CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS"

Transcription

1 Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211

2 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical Constitutive quations Recall that in Chapters 2, 3 and 8 we briefly introduced the concept of a constitutive equation, which generally relates kinetic variables to kinematic variables in the application of interest. With respect to the application of the analysis of mechanical deformations in solids, the kinetic variable is the stress tensor, σ, whereas the kinematic variables are the displacements u x, u y, u z, and the strain tensor, ε which includes derivatives (sometimes called gradients) of the displacements. Since it is generally observed that rigid body displacements do not induce stresses, the displacement field u x, u y, u z, will not enter into a mechanical constitutive equation. Thus, the constitutive equations will in general relate stress, σ, to strains, ε, and temperature T. In 1660, Robert Hooke observed that for a broad class of solid materials called linear elastic (or Hookean), this relationship may be described by a linear relationship. Hooke originally considered the test of a uniaxial body with a force (stress) applied only in one direction and measured the corresponding elongation (strain) to obtain: y x A=cross-sectional area yy = ε yy Figure 9.2: Stress-Strain Curve for Linear lastic Material Forageneral three-dimensional state of stress, there are 6 independent stresses and 6 independent strains; therefore, the linear relationship between stress and strain can be written in matrix form as: σ =[C] ε (9.1) where [C] isa6 6 matrix of elastic constants that must be determined from experiments. expanded form, these 6 equations become: In σ xx = C 11 ε xx + C 12 + C 13 ε zz + C 14 ε yz + C 15 ε zx + C 16 ε xy = C 21 ε xx + C 22 + C 23 ε zz + C 24 ε yz + C 25 ε zx + C 26 ε xy σ zz = C 31 ε xx + C 32 + C 33 ε zz + C 34 ε yz + C 35 ε zx + C 36 ε xy σ yz = C 41 ε xx + C 42 + C 43 ε zz + C 44 ε yz + C 45 ε zx + C 46 ε xy (9.2) σ zx = C 51 ε xx + C 52 + C 53 ε zz + C 54 ε yz + C 55 ε zx + C 56 ε xy σ xy = C 61 ε xx + C 62 + C 63 ε zz + C 64 ε yz + C 65 ε zx + C 66 ε xy It is interesting to note that Robert Hooke first proposed the above law publicly in an anagram at Hampton Court (1676) given by the group of letters: ceiiinosssttuv.

3 9.1. MCHANICAL CONSTITUTIV QUATIONS 213 In 1678 he explained the anagram to be Ut tensio sic vis, which is Latin meaning as the tension so the displacement or in nglish the force is proportional to the displacement. Students may recall that during this time period, science and scientific writing was criticized and hence Hooke thought it necessary to discretely disclose his scientific finding with an anagram. Note that in the previous chapters stress and strain were represented as (3 3) matrices. It is convenient, however, here to represent them as (6 1) column vectors since they have only 6 independent components (stress due to conservation of angular momentum and strain by its definition). We then write {σ} = σ xx σ zz σ yz σ zx σ xy, {ε} = By adopting this representation for σ and ε, their linear relationship (9.2) can be easily written in matrix form: ε xx ε zz ε yz ε zx ε xy σ xx σ zz σ yz σ zx σ xy = C 11 C 12 C 13 C 14 C 15 C 16 C 21 C 22 C 23 C 24 C 25 C 26 C 31 C 32 C 33 C 34 C 35 C 36 C 41 C 42 C 43 C 44 C 45 C 46 C 51 C 52 C 53 C 54 C 55 C 56 C 61 C 62 C 63 C 64 C 65 C 66 ε xx ε zz ε yz ε zx ε xy (9.3) If a material is homogeneous then the constants (C ij, i =1,..., 6 and j =1,..., 6) are all independent of x, y, z for any time, t. If a material is isotropic, then for a given material point, C ij are independent of the orientation of the coordinate system (i.e., the material properties are the same in all directions). If a material is orthotropic, then for a given material point, C ij can be defined in terms of properties in three orthogonal coordinate directions. If a material is anisotropic, then for a given material point, C ij are different for all orientations of the coordinate system. In order to determine the material constants in equation (9.3), consider a uniaxial tensile test using a test specimen of linear elastic isotropic material with cross-sectional area A and subjected to a uniaxilly applied load F in the axial (y) direction as shown below. The cross-section may be any shape but generally a rectangular or cylindrical shape is chosen. For a rectangular specimen, assume a width W and thickness t so that the cross-sectional area is A = Wt. Assume a small gauge length of L for which the axial deformation will be measured during the load application. During the uniaxial tensile test, weobserve that the gauge length changes from L to L and the gauge width decreases from W to W. We also observe a decrease (contraction) in the z dimension. We further observe no change in angular orientation of the vertical or horizontal elements and conclude that for uniaxial loading, no shear strains are produced. This leads us to postulate the following strain state: ε xx,,ε zz 0,ε xy,ε yz,ε xz =0. The axial stress and strain in the axial (y) direction are defined to be

4 214 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS F after deformation y x L L* z A=cross-sectional area t test specimen F A=Wt W* W Figure 9.3: xperimental Measurement of Axial and Transverse Deformation = F A = L L = (L L) L The strain the in the transverse (x) direction due to the axial load is ε xx = W W = (W W ) W If we plot axial stress vs. axial strain and transverse strain vs. axial strain, weobtain the following two plots: = F A ε xx = W W 1 = ε xx = ν = L L 1 ν Figure 9.4: xperimental Results for Axial Stress vs. Axial Strain & Transverse Strain vs. Axial Strain From these two plots, we can write = and ε xx = ν for the uniaxial tension test. Consequently, we may define the following two material constants from this single uniaxial test: = slope of the uniaxial vs. curve = a material constant called Young s modulus

5 9.1. MCHANICAL CONSTITUTIV QUATIONS 215 ν = εxx = negative ratio of the strain normal to the direction of loading over the strain in the loading direction = a material constant called Poisson s ratio If the transverse strain were measured in the z direction, we would find the same ratio for transverse to axial strain: ν = εzz. Combining these equations, we can write the two transverse strains entirely in terms of the axial stress : ε xx = ν = ν ( ) and εzz = ν = ν ( ). In order to obtain a complete description of three-dimensional constitutive behavior, consider a test where we apply normal tractions (stresses) in the x, y and z directions simultaneously and measure the strain only in the x direction. For a linear material response, we may use the principle of linear superposition and consider three separate cases as shown below: σ zz σ zz σ σ xx σ xx σ xx xx = + + σ zz σ zz Figure 9.5: xperimental Test with all Components of Normal Stresses Applied ε xx = normal strain in x direction due to σ xx + normal strain in x direction due to + normal strain in x direction due to σ zz = 1 σ xx ν ν σ zz or ε xx = 1 [σ xx ν( + σ zz )] (9.4) The stress in the x direction increases the strain in the x direction while the transverse stresses causes a contraction (decrease in ε xx ). Doing similar experiments in the y and z directions gives: = 1 [ ν(σ xx + σ zz )] (9.5) ε zz = 1 [σ zz ν(σ xx + )] xperiments with shear tractions will show that a shear stress σ xy in the x-y plane produces only shear strain ε xy in the x-y plane for a state of pure shear loading (i.e., no normal strain is observed so that the shear strain is uncoupled from the normal strain). 1 Thus, we obtain the following 1 Keep in mind that even for the case of pure shear, if one calculates shear stresses (or strains) at some angle θ from the x-axis (Mohr s circle), one may obtain non-zero normal stresses (or strains) for the off-axis planes.

6 216 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS experimental observations for the shear strains: ε xy = 1+ν σ xy ε xz = 1+ν σ xz (9.6) ε yz = 1+ν σ yz Combining equations (9.4), (9.5) and (9.6), Hooke s law for a linear elastic isotropic solid with a three-dimensional stress state becomes: Hooke s Law for a Linear lastic Isotropic Solid ε xx = 1 [σ xx ν( + σ zz )] = 1 [ ν(σ xx + σ zz )] ε zz = 1 [σ zz ν(σ xx + )] ε xy = 1+ν σ xy (9.7) ε xz = 1+ν σ xz ε yz = 1+ν σ yz where = Young s modulus and ν = Poisson s ratio. It should be noted that in materials that undergo permanent deformation, the above model is not accurate (such as metals beyond their yield point, or polymers that flow). A typical uniaxial stress-strain curve for a ductile metal is shown below: σ xx yield stress ultimate stress failure stress ε xx Figure 9.6: Typical Stress-Strain Curve for Ductile Metal An algebraic inversion of the strain-stress relationship (9.7) provides the following relationship of stress in terms of strain:

7 9.1. MCHANICAL CONSTITUTIV QUATIONS 217 {σ} = 1+ν 1 ν 1 2ν ν 1 2ν ν 1 2ν ν 1 2ν 1 ν 1 2ν ν 1 2ν 1 2ν ν 1 2ν 1 ν 1 2ν ν ε xx ε zz ε yz ε zx ε xy (9.8) or, Hooke s Law for a Linear lastic Isotropic Solid {σ} = σ xx σ zz σ xy σ xz σ yz = (1+ν)(1 2ν) [(1 ν)ε xx + ν + νε zz ] (1+ν)(1 2ν) [νε xx +(1 ν) νε zz ] (1+ν)(1 2ν) [νε xx + ν +(1 ν)ε zz ] 1+ν ε xy 1+ν ε xz 1+ν ε yz (9.9) where = Young s modulus and ν = Poisson s ratio. The term (1+ν) 2G defines a shear modulus, G, relating shear strain and shear stress (similar to Young s modulus,, for extensional strain). Thus, the shear modulus is given by: G = 2(1 + ν) (9.10) 2( 1+ν Note that the shear strain ε xy is related to engineering shear strain γ xy by γ xy = 2ε xy = )σ xy = σxy G so that σ xy = Gγ xy =2Gε xy. σ xy G = shear modulus σ xy = Gγ xy = G2ε xy G = 2(1+ν) γ xy Figure 9.7: xperimental Results for Shear Stress vs. ngineering Shear Strain Note that G is defined in terms of and ν and consequently G is not a new material property. Thus, for a homogeneous linear elastic isotropic solid, we conclude that only two material properties (Young s modulus,, and Poisson s ratio, ν) are required to completely define the three-dimensional constitutive behavior.

8 218 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS The stress-strain equations may also be written in terms of shear modulus to obtain: σ xx = = σ zz = σ yz = σ zx = σ xy = (1 + ν)(1 2ν) [(1 ν)ε xx + ν + νε zz ]= 2G 1 2ν [(1 ν) ε xx + ν + νε zz ] (1 + ν)(1 2ν) [νε xx +(1 ν) νε zz ]= 2G 1 2ν [νε xx +(1 ν) + νε zz ] (1 + ν)(1 2ν) [νε xx + ν +(1 ν)ε zz ]= 2G 1 2ν [νε xx + ν +(1 ν) ε zz ] 1+ν ε yz =2Gε yz (9.11) 1+ν ε zx =2Gε zx 1+ν ε xy =2Gε xy Side Note: Ifthe definition of ε xx and ε zz from ν = εxx = εzz is substituted into equation (9.9), we obtain for the uniaxial bar extension experiment described previously: σ xx = (1 + ν)(1 2ν) [(1 ν)( ν)+ν + ν( ν) ]=0 [ = ν 2 +(1 ν) ν 2 ] = εyy (1 + ν)(1 2ν) σ zz =0 σ xy = σ xz = σ yz =0 This result is consistent with all observations made regarding the nature of stress for the uniaxial test with an applied stress of. 9.2 Constitutive quations with Thermal Strain xperimentally, we observe for a linear isotropic metal that a temperature increase, T, produces a uniform expansion but no shear and the expansion is proportional to a material constant α (coefficient of thermal expansion). The additional strain due to heating is thus: ε xx = = ε zz = α T. Thus, the constitutive equation for a linear elastic isotropic solid (9.7) may be modified by the addition of the thermal strain to the normal strain components: ε xx = 1 [σ xx ν( + σ zz )] + α T = 1 [ ν(σ xx + σ zz )] + α T ε zz = 1 [σ zz ν(σ xx + )] + α T ε xy = ( 1+ν )σ xy (9.12) ε xz = ( 1+ν )σ xz ε yz = ( 1+ν )σ yz

9 9.2. CONSTITUTIV QUATIONS WITH THRMAL STRAIN 219 These equations can be inverted to obtain stress in terms of strain: σ xx = = σ zz = σ xy = σ xz = σ yz = (1 + ν)(1 2ν) [(1 ν)ε xx + ν + νε zz ] α T (1 2ν) (1 + ν)(1 2ν) [νε xx +(1 ν) + νε zz ] α T (1 2ν) (1 + ν)(1 2ν) [νε xx + ν +(1 ν)ε zz ] α T (1 2ν) 2(1 + ν) ε xy (9.13) 2(1 + ν) ε xz 2(1 + ν) ε yz In the above, T = T ( x, y, z ) and represents the increase in temperature from a reference temperature where the thermal strain is zero. It should be noted that the first term in the extensional strain terms above (the[] term) is due to elastic behavior of the material (i.e., it has Young s modulus in it). The second part is due to thermal strain. We can separate the total strain into elastic and thermal strains: ε total xx = ε elastic xx + ε thermal ε total yy = ε elastic yy + ε thermal (9.14) ε total zz = ε elastic zz + ε thermal The elastic (also called mechanical) and thermal terms are given by: ε elastic xx = 1 [σ xx ν( + σ zz )] ε elastic yy = 1 [ ν(σ xx + σ zz )] (9.15) ε elastic zz = 1 [σ zz ν(σ xx + )] ε thermal = α T The terms ε total xx, ε total yy, ε total zz represent the total strain as measured or observed, and are thus equal to their deformation gradient definitions, i.e., for small strain, ε total xx = ε xx = u x x ε total yy = = u y y ε total zz = ε zz = u z z (9.16) We state once again that shear strains have no thermal component for an isotropic material. xamples of problems involving thermal strain will be considered in Chapter 10. Some typical values of material properties for isotropic metals are provided in the table below. Note that the values of (Young s modulus) are typically in the million psi or GPa range for engineering materials, while the values of ν are between zero and 0.5 (0 < ν < 0.5). The yield strength represents the stress level at which the metal yields (becomes inelastic). For ductile metals,

10 220 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS the ultimate tensile strength is typically 10 to 50% higher than the yield strength. It should be noted that material properties for commonly used metals must satisfy specifications established by regulatory agencies. Values in Tables 9.1 and 9.2 that are not provided are unknown for purposes of presentation herein and they should not to be interpreted as zero. The reader may with to consult other sources for the omitted values. For non-metals, properties may vary significantly depending upon many variables (for example, wood has a Young s modulus varying from psi to psi depending upon the tree species and direction of wood grain; the modulus of concrete will depend on the concrete/aggregate ratio and curing process). xamples of non-metals commonly used are concrete (ultimate compressive strength of 5 ksi but zero tensile strength; with an elastic modulus in compression of psi) and Douglas fir (parallel to grain, ultimate compressive strength of 7 ksi; with an elastic modulus of psi). Material Density ( lb in 3 ) Young s Modulus (10 6 psi) Poisson s Ratio Yield Strength (ksi) Ultimate Tensile Strength (ksi) Coefficient of Thermal xpansion Tension Shear Aluminum 2024-T (200 F) 6061-T ( F) Steel Structural (A36) AISI ( F) 5Cr-Mo-V ( F) Copper G3-Heat Treated ( F) Titanium Ti-5Al-2.5Sn ( F) Ti-6M-4V ( F) Table 9.1: Structural Material Properties for Selected Metals (US Customary Units) ( 10 6 F ) Given: xample 9-1 [σ] = y Mz I zz 0 0 where M z and I zz are constants Required : (a) Verify that the stress tensor satisfies the Conservation of Linear Momentum. (b) Determine the components of the infinitesimal strain tensor, ε. (c) Determine the components of the displacement, u x, u y, and u z. (d) Describe the displacement and physical problem described by these equations. Use as reference the figure below.

11 9.2. CONSTITUTIV QUATIONS WITH THRMAL STRAIN 221 Material Density ( Mg m 3 ) Young s Modulus (GPa) Poisson s Ratio Yield Strength (MPa) Ultimate Tensile Strength (MPa) Tension Shear Aluminum 2024-T T Steel Structural A Stainless Copper Alloy Bronze C Titanium Ti-6Al-4V , Ti-6M-4V Table 9.2: Structural Material Properties for Selected Metals (SI Units) Coefficient of Thermal xpansion ( 10 6 C ) y y z h x t L Figure 9.8: (a) x-component of linear momentum: x σ xx x + σ xy y + σ xz z + ρg x =0 ( ) y Mz I zz x =0 - Stress tensor satisfies the Conservation of Linear Momentum (b) The strains are given by: ε xx = σ xx, = ε zz = ν σ xx, ε xy = ε xz = ε yz =0 ε xx = y M z I zz, = νym z I zz, ε zz = νym z I zz

12 222 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS (c) Integrate the displacement equations and apply boundary conditions: ε xx = u x x = y M z I zz u x = y M z = u y y = νym ν z u y = I zz x + C 1 I ) zz M z ( y 2 2 I zz + C 2 ε zz = u z z = νym z I zz u z = νym z I zz z + C 3 u x x=0 =0, C 1 =0 u y y=0 =0, C 2 =0 u z z=0 =0, C 3 =0 u x = yx M z I zz u y = νv M 2 y2 z I zz u z = ν yz M z I zz (d) The displacement in the x-direction is negative (shortening) when y is positive due to the negative u x term. If y is negative the displacement in the x-direction is positive (expanding). In the y-direction and z-direction the displacement is expanding when y is greater than zero and vice versa. Displacement in the y-direction changes with respect to y 2, and in the z-direction it changes with respect to y.

13 9.2. CONSTITUTIV QUATIONS WITH THRMAL STRAIN 223 Deep Thought Ut tensio sic vis! Ut tensio sic vis!! Ut tensio sic vis!!!

14 224 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.3 Questions 9.1 Which conservation laws are especially useful for describing stresses and strains? How are stress and strain related? 9.2 Write the equations that result from an inversion of the stress-strain relationship. 9.3 Describe in your own words the meanings of the state of plane stress and the state of plane strain? 9.4 Describe the two types of problems which when solved using the theory of plane elasticity provide exact solutions. 9.5 Consider small shear strain for a moment. It is often given in terms of an angle. xplain why this is done. 9.6 What is a constitutive relation? Write down the general constitutive relation in terms of Cauchy stress and strain. 9.7 For an elastic, isotropic solid material, how many constants are required to define the constitutive relations? Name these and define their meaning. 9.4 Problems 9.8 Structural steel is subjected to the deformation defined by u x ( x, y, z )=0.002x, u y ( x, y, z )= 0, u z ( x, y, z )=0(displacements in inches). Determine the following in US units: a) Infinitesimal strain tensor. b) Stress tensor. c) Draw Mohr s Circle for the given state of stress. d) Principal Stresses and Strains. 9.9 Repeat steps a and b in 9.8 for u x ( x, y, z ) = 0.002x x, u y ( x, y, z ) = 0.002xy, u z ( x, y, z )=0.001z GIVN :AHookean material with = psi and ν =0.5 experiences the following deformation: u x ( x, y, z )=0,u y ( x, y, z )=0.004x, u z ( x, y, z )=0 RQUIRD: a) Sketch u x versus x, u y versus y, and u z versus z, and calculate ux x, uy y, uz z. b) Calculate the infinitesimal strain tensor. c) Calculate the stress tensor GIVN : ν =0.25 and = Pa, and strain tensors as follows (1) , (2) RQUIRD: (1) Calculate the stress tensors; (2) How much is the relative volume change (the dilatation) for this deformation, and compare the results obtained by using both finite strain formula and the small strain formula.

15 9.4. PROBLMS GIVN : ν =0.33 and = MPa, and stress tensors as follows 10 MPa 4 MPa 0 20 MPa 50 MPa 0 (1) 4MPa 30MPa 0 (2) 50 MPa MPa RQUIRD: Calculate the strain tensors GIVN : u x = z10 4, u z = x10 4, and u y =0,and material constants = , and ν =0.3. (1) Compute infinitesimal strain tensor. (2) Compute the corresponding stress tensor. (3) What are the principal stresses and principal strains? (4) Are the principal stresses and strains acting in the same directions? 9.14 A steel plate lies flat in the x-y plane and has dimensions 20 cm 40 cm. If the plate is uniformly heated throughout at 1000 C and the thermal expansion coefficient is given by α = , calculate the new dimensions of the plate due to thermal expansion. m (m - C) 9.15 A thin rectangular sheet of linearly elastic material has an x-y coordinate system located at its lower left corner. The body extends 15 in. in the x direction and 8 in. in the y direction. The material is isotropic with an =35, 000, 000 psi and ν =0.33. A plane stress condition has been created by forces acting along the edges of the body with a displacement field of: u x = x 2 y u y = xy 2 Write expressions for the surface force normal to and for the tangential surface force along the upper 15 in. boundary as functions of x. Write expressions for the surface force normal to and for the tangential surface force along the right 8 in. boundary as functions of y. Draw the distribution of normal surface force along these two boundaries on a sketch of the body Use web resources to determine the following material properties. Provide the URL (http address) that you used. (a) Yield strength in shear of 2024-T4 and 2014-T6 aluminum. (b) Poisson s ratio and yield strength in shear for Ti-5Al-2.5Sn. (c) All of the table values as presented in Table 9.1 for 4130 heat treated alloy steel. (d) All of the table values as presented in Table 9.1 for balsa wood GIVN : The isothermal (no temperature gradient) uniaxial bar specimen of 2024-T4 Aluminum (isotropic) shown below: The axial displacements are measured to be: RQUIRD: u x = 0.02x in u y = x in x in inches!! 1. Sketch the deformed configuration of the test section boundary (using the displacements given above). 2. Calculate the infinitesimal strain tensor for the test section.

16 226 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Problem Calculate the stress tensor for the test section GIVN :Alinear isotropic Thermolastic plate of Stainless 304 is subjected to a uniform temperature change of T and is assumed to be in a state of stress as shown below. At equilibrium, the T is known. σ = MPa RQUIRD: a) Calculate the infinitesimal strain tensor when T =0 C. (review equations 9.12 and 9.13 in the notes) b) Calculate the infinitesimal strain tensors for the two cases: when T = 100 C, and when T =25 C. c) Find the temperature change T necessary to produce zero strain GIVN : Consider the state of stress called plane stress in which non-zero stresses exist in only one plane. RQUIRD: a) For a state of plane stress in the x-y plane, show that the constitutive equations for an elastic isotropic material (isothermal case) reduce to the following. Hint: start with the constitutive equations for the general 3-D elastic, isotropic case and reduce to plane stress; see equation 10.6): SHOW ALL STPS. σ xx = = σ xy = (1 ν 2 ) [ε xx + ν ] (1 ν 2 ) [νε xx + ] (1 + ν) ε xy

17 9.4. PROBLMS 227 b) Starting with the above relations, show that the strains for plane stress in the x-y plane become those shown below (see equation 10.7). You must show all steps necessary to obtain the relations below. ε xx = 1 [σ xx ν ] = 1 [ νσ xx ] ε xy = ( 1+ν )σ xy ε zz = ν (σ xx + ) You may use Scientific Workplace to do the matrix algebra GIVN : Given that for a general orthotropic elastic material there are 12 unique coeffecients such that: [D] = 1 11 ν12 11 ν13 11 ν23 22 ν µ µ µ 12 ν ν31 33 The constitutive equation for this form would then be: where the stress have the following values RQUIRD: {σ} = σ xx =5ksi =10ksi σ zz =20ksi σ yz =0ksi σ zx =0ksi σ xy =7.5 ksi {ε} =[D] {σ} ; {ε} = a) Write the stress tensor in its more common form (i.e., as a tensor or matrix). Does this constitute generalized plane stress? Why or why not? ε xx ε zz ε yz ε zx ε xy Recall that generalized plane stress is a requirement for Mohr s Circle b) Suppose that the 12 material coefficients have the following values: 11 = 10 6 psi 22 = psi 33 = psi

18 228 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS ν 12 = 0.2 ν 13 = 0.25 ν 21 = 0.33 ν 23 = 0.43 ν 31 = 0.05 ν 32 = 0.06 µ 23 = 10 4 psi µ 31 = psi µ 12 = psi Calculate the infinitesimal strain tensor. c) Write the strain tensor in its more common form. Does this constitute generalized plane strain? Why or why not?

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

THE GENERAL ELASTICITY PROBLEM IN SOLIDS

THE GENERAL ELASTICITY PROBLEM IN SOLIDS Chapter 10 TH GNRAL LASTICITY PROBLM IN SOLIDS In Chapters 3-5 and 8-9, we have developed equilibrium, kinematic and constitutive equations for a general three-dimensional elastic deformable solid bod.

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

2. Mechanics of Materials: Strain. 3. Hookes's Law

2. Mechanics of Materials: Strain. 3. Hookes's Law Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

EE C247B ME C218 Introduction to MEMS Design Spring 2017

EE C247B ME C218 Introduction to MEMS Design Spring 2017 247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T.- Reading: Senturia, Chpt. 8 Lecture Topics:

More information

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008 Basic Concepts of Strain and Tilt Evelyn Roeloffs, USGS June 2008 1 Coordinates Right-handed coordinate system, with positions along the three axes specified by x,y,z. x,y will usually be horizontal, and

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1 MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

2 Introduction to mechanics

2 Introduction to mechanics 21 Motivation Thermodynamic bodies are being characterized by two competing opposite phenomena, energy and entropy which some researchers in thermodynamics would classify as cause and chance or determinancy

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

Spherical Pressure Vessels

Spherical Pressure Vessels Spherical Pressure Vessels Pressure vessels are closed structures containing liquids or gases under essure. Examples include tanks, pipes, essurized cabins, etc. Shell structures : When essure vessels

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

**********************************************************************

********************************************************************** Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 3-33 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and

More information

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment. Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

More information

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected

More information

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0.

A concrete cylinder having a a diameter of of in. mm and elasticity. Stress and Strain: Stress and Strain: 0. 2011 earson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copyright laws as they currently 8 1. 3 1. concrete cylinder having a a diameter of of 6.00

More information

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES OF WOOD OR PLYWOOD CONSIDERED AS ORTHOTROPIC MATERIALS Information Revied and Reaffirmed March 1956 No. 1510 EFFECT OF ELLIPTIC

More information

σ = F/A ε = L/L σ ε a σ = Eε

σ = F/A ε = L/L σ ε a σ = Eε Material and Property Information This chapter includes material from the book Practical Finite Element Analysis. It also has been reviewed and has additional material added by Sascha Beuermann. Hooke

More information

Date Submitted: 1/8/13 Section #4: T Instructor: Morgan DeLuca. Abstract

Date Submitted: 1/8/13 Section #4: T Instructor: Morgan DeLuca. Abstract Lab Report #2: Poisson s Ratio Name: Sarah Brown Date Submitted: 1/8/13 Section #4: T 10-12 Instructor: Morgan DeLuca Group Members: 1. Maura Chmielowiec 2. Travis Newberry 3. Thomas Cannon Title: Poisson

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Load Cell Design Using COMSOL Multiphysics

Load Cell Design Using COMSOL Multiphysics Load Cell Design Using COMSOL Multiphysics Andrei Marchidan, Tarah N. Sullivan and Joseph L. Palladino Department of Engineering, Trinity College, Hartford, CT 06106, USA joseph.palladino@trincoll.edu

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

ANALYSIS OF STRAINS CONCEPT OF STRAIN

ANALYSIS OF STRAINS CONCEPT OF STRAIN ANALYSIS OF STRAINS CONCEPT OF STRAIN Concept of strain : if a bar is subjected to a direct load, and hence a stress the bar will change in length. If the bar has an original length L and changes by an

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature Torsion Testing of Structural Metals Standards ASTM E143: Shear Modulus at Room Temperature Purpose To determine the shear modulus of structural metals Equipment Tinius-Olsen Lo-Torq Torsion Machine (figure

More information

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background

Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,

More information

TRESS - STRAIN RELATIONS

TRESS - STRAIN RELATIONS TRESS - STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

Stress Integration for the Drucker-Prager Material Model Without Hardening Using the Incremental Plasticity Theory

Stress Integration for the Drucker-Prager Material Model Without Hardening Using the Incremental Plasticity Theory Journal of the Serbian Society for Computational Mechanics / Vol. / No., 008 / pp. 80-89 UDC: 59.74:004.0 Stress Integration for the Drucker-rager Material Model Without Hardening Using the Incremental

More information

TINIUS OLSEN Testing Machine Co., Inc.

TINIUS OLSEN Testing Machine Co., Inc. Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

3D and Planar Constitutive Relations

3D and Planar Constitutive Relations 3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13 ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

More information

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2.

Chapter 2 - Macromechanical Analysis of a Lamina. Exercise Set. 2.1 The number of independent elastic constants in three dimensions are: 2. Chapter - Macromechanical Analysis of a Lamina Exercise Set. The number of independent elastic constants in three dimensions are: Anisotropic Monoclinic 3 Orthotropic 9 Transversely Orthotropic 5 Isotropic.

More information

MATERIAL ELASTIC ANISOTROPIC command

MATERIAL ELASTIC ANISOTROPIC command MATERIAL ELASTIC ANISOTROPIC command.. Synopsis The MATERIAL ELASTIC ANISOTROPIC command is used to specify the parameters associated with an anisotropic linear elastic material idealization. Syntax The

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

Lectures on. Constitutive Modelling of Arteries. Ray Ogden

Lectures on. Constitutive Modelling of Arteries. Ray Ogden Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics

More information

ACET 406 Mid-Term Exam B

ACET 406 Mid-Term Exam B ACET 406 Mid-Term Exam B SUBJECT: ACET 406, INSTRUCTOR: Dr Antonis Michael, DATE: 24/11/09 INSTRUCTIONS You are required to answer all of the following questions within the specified time (90 minutes).you

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 2 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Stress and Strain Axial Loading 2.1 An Introduction

More information

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is Structure Analysis I Chapter 9 Deflection Energy Method External Work Energy Method When a force F undergoes a displacement dx in the same direction i as the force, the work done is du e = F dx If the

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Design of a fastener based on negative Poisson's ratio foam adapted from

Design of a fastener based on negative Poisson's ratio foam adapted from 1 Design of a fastener based on negative Poisson's ratio foam adapted from Choi, J. B. and Lakes, R. S., "Design of a fastener based on negative Poisson's ratio foam", Cellular Polymers, 10, 205-212 (1991).

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Theory of Plasticity. Lecture Notes

Theory of Plasticity. Lecture Notes Theory of Plasticity Lecture Notes Spring 2012 Contents I Theory of Plasticity 1 1 Mechanical Theory of Plasticity 2 1.1 Field Equations for A Mechanical Theory.................... 2 1.1.1 Strain-displacement

More information

CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS TYPES OF ROOF TRUSS ROOF TRUSS SETUP ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

More information

Fatigue Problems Solution

Fatigue Problems Solution Fatigue Problems Solution Problem 1. (a) Given the values of σ m (7 MPa) and σ a (1 MPa) we are asked t o compute σ max and σ min. From Equation 1 Or, σ m σ max + σ min 7 MPa σ max + σ min 14 MPa Furthermore,

More information

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS 1 TYPES OF ROOF TRUSS ROOF TRUSS SETUP 2 ROOF TRUSS SETUP OBJECTIVES To determine the STABILITY and DETERMINACY of plane trusses To analyse

More information

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

Chapter 3: Stress and Equilibrium of Deformable Bodies

Chapter 3: Stress and Equilibrium of Deformable Bodies Ch3-Stress-Equilibrium Page 1 Chapter 3: Stress and Equilibrium of Deformable Bodies When structures / deformable bodies are acted upon by loads, they build up internal forces (stresses) within them to

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS Mohsen Safaei, Wim De Waele Ghent University, Laboratory Soete, Belgium Abstract The present work relates to the

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Computational Biomechanics Lecture 2: Basic Mechanics 2. Ulli Simon, Frank Niemeyer, Martin Pietsch

Computational Biomechanics Lecture 2: Basic Mechanics 2. Ulli Simon, Frank Niemeyer, Martin Pietsch Computational Biomechanics 016 Lecture : Basic Mechanics Ulli Simon, Frank Niemeyer, Martin Pietsch Scientific Computing Centre Ulm, UZWR Ulm University Contents .7 Static Equilibrium Important: Free-body

More information