Tuning PI controllers in nonlinear uncertain closedloop systems with interval analysis


 Josephine Bell
 1 years ago
 Views:
Transcription
1 Tuning PI controllers in nonlinear uncertain closedloop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015
2 Closedloop control systems r(t) e(t) u(t) Control y(t) Physics Control is a continuoustime PI controller t e(t) = r(t) y(t), u(t) = K p e(t) + K i e(τ)dτ Physics is defined by nonlinear ODEs 0 ẋ = f (x(t), u(t)), y(t) = g(x(t)) What is tuning a PI controller? Find values for K p and K i such that a given specification is satisfied. 2 / 17
3 Specification of PID Controllers PID controller: requirements based on closedloop response We observe the output of the plant 1 Overshoot: Less than 10% Steadystate error: Less than 2% Settling time: Less than 10s Rise time: Less than 2s Note: such properties come from the asymptotic behavior (well defined for linear case) of the system. 3 / 17
4 Classical tuning methods for PID controllers 1 ZieglerNichols closedloop method, based on simulations: deactivate the I and the D part of the PID controller; increase K p until a value K u where the output of the physics oscillates with a constant amplitude and a period T u ; look into the ZieglerNichols table to set the values of K p, K i and K d. For example, K p = 0.6K u, K i = 2K p /T u and K d = K p T u /8. Taking into account uncertainties? Models of physics are not well known during the design ẋ = f (x(t), u(t), p) with p P bounded. Consequence to apply ZieglerNichols method, MonteCarlo simulation should be used. Remark: for linear systems, better PID tuning methods exists as Pole Placement. 4 / 17
5 Classical tuning methods for PID controllers 2 Special case for linear closedloop (with uncertainties) systems r(t) e(t) u(t) C(s, K) y(t) P(s) C(s, K) and P(s, p) are the transfer functions of the controller and the uncertain physics C(s, K) the closedloop transfer function is H(s, K) = 1 C(s, K)P(s) Tuning with interval analysis [Bondia et ali, 2004] With uncertain physics that is P(s, p) with p P; Define a specification M(jω) and a interval ω of frequencies; Find K K such that H(jω, K, p) M(jω) for all ω ω 5 / 17
6 Our approach Hypotheses: uncertain nonlinear closedloop control system; only PI controllers are considered in this work; Only specification based settlingtime is considered { y(t end ) [r α%, r + α%], 100 α > 0 ẏ(t end ) [ ɛ, ɛ], ɛ > 0 Our method Embed PI controller into the nonlinear physics; Searching for valid parameters using interval analysis tools inclusion functions paving validated numerical integration 6 / 17
7 Inclusion functions based affine arithmetic Extension of interval arithmetic to reduce the dependency issue. [a, b] [c, d] =[a d, b c] x = [0, 1] x x = [ 1, 1] Main idea: parametric variables w.r.t. a set of noise symbols ε i with ε i [ 1, 1]. x =x 0 + x 1 ε 1 + x 3 ε 3 y =y 0 + y 1 ε 1 + y 2 ε 2 This representation encodes the linear relation between noise symbols and variables and allows for precise linear transformation. What is a noise symbol? Initial uncertainty: [a, b] a+b + b a ε 2 2 Nonlinear operations and roundoff errors. 7 / 17
8 Paving Methods used to represent complex sets S with inner boxes i.e. set of boxes included in S outer boxes i.e. set of boxes that does not belong to S the frontier i.e. set of boxes we do not know Example, a ring S = {(x, y) x 2 + y 2 [1, 2]} over [ 2, 2] [ 2, 2] Remark: involving bisection algorithm and so complexity is exponential in the size of the state space. 8 / 17
9 Solution of uncertain nonlinear ODEs Challenge Define method to compute reachable set of continuous dynamical systems: ẋ = f (x, p), especially when f is nonlinear. Current direction Modified numerical integration methods to deal with sets of values and nonlinear dynamics: explicit and implicit RungeKutta methods. Example Exact solution of ẋ = f (x, p) with x(0) X. Safe approximation at discrete time instants. Safe approximation between time instants. 9 / 17
10 Example of flowpipe with validated RungeKutta ẋ0 ẋ 1 ẋ 2 = 1 x x 3 1 x sin (d x 0 ) with d [2.78, 2.79] Simulation for 10 seconds with x 1 (0) = x 2 (0) = x 3 (0) = 0 The last step is x(10) = ([10, 10], [ , ], [ , ]) T 10 / 17
11 REMAINDER closedloop control systems r(t) e(t) u(t) Control y(t) Physics Control is a continuoustime PI controller t e(t) = r(t) y(t), u(t) = K p e(t) + K i e(τ)dτ Physics is defined by uncertain nonlinear ODEs 0 ẋ = f (x(t), u(t), p), y(t) = g(x(t)) Our goal Find values for K p and K i such that a given specification is satisfied. 11 / 17
12 Case study A cruise control system two formulations: with uncertain linear dynamics; uncertain nonlinear dynamics m the mass of the vehicle v = u bv m 2 u bv 0.5ρCdAv v = m u the control force defined by a PI controller bv is the rolling resistance F drag = 0.5ρCdAv 2 is the aerodynamic drag (ρ the air density, CdA the drag coefficient depending of the vehicle area) 12 / 17
13 Case study settings and algorithm Embedding the PI Controller into the differential equations: Starting point u = K p (v set v) + K i (v set v)ds, with v set the desired speed Transforming int err = (v set v)ds into differential form int err dt = v set v Main steps of the algorithm v = K p(v set v) + K i int err bv m Pick an interval values for K p and K i Simulate the closedloop systems with K p and K i if specification is not satisfied: bisect (up to minimal size) intervals and run simulation with smaller intervals if specification is satisfied try other values of K p and K i 13 / 17
14 Case study paving results Result of paving for both cases with K p [1, 4000] and K i [1, 120] v set = 10, t end = 15, α = 2% and ɛ = 0.2 and minimal size=1 (Reminder: y(t end ) [r α%, r + α%] and ẏ(t end ) [ ɛ, ɛ]) Linear case (CPU 10 minutes) Nonlinear case (CPU 80 minutes) 14 / 17
15 Case study a quick verification 1 (linear case) Taking a particular set of parameters K p = 1400 and K i = 35 in validated parameter state 15 / 17
16 Case study a quick verification 2 (linear case) Taking a particular set of parameters K p = 900 and K i = 40 in rejected parameter state 16 / 17
17 Conclusion Extension of interval analysis tools for nonlinear closedloop control systems using validated integration; to find all the valid parameters (paving) with respect to given specification. Future work Consider more examples; Consider PID controllers; Consider discretetime PID controller; Extended the specification considered to overshoot and rising time; Consider other controllers (ideas?). 17 / 17
RungeKutta Theory and Constraint Programming Julien Alexandre dit Sandretto Alexandre Chapoutot. Department U2IS ENSTA ParisTech SCAN Uppsala
RungeKutta Theory and Constraint Programming Julien Alexandre dit Sandretto Alexandre Chapoutot Department U2IS ENSTA ParisTech SCAN 2016  Uppsala Contents Numerical integration RungeKutta with interval
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationProportional, Integral & Derivative Control Design. Raktim Bhattacharya
AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationK c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the ZieglerNichols tuning tables: 30
1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationPerformance Evaluation of Generalized Polynomial Chaos
Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationEEE 550 ADVANCED CONTROL SYSTEMS
UNIVERSITI SAINS MALAYSIA Semester I Examination Academic Session 2007/2008 October/November 2007 EEE 550 ADVANCED CONTROL SYSTEMS Time : 3 hours INSTRUCTION TO CANDIDATE: Please ensure that this examination
More informationInner and Outer Setmembership State Estimation
Inner and Outer Setmembership State Estimation Luc Jaulin March 25, 2016 ENSTABretagne, LabSTICC, 2 rue F. Verny, 29200, Brest. email: lucjaulin@gmail.com Abstract The main contribution of this paper
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationCDS 101/110a: Lecture 102 Control Systems Implementation
CDS 101/110a: Lecture 102 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory  Classical control 
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationA NEW APPROACH TO MIXED H 2 /H OPTIMAL PI/PID CONTROLLER DESIGN
Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain A NEW APPROACH TO MIXED H 2 /H OPTIMAL PI/PID CONTROLLER DESIGN Chyi Hwang,1 ChunYen Hsiao Department of Chemical Engineering National
More informationChapter 12. Feedback Control Characteristics of Feedback Systems
Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an openloop system (a system without feedbac) and a closedloop
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationNumerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li
Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarsegraining
More informationLogistic Map, Euler & RungeKutta Method and LotkaVolterra Equations
Logistic Map, Euler & RungeKutta Method and LotkaVolterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationComputational Physics (6810): Session 8
Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential
More informationEvery real system has uncertainties, which include system parametric uncertainties, unmodeled dynamics
Sensitivity Analysis of Disturbance Accommodating Control with Kalman Filter Estimation Jemin George and John L. Crassidis University at Buffalo, State University of New York, Amherst, NY, 1444 The design
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationFeedback Basics. David M. Auslander Mechanical Engineering University of California at Berkeley. copyright 1998, D.M. Auslander
Feedback Basics David M. Auslander Mechanical Engineering University of California at Berkeley copyright 1998, D.M. Auslander 1 I. Feedback Control Context 2 What is Feedback Control? Measure desired behavior
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationRobotics. Dynamics. Marc Toussaint U Stuttgart
Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, EulerLagrange equation, NewtonEuler recursion, general robot dynamics, joint space control, reference trajectory
More informationModeling and Experimentation: Compound Pendulum
Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical
More informationA suboptimal second order sliding mode controller for systems with saturating actuators
28 American Control Conference Westin Seattle Hotel, Seattle, Washington, USA June 3, 28 FrB2.5 A suboptimal second order sliding mode for systems with saturating actuators Antonella Ferrara and Matteo
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationTuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control
Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING
More informationProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems
ProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems Fedor Shmarov, Paolo Zuliani School of Computing Science, Newcastle University, UK 1 / 41 Introduction ProbReach tool for probabilistic
More informationOpen Loop Tuning Rules
Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationVehicle longitudinal speed control
Vehicle longitudinal speed control Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin February 10, 2015 1 Introduction 2 Control concepts Open vs. Closed Loop Control
More informationDistributed Parameter Systems
Distributed Parameter Systems Introduction All the apparatus dynamic experiments in the laboratory exhibit the effect known as "minimum phase dynamics". Process control loops are often based on simulations
More informationEE Homework 12  Solutions. 1. The transfer function of the system is given to be H(s) = s j j
EE3054  Homework 2  Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationOptimal Control of Twin Rotor MIMO System Using LQR Technique
Optimal Control of Twin Rotor MIMO System Using LQR Technique Sumit Kumar Pandey and Vijaya Laxmi Abstract In this paper, twin rotor multi input multi output system (TRMS) is considered as a prototype
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationA Disturbance Observer Enhanced Composite Cascade Control with Experimental Studies
Submission to International Journal of Control, Automation, and Systems 1 A Disturbance Observer Enhanced Composite Cascade Control with Experimental Studies Xisong Chen, Juan Li, Jun Yang, Shihua Li Abstract:
More informationFUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL
Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationObjective: To study P, PI, and PID temperature controller for an oven and compare their performance. Name of the apparatus Range Quantity
Objective: To study P, PI, and PID temperature controller for an oven and compare their. Apparatus Used: Name of the apparatus Range Quantity 1. Temperature Controller System 1 PID Kp (010) Kd(020) Ki(00.02)
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationDesign Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain
World Applied Sciences Journal 14 (9): 13061312, 2011 ISSN 18184952 IDOSI Publications, 2011 Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain Samira Soltani
More informationIDENTIFICATION FOR CONTROL
IDENTIFICATION FOR CONTROL Raymond A. de Callafon, University of California San Diego, USA Paul M.J. Van den Hof, Delft University of Technology, the Netherlands Keywords: Controller, Closed loop model,
More information2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)
MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationLecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 20102011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 20102011 1 / 31 imediscretization
More information6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closedloop behavior what we want it to be. To review:  G c (s) G(s) H(s) you are here! plant For
More informationNonlinear and robust MPC with applications in robotics
Nonlinear and robust MPC with applications in robotics Boris Houska, Mario Villanueva, Benoît Chachuat ShanghaiTech, Texas A&M, Imperial College London 1 Overview Introduction to Robust MPC MinMax Differential
More information6 OUTPUT FEEDBACK DESIGN
6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationControl Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli
Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)
More informationEEL2216 Control Theory CT1: PID Controller Design
EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportionalintegralderivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers
More informationPID controllers, part I
Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationProblem Set 5 Solutions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 5 Solutions The problem set deals with Hankel
More informationDISCRETETIME TIMEVARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM. Dina Shona Laila and Alessandro Astolfi
DISCRETETIME TIMEVARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM Dina Shona Laila and Alessandro Astolfi Electrical and Electronic Engineering Department Imperial College, Exhibition Road, London
More informationOneSided Laplace Transform and Differential Equations
OneSided Laplace Transform and Differential Equations As in the dcretetime case, the onesided transform allows us to take initial conditions into account. Preliminaries The onesided Laplace transform
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More informationTransformation of a PID Controller for Numerical Accuracy
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be found at the ENTCS Macro Home Page. Transformation of a PID Controller for Numerical Accuracy
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question
More informationFrequency Response of Linear Time Invariant Systems
ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z
More information1. Find the solution of the following uncontrolled linear system. 2 α 1 1
Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +
More informationAutomatic Control 2. Nonlinear systems. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Nonlinear systems Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011 1 / 18
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationLecture 13: Internal Model Principle and Repetitive Control
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)
More informationDynamics and PID control. Process dynamics
Dynamics and PID control Sigurd Skogestad Process dynamics Things take time Step response (response of output y to step in input u): k = Δy( )/ Δu process gain  process time constant (63%)  process time
More informationPoincaré Map, Floquet Theory, and Stability of Periodic Orbits
Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct
More informationas support functions [18] and polynomials [34].
Decomposed Reachability Analysis for Nonlinear Systems Xin Chen University of Colorado, Boulder, CO xinchen@colorado.edu Sriram Sankaranarayanan University of Colorado, Boulder, CO srirams@colorado.edu
More informationFUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT
http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More information12.7 Steady State Error
Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there
More informationLecture 9 Infinite Impulse Response Filters
Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 FirstOrder LowPass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9
More informationA Verified ODE solver and Smale s 14th Problem
A Verified ODE solver and Smale s 14th Problem Fabian Immler Big Proof @ Isaac Newton Institute Jul 6, 2017 = Isabelle λ β α Smale s 14th Problem A computerassisted proof involving ODEs. Motivation for
More informationMethods for Computing Periodic SteadyState Jacob White
Introduction to Simulation  Lecture 15 Methods for Computing Periodic SteadyState Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Periodic Steadystate problems Application
More informationDesired Bode plot shape
Desired Bode plot shape 0dB Want high gain Use PI or lag control Low freq ess, type High low freq gain for steady state tracking Low high freq gain for noise attenuation Sufficient PM near ω gc for stability
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationChapter 3  Solved Problems
Chapter 3  Solved Problems Solved Problem 3.. A nonlinear system has an inputoutput model given by dy(t) + ( + 0.2y(t))y(t) = u(t) + 0.2u(t) 3 () 3.. Compute the operating point(s) for u Q = 2. (assume
More informationCompetences. The smart choice of Fluid Control Systems
Competences The smart choice of Fluid Control Systems Contents 1. Openloop and closedloop control Page 4 1.1. Function and sequence of an openloop control system Page 4 1.2. Function and sequence of
More informationOrdinary Differential Equations II
Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last
More informationOptimizationbased Domain Reduction in Guaranteed Parameter Estimation of Nonlinear Dynamic Systems
9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 46, 2013 ThC2.2 Optimizationbased Domain Reduction in Guaranteed Parameter Estimation of Nonlinear Dynamic Systems Radoslav
More informationSatellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon
Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes
More informationChaos suppression of uncertain gyros in a given finite time
Chin. Phys. B Vol. 1, No. 11 1 1155 Chaos suppression of uncertain gyros in a given finite time Mohammad Pourmahmood Aghababa a and Hasan Pourmahmood Aghababa bc a Electrical Engineering Department, Urmia
More informationAnalyzing Control Problems and Improving Control Loop Performance
OptiControls Inc. Houston, TX Ph: 7134596291 www.opticontrols.com info@opticontrols.com Analyzing Control s and Improving Control Loop Performance by Jacques F. Smuts Page: 1 Presenter Principal Consultant
More informationThe Torsion Pendulum (One or two weights)
The Torsion Pendulum (One or two weights) Exercises I through V form the oneweight experiment. Exercises VI and VII, completed after Exercises I V, add one weight more. Preparatory Questions: 1. The
More information