDRAULIC FRACTURE INITIATION IN TRANSVERSELY ISOTROPIC ROCKS A Thesis by VAHID SERAJIAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements
More information3.22 Mechanical Properties of Materials Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example
More informationMechanics of Biomaterials
Mechanics of Biomaterials Lecture 7 Presented by Andrian Sue AMME498/998 Semester, 206 The University of Sydney Slide Mechanics Models The University of Sydney Slide 2 Last Week Using motion to find forces
More informationUnit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
More informationEE C245 ME C218 Introduction to MEMS Design Fall 2007
EE C245 ME C218 Introduction to MEMS Design Fall 2007 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture 13: Material
More informationMECHANICS OF MATERIALS
Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal
More informationSTRAIN. Normal Strain: The elongation or contractions of a line segment per unit length is referred to as normal strain denoted by Greek symbol.
STRAIN In engineering the deformation of a body is specified using the concept of normal strain and shear strain whenever a force is applied to a body, it will tend to change the body s shape and size.
More informationMECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
More informationMECHANICS OF MATERIALS
Third CHTR Stress MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University and Strain xial oading Contents Stress & Strain: xial oading Normal
More information12. Stresses and Strains
12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM  Formulation Classification of Problems Scalar Vector 1D T(x) u(x)
More information2.4 CONTINUUM MECHANICS (SOLIDS)
43.4 CONTINUUM MCHANICS (SOLIDS) In this introduction to continuum mechanics we consider the basic equations describing the physical effects created by external forces acting upon solids and fluids. In
More informationLecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2
Lecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2 This semester we are going to utilize the principles we learnt last semester (i.e the 3 great principles and
More informationConstitutive models: Incremental plasticity Drücker s postulate
Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity  plastic flow law associated with the limit (loading) surface Prager
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationConstitutive Equations (Linear Elasticity)
Constitutive quations (Linear lasticity) quations that characterize the physical properties of the material of a system are called constitutive equations. It is possible to find the applied stresses knowing
More informationENGINEERING MATHEMATICS 4 (BDA34003)
ENGINEERING MATHEMATICS 4 (BDA34003) Lecture Module 6: Numerical Integration Waluyo Adi Siswanto Universiti Tun Hussein Onn Malaysia This work is licensed under a Creative Commons Attribution 3.0 License.
More information3D Stress Tensors. 3D Stress Tensors, Eigenvalues and Rotations
3D Stress Tensors 3D Stress Tensors, Eigenvalues and Rotations Recall that we can think of an n x n matrix Mij as a transformation matrix that transforms a vector xi to give a new vector yj (first index
More informationLecture 4 Honeycombs Notes, 3.054
HoneycombsInplane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts
More informationPURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.
BENDING STRESS The effect of a bending moment applied to a crosssection of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally
More informationEffective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach»  k.p method
Lecture 4 1/10/011 Effectie mass I.. Bandgap of semiconductors: the «Physicist s approach»  k.p method I.3. Effectie mass approximation  Electrons  Holes I.4. train effect on band structure  Introduction:
More informationElasticity in two dimensions 1
Elasticity in two dimensions 1 Elasticity in two dimensions Chapters 3 and 4 of Mechanics of the Cell, as well as its Appendix D, contain selected results for the elastic behavior of materials in two and
More informationRock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth
Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,2.4, 2.7, 3.13.8, 6.1, 6.2, 6.8, 7.17.4. Jaeger and Cook, Fundamentals of
More informationPHYSICAL PROPERTIES OF CRYSTALS
PHYSICAL PROPERTIES OF CRYSTALS THEIR REPRESENTATION TENSORS AND MATRICES BY By J. F. NYE, F.R.S. CLARENDON PRESS OXFORD NOTATION INTRODUCTION xiii xv PART 1. GENERAL PRINCIPLES I. THE GROUNDWORK OF CRYSTAL
More informationIntroduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 1.510 Introduction to Seismology Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 1.510 Introduction to
More informationMODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations
MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #2: Nonlinear Elastic Models Isotropic Elastic Models: Invariant vs Principal Formulations Elastic
More informationElements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004
Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic
More informationSEMM Mechanics PhD Preliminary Exam Spring Consider a twodimensional rigid motion, whose displacement field is given by
SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a twodimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e
More information2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
More informationDESIGN OF LAMINATES FOR INPLANE LOADING
DESIGN OF LAMINATES FOR INPLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily
More informationMODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam
MODELING OF CONCRETE MATERIALS AND STRUCTURES Class Meeting #1: Fundamentals Kaspar Willam University of Colorado at Boulder Notation: Direct and indicial tensor formulations Fundamentals: Stress and Strain
More information3 2 6 Solve the initial value problem u ( t) 3. a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1
Math Problem a If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b True or false and why 1. if A is
More informationPhysics of Continuous media
Physics of Continuous media Sourendu Gupta TIFR, Mumbai, India Classical Mechanics 2012 October 26, 2012 Deformations of continuous media If a body is deformed, we say that the point which originally had
More informationHÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling
HÅLLFASTHETSLÄRA, LTH Examination in computational materials modeling TID: 20162810, kl 14.0019.00 Maximalt 60 poäng kan erhållas på denna tenta. För godkänt krävs 30 poäng. Tillåtet hjälpmedel: räknare
More informationChapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature
Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte
More informationElements of Rock Mechanics
Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider
More informationBasic Theorems in Dynamic Elasticity
Basic Theorems in Dynamic Elasticity 1. StressStrain relationships 2. Equation of motion 3. Uniqueness and reciprocity theorems 4. Elastodynamic Green s function 5. Representation theorems Víctor M. CRUZATIENZA
More informationExample 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.
162 3. The linear 3D elasticity mathematical model The 3D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides
More information1 Hooke s law, stiffness, and compliance
Nonquilibrium Continuum Physics TA session #5 TA: Yohai Bar Sinai 3.04.206 Linear elasticity I This TA session is the first of three at least, maybe more) in which we ll dive deep deep into linear elasticity
More informationChapter 2 Governing Equations
Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic halfspace is presented. The elastic media is
More informationMeasurement of deformation. Measurement of elastic force. Constitutive law. Finite element method
Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation
More informationIntroduction to Condensed Matter Physics
Introduction to Condensed Matter Physics Elasticity M.P. Vaughan Overview Overview of elasticity Classical description of elasticity Speed of sound Strain Stress Young s modulus Shear modulus Poisson ratio
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139
MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes
More information