Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige

2 Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness Hardness Outline

3 Introduction To understand and describe how materials deform (elongate, compress, twist) or break as a function of applied load, time, temperature, and other conditions we need first to discuss standard test methods and standard language for mechanical properties of materials.

5 Concepts of Stress and Strain (tension and compression) To compare specimens of different sizes, the load is calculated per unit area. F is load applied perpendicular to specimen crosssection; A 0 is cross-sectional area (perpendicular to the force) before application of the load. Units of σ is N/m 2 or Pa. Δl is change in length, l 0 is the original length. Dimensionless (No unit).

6 These definitions of stress and strain allow one to compare test results for specimens of different cross-sectional area A 0 and of different length l 0. Stress and strain are positive for tensile loads, negative for compressive loads

7 Concepts of Stress and Strain (shear) F is load applied parallel to the upper and lower faces each of which has an area A 0. θ is the strain angle. Shear strain: γ = tan θ (x 100%) Shear

8 Concepts of Stress and Strain (torsion) Torsion is variation of pure shear. The shear stress in this case is a function of applied torque T, shear strain is related to the angle of twist, φ. Torsion

9 Stress-Strain Behavior Elastic deformation Reversible: when the stress is removed, the material returns to the dimensions it had before the loading. Usually strains are small (except for the case of some plastics, e.g. rubber). Plastic deformation Irreversible: when the stress is removed, the material does not return to its original dimensions.

10 Stress-Strain Behavior: Elastic Deformation In tensile tests, if the deformation is elastic, the stress-strain relationship is called Hooke's law: E is Young's modulus or modulus of elasticity, has the same units as σ, N/m 2 or Pa

11 Elastic Deformation: Nonlinear Elastic In some materials (many polymers, concrete...), elastic deformation is not linear, but it is still reversible. Behavior

12 Elastic Deformation: Atomic scale picture

13 Elastic Deformation: Anelasticity (time dependence of elastic deformation) So far we have assumed that elastic deformation is time independent (i.e. applied stress produces instantaneous elastic strain) However, in reality elastic deformation takes time (finite rate of atomic/molecular deformation processes) - continues after initial loading, and after load release. This time dependent elastic behavior is known as anelasticity. The effect is normally small for metals but can be significant for polymers ( visco-elastic behavior ).

14 Elastic Deformation: Poisson s ratio Materials subject to tension shrink laterally. Those subject to compression, bulge. The ratio of lateral and axial strains is called the Poisson's ratio υ. Sign in the above equations shows that lateral strain is in opposite sense to longitudinal strain υ is dimensionless Theoretical value for : isotropic material: 0.25 Maximum value: 0.50, Typical value:

15 Elastic Deformation: Shear Modulus Relationship of shear stress to shear strain: Where γ = tan θ = Δ y / Z o G is Shear Modulus (Units: N/m 2 or Pa) For isotropic material: E = 2G(1+υ) G ~ 0.4E (Note: single crystals are usually elastically anisotropic: the elastic behavior varies with crystallographic direction, see Chapter 3)

16 Stress-Strain Behavior: Plastic deformation

17 Plastic deformation stress and strain are not proportional to each other. the deformation is not reversible. deformation occurs by breaking and rearrangement of atomic bonds (in crystalline materials primarily by motion of dislocations, Chapter 7)

18 Tensile Properties: Yielding Yield strength σ y - is chosen as that causing a permanent strain of Yield point P - the strain deviates from being proportional to the stress (the proportional limit) The yield stress is a measure of resistance to plastic deformation

19 Tensile Properties: Yielding In some materials (e.g. lowcarbon steel), the stress vs. strain curve includes two yield points (upper and lower). The yield strength is defined in this case as the average stress at the lower yield point.

20 For structural applications, the yield stress is usually a more important property than the tensile strength, since once the yield stress has passed, the structure has deformed beyond acceptable limits. Tensile Strength

21 Tensile properties: Ductility Ductility is a measure of the deformation at fracture.

22 Typical mechanical properties of metals

23 Typical mechanical properties of metals The yield strength and tensile strength vary with prior thermal and mechanical treatment, impurity levels, etc. This variability is related to the behavior of dislocations in the material, Chapter 7. But elastic moduli are relatively insensitive to these effects. The yield and tensile strengths and modulus of elasticity decrease with increasing temperature, ductility increases with temperature.

24 Typical mechanical properties of metals

25 Toughness Toughness = the ability to absorb energy up to fracture = the total area under the strainstress curve up to fracture. Units: the energy per unit volume, e.g. J/m 3 Can be measured by an impact test (Chapter 8).

26 True Stress and Strain True stress = load divided by actual area in the necked-down region (Ai): Sometimes it is convenient to use true strain defined as True stress continues to rise to the point of fracture, in contrast to the engineering stress.

27

28 Elastic Recovery During Plastic If a material is deformed plastically and the stress is then released, the material ends up with a permanent strain. If the stress is reapplied, the material again responds elastically at the beginning up to a new yield point that is higher than the original yield point. The amount of elastic strain that it will take before reaching the yield point is called elastic strain recovery. Deformation

29 Hardness Hardness is a measure of the material s resistance to localized plastic deformation (e.g. dent or scratch). A qualitative Moh s scale, determined by the ability of a material to scratch another material: from 1 (softest = talc) to 10 (hardest = diamond).

30 Different types of quantitative hardness test has been designed (Rockwell, Brinell, Vickers, etc.). Usually a small indenter (sphere, cone, or pyramid) is forced into the surface of a material under conditions of controlled magnitude and rate of loading. The depth or size of indentation is measured. The tests somewhat approximate, but popular because they are easy and non-destructive (except for the small dent).

31

32 Both tensile strength and hardness may be regarded as degree of resistance to plastic deformation. Hardness is proportional to the tensile strength but note that the proportionality constant is different for different materials.

33 What are the limits of safe deformation? Design stress: σ d = N σ c where σ c = maximum anticipated stress, N is the design factor > 1. Want to make sure that σ d < σ y Safe or working stress: σ w = σ y /N where N is factor of safety > 1.

34 Summary Stress and strain: Size-independent measures of load and displacement, respectively. Elastic behavior: Reversible mechanical deformation, often shows a linear relation between stress and strain. Elastic deformation is characterized by elastic moduli (E or G). To minimize deformation, select a material with a large elastic moduli (E or G). Plastic behavior: Permanent deformation, occurs when the tensile (or compressive) uniaxial stress reaches the yield strength σ y. Tensile strength: maximum stress supported by the material. Toughness: The energy needed to break a unit volume of material. Ductility: The plastic strain at failure.

35

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

Mechanical properties 1 Elastic behaviour of materials

MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

Chapter 7. Highlights:

Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

Stress-Strain Behavior

Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

UNIT I SIMPLE STRESSES AND STRAINS

Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

6.37 Determine the modulus of resilience for each of the following alloys:

6.37 Determine the modulus of resilience for each of the following alloys: Yield Strength Material MPa psi Steel alloy 550 80,000 Brass alloy 350 50,750 Aluminum alloy 50 36,50 Titanium alloy 800 116,000

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

Physics Including Human Applications 280 Chapter 13 ELASTIC PROPERTIES OF MATERIALS GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

How materials work. Compression Tension Bending Torsion

Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

ANSYS Mechanical Basic Structural Nonlinearities

Lecture 4 Rate Independent Plasticity ANSYS Mechanical Basic Structural Nonlinearities 1 Chapter Overview The following will be covered in this Chapter: A. Background Elasticity/Plasticity B. Yield Criteria

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

TRESS - STRAIN RELATIONS

TRESS - STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple

Chapter 12. Static Equilibrium and Elasticity

Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

ME 383S Bryant February 17, 2006 CONTACT. Mechanical interaction of bodies via surfaces

ME 383S Bryant February 17, 2006 CONTACT 1 Mechanical interaction of bodies via surfaces Surfaces must touch Forces press bodies together Size (area) of contact dependent on forces, materials, geometry,

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

Experiment: Torsion Test Expected Duration: 1.25 Hours

Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

5.2 The Response of Real Materials

5.2 The Response of Real Materials The constitutive equation as introduced in the previous section. The means by hich the constitutive equation is determined is by carrying out experimental tests on the

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

The Frictional Regime

The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

MECHANICS OF MATERIALS

Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

**********************************************************************

Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 3-33 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235

NE 125 L. Title Page

NE 125 L Title Page Name: Rajesh Swaminathan ID Number: 20194189 Partners Names: Clayton Szata 20193839 Sarvesh Varma 20203153 Experiment Number: 1 Experiment: Date Experiment was Started: Date Experiment

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

The Relationship between the Applied Torque and Stresses in Post-Tension Structures

ECNDT 6 - Poster 218 The Relationship between the Applied Torque and Stresses in Post-Tension Structures Fui Kiew LIEW, Sinin HAMDAN * and Mohd. Shahril OSMAN, Faculty of Engineering, Universiti Malaysia

Lab Exercise #3: Torsion

Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

TINIUS OLSEN Testing Machine Co., Inc.

Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

Chapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg

Chapter 3 Mass quantity of matter composing a body represented by m Kinetic Concepts for Analyzing Human Motion units are kg Inertia tendency to resist change in state of motion proportional to mass has

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

Materials and Structures. Indian Institute of Technology Kanpur

Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

Task 1 - Material Testing of Bionax Pipe and Joints

Task 1 - Material Testing of Bionax Pipe and Joints Submitted to: Jeff Phillips Western Regional Engineer IPEX Management, Inc. 20460 Duncan Way Langley, BC, Canada V3A 7A3 Ph: 604-534-8631 Fax: 604-534-7616

Unit I - Properties of Matter

Unit I - Properties of Matter Elasticity: Elastic and plastic materials Hooke s law elastic behavior of a material stress - strain diagram factors affecting elasticity. Three moduli of elasticity Poisson

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

EPJ Web of Conferences 94, 01080 (2015) DOI: 10.1051/epjconf/20159401080 c Owned by the authors, published by EDP Sciences, 2015 A rate-dependent Hosford-Coulomb model for predicting ductile fracture at

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.

2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00

Spherical Pressure Vessels

Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

Chapter 3. Load and Stress Analysis

Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

Further Applications of Newton s Laws - Friction Static and Kinetic Friction

urther pplications of Newton s Laws - riction Static and Kinetic riction The normal force is related to friction. When two surfaces slid over one another, they experience a force do to microscopic contact

Lecture 7, Foams, 3.054

Lecture 7, Foams, 3.054 Open-cell foams Stress-Strain curve: deformation and failure mechanisms Compression - 3 regimes - linear elastic - bending - stress plateau - cell collapse by buckling yielding

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

RESEARCH PROJECT NO. 26

RESEARCH PROJECT NO. 26 DETERMINATION OF POISSON'S RATIO IN AD1 TESTING BY UNIVERSITY OF MICHIGAN REPORT PREPARED BY BELA V. KOVACS and JOHN R. KEOUGH \ MEMBER / / DUCTILE IRON \ SOCIETY Issued by the

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

Downloaded from Class XI Physics Ch. 9: Mechanical Properties of solids NCERT Solutions Page 242 Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

Lecture 8 Viscoelasticity and Deformation

HW#5 Due 2/13 (Friday) Lab #1 Due 2/18 (Next Wednesday) For Friday Read: pg 130 168 (rest of Chpt. 4) 1 Poisson s Ratio, μ (pg. 115) Ratio of the strain in the direction perpendicular to the applied force

Solid State Theory Physics 545

olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

Elastic moduli: Overview and characterization methods

Technical Review ITC-ME/ATCP Elastic moduli: Overview and characterization methods ATCP Physical Engineering www.atcp-ndt.com Authors: Leiliane Cristina Cossolino (Cossolino LC) and Antônio Henrique Alves

Class XI Chapter 9 Mechanical Properties of Solids Physics

Book Name: NCERT Solutions Question : A steel wire of length 4.7 m and cross-sectional area 5 3.0 0 m stretches by the same 5 amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 0 m

AS PHYSICS TERMS, DEFINITIONS & UNITS

AS PHYSICS TERMS, DEFINITIONS & UNITS May 2015 This document is issued by WJEC Eduqas to assist teachers with the preparation of candidates for the GCE examination in PHYSICS. It consists of the definitions

Elements of Rock Mechanics

Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2

Question 9.1: A steel wire of length 4.7 m and cross-sectional area 3.0 10 5 m 2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 10 5 m 2 under a given load.

Design of a fastener based on negative Poisson's ratio foam adapted from

1 Design of a fastener based on negative Poisson's ratio foam adapted from Choi, J. B. and Lakes, R. S., "Design of a fastener based on negative Poisson's ratio foam", Cellular Polymers, 10, 205-212 (1991).

MECHANICAL PROPERTIES OF SOLIDS

Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

Simple Stresses and Strains

Simple Stresses and Strains CHPTER OJECTIVES In this chapter, we will learn about: Various types of (a) stresses as tensile and compressive stresses, positive and negative shear stresses, complementary

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

Enhancing Prediction Accuracy In Sift Theory

18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

BME 207 Introduction to Biomechanics Spring 2017

April 7, 2017 UNIVERSITY OF RHODE ISAND Department of Electrical, Computer and Biomedical Engineering BE 207 Introduction to Biomechanics Spring 2017 Homework 7 Problem 14.3 in the textbook. In addition

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

2. Mechanics of Materials: Strain. 3. Hookes's Law

Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements

Lecture #10: 151-0735: Dynamic behavior of materials and structures Anisotropic plasticity Crashworthiness Basics of shell elements by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering,

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight

Elastic properties of solids Page 1 of 8 Elastic Properties of Solids Exercises I II for one weight Exercises III and IV give the second weight This is a rare experiment where you will get points for breaking

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

Torsion of Solid Sections. Introduction

Introduction Torque is a common load in aircraft structures In torsion of circular sections, shear strain is a linear function of radial distance Plane sections are assumed to rotate as rigid bodies These

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

Concept Question Comment on the general features of the stress-strain response under this loading condition for both types of materials

Module 5 Material failure Learning Objectives review the basic characteristics of the uni-axial stress-strain curves of ductile and brittle materials understand the need to develop failure criteria for

Unified Quiz M4 May 7, 2008 M - PORTION

9:00-10: 00 (last four digits) 32-141 Unified Quiz M4 May 7, 2008 M - PORTION Put the last four digits of your MIT ID # on each page of the exam. Read all questions carefully. Do all work on that question

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the