Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate
|
|
- Randell Frank Bishop
- 10 months ago
- Views:
Transcription
1 Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate
2 Outline Introduction Representative Volume Element (RVE) Periodic Boundary Conditions on RVE Homogenization Method Analytical Approach Rule of Mixtures (ROM) Classical Plate Theory (CPT) Current Study Comparison of Elastic constants of CNT Composite with Rule of Mixtures (ROM) Effective elastic properties of randomly oriented CNT-Mg nanocomposite Buckling Load of Nanocomposite Plate Conclusions References
3 Carbon Nano Tubes (CNT) Introduction Discovered in 1991 by Sumio Iijima [1], Japan Carbon nanotubes, are one of the most commonly mentioned building blocks of nanotechnology, with tensile strength much greater than steel, thermal conductivity better than purest diamond (almost twice), and electrical conductivity higher than copper wires. Thermally stable up to C in vacuum. Because of their superior electrical, thermal and mechanical properties, CNTs are potentially great reinforcing element in different matrix materials such as polymers, ceramics and metals, to enhance the overall properties of the resulting composite material.
4
5 Representative Volume Element Multiscale methods are required to deal with the wide length and time scales of nanocomposites that vary from nano to macro level, by integrating the molecular dynamics and continuum mechanics approaches, which has posed many challenges to all researchers in the area. The concept of representative volume element originally used for fiber reinforced composites [2] has also been carried forward in the characterization of nano scale materials. Liu and Chen [3] proposed three types of nanoscale representative volume element (RVE) i.e. cylindrical, square and hexagonal. It is shown that cylindrical RVE give good prediction of elastic properties of CNT nanocomposite in case of axisymmetric loading, when CNTs have different diameters, but cylindrical RVEs tends to overestimate the volume fraction of nanofillers in matrix material [4].
6 Square and hexagonal RVEs are used when nano-fillers are distributed in the matrix in square and hexagonal arrays respectively. Figure 1 Single CNT RVE for the v f = 0.01 Figure 2. RVE consisting of randomly oriented and periodically distributed CNT for v f = 0.01
7 Periodic boundary conditions on RVE Typical RVE under normal loading in x- direction (for calculating E 1, υ 12 and υ 13 ) RVE under transverse shear loading (for calculating G 23 )
8 RVE under longitudinal shear loading (for calculating G 12 and G 13 )
9 Homogenization Method for Evaluating Average Stress and Strain over the RVE The effective (i.e., averaged) stiffness coefficient of nanocomposite can be calculated from, Where refers to the effective stiffness tensor, and and are the volume-averaged stress and strain tensors calculated over the volume of the RVE using following integral expressions as: In the present study, volume average of the stress and the strains, for the homogenized material properties of nanocomposites is calculated using especial features of COMSOL Multiphysics.
10 Analytical Approach 1. RULE OF MIXTURES: Axial elastic modulus: Transverse elastic modulus: In-plane shear modulus: In-plane Poisson's ratio:
11 2. Classical Plate theory (CPT) Increased use of nanocomposite in various structural applications necessitates the development of accurate theoretical models to predict their response. Buckling behavior of CNT reinforced plates is studied by different researchers using different methodologies [5,6] A variety of plate theories have been proposed to study the buckling behavior of plates. The classical plate theory (CPT) provides acceptable results only for the analysis of thin plates and neglects the transverse shear effects. Assumptions of CPT: 1. Straight lines that are perpendicular to the midsurface (i.e., transverse normals) before deformation remain straight after the deformation. 2. The transverse normals do not experience elongation (i.e., they are inextensible). 3. The transverse normals rotate so that they remain perpendicular to the midsurface after the deformation.
12 Undeformed and deformed geometry of a plate according to the CPT.
13 Boundary Conditions for All Edges Simply Supported Plate
14 Comparison of Elastic constants of CNT nanocomposite obtained in the present study and the ROM Elastic Constants FEA results ROM E E 2 =E G 12 = G ν
15 Effective elastic properties of randomly oriented CNT-Mg nanocomposite E x E y E z G xy G xz G yz ν xy ν xz ν yz
16 Buckling Load of Nanocomposite Plate Comparison of buckling strengths of pure Mg and CNT-Mg nanocomposite (having 1 % reinforcements) obtained using the COMSOL Multiphysics and the analytical formula based on CPT. Plate Material COMSOL Multiphysics (KN/m) Analytical results based on CPT (KN/m) Mg CNT-Mg Nanocomposite
17 First four mode shapes of CNT-Mg nanocomposites plate having 1% CNT reinforcement with a/h =50.
18 Conclusions: 1. Effective elastic constants of randomly oriented and periodically distributed CNT reinforced Mg nanocomposite are predicted using cubical representative volume element subjected to different periodic boundary conditions. The obtained model shows the isotropic behavior that can mimic the actually developed isotropic nanocomposites. 2. The procedure is validated by comparing FEA result for the axial modulus with the corresponding analytical result obtained from mechanics of solid based rule of mixtures (ROM). 3. The effect of CNT reinforcement on the buckling behavior of a simply supported square plate is predicted using the plate physics section of COMSOL Multophysics. Based on the present study, it can be concluded that reinforcement of CNTs enhances the stiffness properties of the metal matrix which in turn increases the buckling strength of the plate.
19 References: 1. Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991; 354: Hyer, M.W., Stress Analysis of Fiber-Reinforced Composite Materials. McGraw-Hill, Boston 3. Liu, Y., & Chen, X. (2003). Evaluations of the effective material properties of carbon nanotubebased composites using a nanoscale representative volume element. Mechanics of Materials, 35, Chen, X. L., & Liu, Y. J. (2004). Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Computational Materials Science, 29, Arani A. G, Maghamikia S, Mohammadimehr M, Arefmanesh A. (2011). Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. J Mech Sci Technol, 25: Jafari Mehrabadi S, Sobhani Aragh B, Khoshkhahesh V, Taherpour A. (2012). Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight singlewalled carbon nanotubes. Compos Part B Eng,43:
20 Thank You Queries?
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and
6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile
Bending of Simply Supported Isotropic and Composite Laminate Plates
Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,
EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics
MECHANICS OF MATERIALS
Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
Strength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour
Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard
Chapter 3. Load and Stress Analysis
Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3
Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains
Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model
Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship
Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction
Probabilistic Micromechanics Analysis of CNT Nanocomposites with Three-Dimensional Karhunen-Loève Expansion
Probabilistic Micromechanics Analysis of CNT Nanocomposites with Three-Dimensional Karhunen-Loève Expansion Fei-Yan Zhu 1, Sungwoo Jeong 2 and Gunjin Yun 3 1), 2, 3) Department of Mechanical & Aerospace
Stress-Strain Behavior
Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING
Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 5-22 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,
6. Bending CHAPTER OBJECTIVES
CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where
RVE Analysis of Light Weight Carbon Nanotubes Embedded Piezoelectric Fibre Composites
Nanoscience and Nanotechnology 2016, 6(1): 11-16 DOI: 10.5923/j.nn.20160601.03 RVE Analysis of Light Weight Carbon Nanotubes Embedded Piezoelectric Fibre Composites V. K. Srivastava 1,*, H. Berger 2, U.
Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS
MECHANICS OF MATERIALS Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA Keywords: Solid mechanics, stress, strain, yield strength Contents 1. Introduction 2. Stress
CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS
CHAPTER THE EFFECTS OF FORCES ON MATERIALS EXERCISE 1, Page 50 1. A rectangular bar having a cross-sectional area of 80 mm has a tensile force of 0 kn applied to it. Determine the stress in the bar. Stress
Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige
Chapter 6: Mechanical Properties of Metals Dr. Feras Fraige Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness
CHAPTER -6- BENDING Part -1-
Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and
Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE
1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for
Solid State Theory Physics 545
olid tate Theory hysics 545 Mechanical properties of materials. Basics. tress and strain. Basic definitions. Normal and hear stresses. Elastic constants. tress tensor. Young modulus. rystal symmetry and
TRESS - STRAIN RELATIONS
TRESS - STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple
QUESTION BANK Composite Materials
QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.
Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).
1 Cellular solid structures with unbounded thermal expansion Roderic Lakes Journal of Materials Science Letters, 15, 475-477 (1996). Abstract Material microstructures are presented which can exhibit coefficients
Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method
, pp.67-82 http://dx.doi.org/1.14257/ijast.215.78.6 Mechanical Behavior of Fullerene Reinforced Fiber Composites with Interface Defects through Homogenization Approach and Finite Element Method P. Prasanthi
CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS
Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.
UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude
COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction
COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3
MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.
DESIGN OF LAMINATES FOR IN-PLANE LOADING
DESIGN OF LAMINATES FOR IN-PLANOADING G. VERCHERY ISMANS 44 avenue F.A. Bartholdi, 72000 Le Mans, France Georges.Verchery@m4x.org SUMMARY This work relates to the design of laminated structures primarily
3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,
3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it
Nonlocal material properties of single walled carbon nanotubes
Nonlocal material properties of single walled carbon nanotubes J. V. Araújo dos Santos * and C. M. Mota Soares IDMEC, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal Av. Rovisco Pais,
Two-dimensional ternary locally resonant phononic crystals with a comblike coating
Two-dimensional ternary locally resonant phononic crystals with a comblike coating Yan-Feng Wang, Yue-Sheng Wang,*, and Litian Wang Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing,
Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava
Optimizing the Design of Polymer Based Unimorph Actuator using COMSOL Multiphysics Vineet Tiwari, Rashiya Sharma, R. K. Dwivedi and Geetika Srivastava Department of Physics and Materials Science & Engineering
UNIT I SIMPLE STRESSES AND STRAINS
Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES
4.MECHANICAL PROPERTIES OF MATERIALS
4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram
Aspect Ratio Requirements for Nanotube-Reinforced, Polymer-Matrix Composites
Aspect Ratio Requirements for Nanotube-Reinforced, Polymer-Matrix Composites J.A.Nairn Wood Science and Engineering, Oregon State University, Corvallis, OR 97330, USA Abstract A fiber s efficiency in a
LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS
XXII. LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS Introduction The lamination theory for the elastic stiffness of fiber composite materials is the backbone of the entire field, it holds
6.730 Physics for Solid State Applications
6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific
Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors
Sensors 2012, 12, 16024-16036; doi:10.3390/s121216024 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Determination of the Shear Buckling Load of a Large Polymer Composite I-Section
Macroscopic Elastic Constitutive Relationship of Cast-in-Place Hollow-Core Slabs
Macroscopic Elastic Constitutive Relationship of Cast-in-Place Hollow-Core Slabs Jing-Zhong Xie 1 Abstract: The macroscopic Poisson ratio and elastic moduli of the cast-in-place hollow-core slab are researched
ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)
ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,
Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method
Acta Mech Sin 2011 276:967 976 DOI 101007/s10409-011-0514-0 RESEARCH PAPER Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method
3D and Planar Constitutive Relations
3D and Planar Constitutive Relations A School on Mechanics of Fibre Reinforced Polymer Composites Knowledge Incubation for TEQIP Indian Institute of Technology Kanpur PM Mohite Department of Aerospace
THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL COILS EFFECTS OF VARIATIONS IN FIBER VOLUME FRACTION
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2010 THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL
A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber
A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.
Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 12-9-2011 Generic
Lectures on. Constitutive Modelling of Arteries. Ray Ogden
Lectures on Constitutive Modelling of Arteries Ray Ogden University of Aberdeen Xi an Jiaotong University April 2011 Overview of the Ingredients of Continuum Mechanics needed in Soft Tissue Biomechanics
Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method
Y. J. Liu 1 Assistant Professor, e-mail: Yijun.Liu@uc.edu Mem. ASME N. Xu Graduate Student Department of Mechanical, Industrial, and Nuclear Engineering, P.O. Box 210072, University of Cincinnati, Cincinnati,
Analysis of high loss viscoelastic composites
Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science
Introduction to Engineering Materials ENGR2000. Dr. Coates
Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed
*Corresponding author: Keywords: Finite-element analysis; Multiscale modelling; Onset theory; Dilatational strain invariant.
18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MICROMECHANICAL MODELLING OF TEST SPECIMENS FOR ONSET OF DILATATIONAL DAMAGE OF POLYMER MATRIX IN COMPOSITE MATERIALS T. D. Tran 1, D. Kelly 1*, G.
Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA
Anisotropic modeling of short fibers reinforced thermoplastics materials with LS-DYNA Alexandre Hatt 1 1 Faurecia Automotive Seating, Simplified Limited Liability Company 1 Abstract / Summary Polymer thermoplastics
PLAT DAN CANGKANG (TKS 4219)
PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which
CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion
CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.
FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS
FREE VIBRATION ANALYSIS OF THIN CYLINDRICAL SHELLS SUBJECTED TO INTERNAL PRESSURE AND FINITE ELEMENT ANALYSIS J. Kandasamy 1, M. Madhavi 2, N. Haritha 3 1 Corresponding author Department of Mechanical
PLAIN WEAVE REINFORCEMENT IN C/C COMPOSITES VISUALISED IN 3D FOR ELASTIC PARAMETRES
THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS PLAIN WEAVE REINFORCEMENT IN C/C COMPOSITES VISUALISED IN 3D FOR ELASTIC PARAMETRES P. Tesinova Technical University of Liberec, Faculty of Textile
MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f
MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown
ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013
Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering
MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic
SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS
Mechanical Testing and Diagnosis ISSN 2247 9635, 2012 (II), Volume 3, 79-85 SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Valeriu DULGHERU, Viorel BOSTAN, Marin GUŢU Technical University
Stresses and Strains in flexible Pavements
Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same
THEORY OF PLATES AND SHELLS
THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKY-KRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAW-HILL
PLY WAVINESS ON IN-PLANE STIFFNESS OF COMPOSITE LAMINATES
PLY WAVINESS ON IN-PLANE STIFFNESS OF COMPOSITE LAMINATES Cimini Jr., Carlos A., and Tsai, Stephen W. 2 Department of Mechanical Engineering, Federal University of Minas Gerais Av. Antônio Carlos, 6627
Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements
CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness
CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles
CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and
External Pressure... Thermal Expansion in un-restrained pipeline... The critical (buckling) pressure is calculated as follows:
External Pressure... The critical (buckling) pressure is calculated as follows: P C = E. t s ³ / 4 (1 - ν ha.ν ah ) R E ³ P C = Critical buckling pressure, kn/m² E = Hoop modulus in flexure, kn/m² t s
Basic Energy Principles in Stiffness Analysis
Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting
Plane and axisymmetric models in Mentat & MARC. Tutorial with some Background
Plane and axisymmetric models in Mentat & MARC Tutorial with some Background Eindhoven University of Technology Department of Mechanical Engineering Piet J.G. Schreurs Lambèrt C.A. van Breemen March 6,
EE C247B ME C218 Introduction to MEMS Design Spring 2017
247B/M 28: Introduction to MMS Design Lecture 0m2: Mechanics of Materials CTN 2/6/7 Outline C247B M C28 Introduction to MMS Design Spring 207 Prof. Clark T.- Reading: Senturia, Chpt. 8 Lecture Topics:
**********************************************************************
Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 3-33 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235
COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS
6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 15-16 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania
Beam Bending Stresses and Shear Stress
Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance
Modeling of Fiber-Reinforced Membrane Materials Daniel Balzani. (Acknowledgement: Anna Zahn) Tasks Week 2 Winter term 2014
Institute of echanics and Shell Structures Faculty Civil Engineering Chair of echanics odeling of Fiber-Reinforced embrane aterials OOC@TU9 Daniel Balani (Acknowledgement: Anna Zahn Tasks Week 2 Winter
BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS
BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,
Module 4: Behaviour of a Laminae-II. Learning Unit 1: M1. M4.1 Mechanics of Composites. M4.1.1 Introduction to Mechanics of Composites
Module 4: Behaviour of a Laminae-II Learning Unit 1: M1 M4.1 Mechanics of Composites M4.1.1 Introduction to Mechanics of Composites The relation between ply uniaxial strengths and constituent properties
FEM Modeling of a 3D Printed Carbon Fiber Pylon
FEM Modeling of a 3D Printed Carbon Fiber Pylon I. López G.*, B. Chiné, and J.L. León S. Costa Rica Institute of Technology, School of Materials Science and Engineering, Cartago, Costa Rica *Corresponding
ELASTICITY (MDM 10203)
LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering
Flexible Pavement Stress Analysis
Flexible Pavement Stress Analysis Dr. Antonis Michael Frederick University Notes Courtesy of Dr. Christos Drakos, University of Florida Need to predict & understand stress/strain distribution within the
3. BEAMS: STRAIN, STRESS, DEFLECTIONS
3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets
Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer
Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics
Symmetric Bending of Beams
Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications
Crash and Impact Simulation of Composite Structures by Using CAE Process Chain
Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Madhukar Chatiri 1, Thorsten Schütz 2, Anton Matzenmiller 3, Ulrich Stelzmann 1 1 CADFEM GmbH, Grafing/Munich, Germany, mchatiri@cadfem.de
PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses
OPTIMAT BLADES Page 1 of 24 PRELIMINARY PREDICTION OF SPECIMEN PROPERTIES CLT and 1 st order FEM analyses first issue Peter Joosse CHANGE RECORD Issue/revision date pages Summary of changes draft 24-10-02
EFFECT OF VACANCY DEFECTS ON THE MECHANICAL PROPERTIES OF CARBON NANOTUBE REINFORCED POLYPROPYLENE
International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 1370 1375, Article ID: IJMET_08_07_148 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7
CHARACTERIZING MECHANICAL PROPERTIES OF GRAPHITE USING MOLECULAR DYNAMICS SIMULATION
CHARACTERIZING MECHANICAL PROPERTIES OF GRAPHITE USING MOLECULAR DYNAMICS SIMULATION Jia-Lin Tsai and Jie-Feng Tu Department of Mechanical Engineering, National Chiao Tung University 1001 University Road,
GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE
GLOBAL AND LOCAL LINEAR BUCKLING BEHAVIOR OF A CHIRAL CELLULAR STRUCTURE Alessandro Spadoni, Massimo Ruzzene School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332 Fabrizio Scarpa
ScienceDirect. Unit cell model of woven fabric textile composite for multiscale analysis. Anurag Dixit a *,Harlal Singh Mali b, R.K.
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 68 ( 2013 ) 352 358 The Malaysian International Tribology Conference 2013 (MITC2013) Unit cell model of woven fabric textile
For more Stuffs Visit Owner: N.Rajeev. R07
Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours
THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE
Journal of Applied Mathematics and Computational Mechanics 013, 1(4), 13-1 THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE Jolanta Błaszczuk
USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE
Volume II: Fatigue, Fracture and Ceramic Matrix Composites USING A HOMOGENIZATION PROCEDURE FOR PREDICTION OF MATERIAL PROPERTIES AND THE IMPACT RESPONSE OF UNIDIRECTIONAL COMPOSITE A. D. Resnyansky and
CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load
CHAPTER OBJECTIVES Determine deformation of axially loaded members Develop a method to find support reactions when it cannot be determined from euilibrium euations Analyze the effects of thermal stress
MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.
Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL
Understand basic stress-strain response of engineering materials.
Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities
Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering
Mechanics Of Solids Suraj kr. Ray (surajjj2445@gmail.com) Department of Civil Engineering 1 Mechanics of Solids is a branch of applied mechanics that deals with the behaviour of solid bodies subjected
The Young s Modulus of Single-Walled Carbon Nanotubes
The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating
DIGIMAT for NANO-COMPOSITES
DIGIMAT for NANO-COMPOSITES Document Version 2.0.1, February 2010 info@e-xstream.com www.e-xstream.com Materials: Engineering Plastics, Reinforced Plastics, Mineral and Clay fillers. e-xstream Technology:
2. Mechanics of Materials: Strain. 3. Hookes's Law
Mechanics of Materials Course: WB3413, Dredging Processes 1 Fundamental Theory Required for Sand, Clay and Rock Cutting 1. Mechanics of Materials: Stress 1. Introduction 2. Plane Stress and Coordinate
Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.
Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie
MULTI-SCALE UNIT CELL ANALYSES OF TEXTILE COMPOSITES
5th ASC ngineering Mechanics Conference June -5,, Columbia University, New York, NY M MULTI-SCAL UNIT CLL ANALYSS OF TXTIL COMPOSITS Colby C. Swan,MemberASC andhyungjookim ABSTRACT Unit cell homogenization