Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:3012:30


 Bruno Bishop
 1 years ago
 Views:
Transcription
1 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (23 sessions) Final Exam on 12/21/2015 (Monday)10:3012:30 Today: Recap of Internal Model Control Systems and Control Review Servo valve modeling TA evaluation (5 mins)
2 Electrohydraulic Force/Torque Control 290 Objective: Accurately apply predefined force/torque (stress) trajectories to specimen Often until fails
3 291 Setup and Procedures Linear system: Actuator pushing against a leaf spring (one end constraint). Force measurement by load cell. Rotary system: Actuator torquing an aluminum rod. Torque measurement by torque cell. It is a new system! Expect some nonlinearity of the spring Apply all your knowledge!
4 292 Objectives: Design and implement controllers to accurately track different types of trajectories Steps: 1. System identification (valve command input, force/torque output) 2. Choose appropriate controllers for the trajectories (steps, biased sinusoids, triangular wave) 3. Analyze and design controllers 4. Implement control 5. Go to steps 2/3 and improve performance
5 293 Internal Model Control ProportionalIntegral control excellent for canceling constant disturbance or tracking constant command Generalize idea for other disturbances and commands, such as Sine/cosines, ramps, or other polynomials? Recall for PI: C(s) = Kp + KI/s PI control can generate constant input (u) even as error e(t) à 0 For other types of disturbances, the internal model control should generate input to cancel out disturbances.
6 Internal Model Control  Architecture Sine/cosine disturbance: U(s) = C(s) E(s) Suppose error converges to 0 so using partial fraction, So u(t) will generate some sinusoid/cosine term with frequency omega Cf. with integral control.. s on denominator in PI that generates constants
7 295 Internal Model Control  Architecture 2. Polynomials disturbances? 1, t, t 2, etc.? 3. Combinations of sinusoids and polynomials? 4. Trajectory tracking instead of disturbance rejection? To track sinusoids need sinusoidal inputs To track polynomials, need polynomials as inputs (check constant case)
8 296 Assigning Closed Loop Poles The above suggests the form (denominator) of C(s) for various disturbances How to pick numerator of C(s)? Choose closed loop poles and use numerator to achieve target pole locations What are desirable closed loop pole locations? E.g. G(s) = 2/(s+3); D(s) = sinusoids + constant Etc
9 297 Comparison between controllers P simple, need large Kp for good performance PI regulate constant command (or ramp for integrator plants) and rejecting constant disturbance; Values of disturbance or command no needed IMC track or reject sinusoids or polynomials Values of disturbance or command no needed Need only the type Feedforward Arbitrary command trajectories Can combine with feedback control, e.g. P, PI, or IMC
10 Feedforward Example 298 Supposed a closed loop system has been designed, we think it has a transfer function: Ĝ c (s) = 25 s + 25 Design a feedforward controller such that the output y(t) track an arbitrary trajectory r(t). Write it out in as sum of differentiators and proper transfer function. If the actual closed loop transfer function is: G c (s) = 20 s + 20 How would it change its ability to track sinusoids for different frequencies?
11 If a plant is a first order system IMC Example G(s) = 2 s Write down the form of the Internal Model Controllers if: r(t) =a + bt+ ccos(3t + d)+e sin(7t) d(t) =g + hcos(2t) How to find the coefficients of the IMC controller?
12 300 Objectives Introduce fluid power component, circuits, and systems Functions, modeling and analysis Provide hands on experience in designing, analyzing and implementing control systems for real and physical systems; Consolidate concepts in Systems Dynamics/Control (ME3281) modeling, control and other dynamical systems Course syllabus, lab assignments, notes, etc. on course webpage (subject to change without notice)
13 301 Expected Outcome Familiarity with common hydraulic components, their use, symbols, and mathematical models Ability to formulate / analyze math models for simple hydraulic circuits Comfortable with commercial hydraulic catalogs Ability to identify single input single output (SISO) dynamical systems Ability to design, analyze and implement simple control systems Appreciation of advantages and disadvantages of various types of controllers Ability to relate control systems analysis with actual performance Intuitive and mathematical appreciation of dynamical system concepts (e.g. stability, instability, resonance) Appreciation of unmodeled real world effects Become very familiar with using Matlab for analysis and plotting.
14 Critical Basic Concepts 302 Transfer function Inputoutput relationship Block diagram à transfer function Closed loop pole locations and characteristics of response Stability Steady state response via final value theorem Frequency response
15 Critical Controls Concepts 303 Control system objectives: Stability: Determined by closed loop pole location (Reference Tracking) Performance: Robustness to disturbance Insensitivity to model uncertainty Immunity to measurement noise
16 Feedback versus feedforward 304 Feedback control Advantages: Compensates for disturbances and model uncertainty Disadvantages: Can be unstable if not designed correctly Usually cannot track ARBITRARY reference trajectories PEFECTLY Feedforward control Advantages: Perfect tracking for ARBITRARY reference trajectories! Disadvantages: Cannot compensate for disturbances or model uncertainty Feedback and feedforward control can be combined!!!! TRY it for your lab 22! Feedforward keeps error small so higher feedback gains are possible
17 Comparison of Feedback Controllers Proportional Control 305 Advantage: Simple Disadvantages: Need infinity gain to good performance, Increases gain in all frequencies Compromise with noise and robustness, Steady error with constant disturbances or ramp (and step in general) inputs
18 306 ProportionalIntegral Control Advantages: Zerosteady state error for step (and ramps in general) references and disturbances Increases low frequency gain while keeping high frequency gain low Steady state error relatively insensitive to model uncertainty Disadvantages: Works only for limited set of reference trajectories and disturbances 2 gains to tune 2 nd order closed loop system (with 1 st order plant) à possibility of resonance, underdamped etc. Good for situations when required control input (in steady state) is a constant
19 307 Advantage: Internal Model Control (Generalized PI) Zerosteady state error for step, ramps, sinusoids, exponential etc. references and disturbances Increases gain at the specific frequency of references while keeping gains at other frequencies low Insensitive to model uncertainty as long as closed loop is stable Disadvantage: Works only for limited types of reference trajectories and disturbances Many gains to tune Complex needs to rely on analysis
20 Control Design Procedures 1. What is the system being controlled? Model it System identification Choose the type of controller P, PI, IMC, Feedforward etc. 3. Formulate closed loop transfer function, and analyze performance 4. Design desired pole locations (where should they be?) 5. Calculate the controller gains to obtain the poles 6. Add feedforward control
Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)
232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationCM 3310 Process Control, Spring Lecture 21
CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic SingleInput/SingleOutput (SISO) Feedback Figure
More informationCBE507 LECTURE III Controller Design Using Statespace Methods. Professor Dae Ryook Yang
CBE507 LECTURE III Controller Design Using Statespace Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III 1 Overview States What
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationControl Systems. State Estimation.
State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may
More information10/8/2015. Control Design. Poleplacement by statespace methods. Process to be controlled. State controller
Poleplacement by statespace methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationFRTN 15 Predictive Control
Department of AUTOMATIC CONTROL FRTN 5 Predictive Control Final Exam March 4, 27, 8am  3pm General Instructions This is an open book exam. You may use any book you want, including the slides from the
More informationREPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM 1. Seunghyeokk James Lee 2, TsuChin Tsao
REPETITIVE LEARNING OF BACKSTEPPING CONTROLLED NONLINEAR ELECTROHYDRAULIC MATERIAL TESTING SYSTEM Seunghyeokk James Lee, TsuChin Tsao Mechanical and Aerospace Engineering Department University of California
More informationChapter 7  Solved Problems
Chapter 7  Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationProportional, Integral & Derivative Control Design. Raktim Bhattacharya
AERO 422: Active Controls for Aerospace Vehicles Proportional, ntegral & Derivative Control Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationHYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL USING A FEEDFORWARDPLUSPID CONTROL
HYDRAULIC LINEAR ACTUATOR VELOCITY CONTROL UING A FEEDFORWARDPLUPID CONTROL Qin Zhang Department of Agricultural Engineering University of Illinois at UrbanaChampaign, Urbana, IL 68 ABTRACT: A practical
More informationRELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing
RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl
More informationTopic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #17 16.31 Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall
More informationLecture 12. AO Control Theory
Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationLecture 1: Feedback Control Loop
Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationSatellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon
Satellite Attitude Control System Design Using Reaction Wheels Bhanu Gouda Brian Fast Dan Simon Outline 1. Overview of Attitude Determination and Control system. Problem formulation 3. Control schemes
More informationControl Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation
Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationVehicle longitudinal speed control
Vehicle longitudinal speed control Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin February 10, 2015 1 Introduction 2 Control concepts Open vs. Closed Loop Control
More informationTradeoffs and Limits of Performance
Chapter 9 Tradeoffs and Limits of Performance 9. Introduction Fundamental limits of feedback systems will be investigated in this chapter. We begin in Section 9.2 by discussing the basic feedback loop
More informationME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard
ME 132, Dynamic Systems and Feedback Class Notes by Andrew Packard, Kameshwar Poolla & Roberto Horowitz Spring 2005 Instructor: Prof. A Packard Department of Mechanical Engineering University of California
More informationChapter 13 Digital Control
Chapter 13 Digital Control Chapter 12 was concerned with building models for systems acting under digital control. We next turn to the question of control itself. Topics to be covered include: why one
More informationEL2520 Control Theory and Practice
EL2520 Control Theory and Practice Lecture 8: Linear quadratic control Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden Linear quadratic control Allows to compute the controller
More informationGoodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints
Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationEL2520 Control Theory and Practice
So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal
More informationUniversity of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum
University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum p1 ECE 3510 Lab 9, Inverted Pendulum M. Bodson, A. Stolp, 4/2/13 rev, 4/9/13 Objectives The objective of
More informationPID controllers, part I
Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller
More informationAppendix A MoReRT Controllers Design Demo Software
Appendix A MoReRT Controllers Design Demo Software The use of the proposed ModelReference Robust Tuning (MoReRT) design methodology, described in Chap. 4, to tune a twodegreeoffreedom (2DoF) proportional
More informationSeparation Principle & FullOrder Observer Design
Separation Principle & FullOrder Observer Design Suppose you want to design a feedback controller. Using fullstate feedback you can place the poles of the closedloop system at will. U Plant Kx If the
More informationControl System Design
ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and DiscreteTime Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science
More informationLearn2Control Laboratory
Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should
More informationLecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013
Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14  Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox
More informationControl Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard
Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationChapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust
More informationPole placement control: state space and polynomial approaches Lecture 2
: state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.fr www.gipsalab.fr/ o.sename based November 21, 2017 Outline : a state
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #1 Monday, January 6, 2003 Instructor: Dr. Ian C. Bruce Room CRL229, Ext. 26984 ibruce@mail.ece.mcmaster.ca Office Hours: TBA Teaching Assistants:
More informationIntroduction & Laplace Transforms Lectures 1 & 2
Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively
More informationSimulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach
Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),
More informationInverted Pendulum. Objectives
Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationSingular Value Decomposition Analysis
Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control
More informationTuning PI controllers in nonlinear uncertain closedloop systems with interval analysis
Tuning PI controllers in nonlinear uncertain closedloop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015 Closedloop
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationState Feedback and State Estimators Linear System Theory and Design, Chapter 8.
1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closedloop state estimator,
More information2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)
MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationEEL2216 Control Theory CT1: PID Controller Design
EEL6 Control Theory CT: PID Controller Design. Objectives (i) To design proportionalintegralderivative (PID) controller for closed loop control. (ii) To evaluate the performance of different controllers
More informationIntroduction to Model Order Reduction
KTH ROYAL INSTITUTE OF TECHNOLOGY Introduction to Model Order Reduction Lecture 1: Introduction and overview Henrik Sandberg, Bart Besselink, Madhu N. Belur Overview of Today s Lecture What is model (order)
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationIMC based automatic tuning method for PID controllers in a Smith predictor configuration
Computers and Chemical Engineering 28 (2004) 281 290 IMC based automatic tuning method for PID controllers in a Smith predictor configuration Ibrahim Kaya Department of Electrical and Electronics Engineering,
More informationTuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control
Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationCONTROL DESIGN FOR SET POINT TRACKING
Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observerbased output feedback design to solve tracking problems. By tracking we mean that the output is commanded
More informationLecture 13: Internal Model Principle and Repetitive Control
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)
More informationModel Predictive Controller of Boost Converter with RLE Load
Model Predictive Controller of Boost Converter with RLE Load N. Murali K.V.Shriram S.Muthukumar Nizwa College of Vellore Institute of Nizwa College of Technology Technology University Technology Ministry
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationRobust Internal Model Control for Impulse Elimination of Singular Systems
International Journal of Control Science and Engineering ; (): 7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationDigital Control Semester Project
Digital Control Semester Project Part I: TransformBased Design 1 Introduction For this project you will be designing a digital controller for a system which consists of a DC motor driving a shaft with
More informationCDS 110b: Lecture 21 Linear Quadratic Regulators
CDS 110b: Lecture 21 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,
More informationFundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc.
Fundamental of Control Systems Steady State Error Lecturer: Dr. Wahidin Wahab M.Sc. Aries Subiantoro, ST. MSc. Electrical Engineering Department University of Indonesia 2 Steady State Error How well can
More informationAdaptive Inverse Control based on Linear and Nonlinear Adaptive Filtering
Adaptive Inverse Control based on Linear and Nonlinear Adaptive Filtering Bernard Widrow and Gregory L. Plett Department of Electrical Engineering, Stanford University, Stanford, CA 943059510 Abstract
More informationRecitation 11: Time delays
Recitation : Time delays Emilio Frazzoli Laboratory for Information and Decision Systems Massachusetts Institute of Technology November, 00. Introduction and motivation. Delays are incurred when the controller
More informationDesign of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process
Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles
More informationControl Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1. Emilio Frazzoli
Control Systems I Lecture 1: Introduction Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 22, 2017 E. Frazzoli
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationFUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL
Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control
More information