Differential Equations

Size: px
Start display at page:

Download "Differential Equations"

Transcription

1 Pysics-based simulation xi Differential Equations xi+1 xi xi+1 xi + x x Pysics-based simulation xi Wat is a differential equation? Differential equations describe te relation between an unknown function and its derivatives Newtonian laws gravity wind gust Differential equations Classes of DE xi+1 elastic force... x xi Ordinary differential equation (ODE) xi+1 xi + x Partial differential equation (PDE)

2 Ordinary differential equations Symbolic solutions An ODE is an equality involving a function and its derivatives known function ẋ(t) f(x(t)) time derivative state of te system Standard introductory differential equation courses focus on finding solutions analytically Linear ODEs can be solved by integral transforms Use DSolveeqn,x,t in Matematica Wat does it mean to solve an ODE? Differential equation: ẋ kx Solution: x e kt Numerical solutions Initial value problems In tis class, we will be concerned wit numerical solutions For eac iteration: 1. use f to calculate te derivative as te direction to next state. use tis direction to approximate cange x over a time interval t 3. increment x by x to obtain new value Derivative function f is regarded as a black box: given numerical values for x and t, returns a numerical value for ẋ In a canonical initial value problem, te beavior of te system is described by an ODE and its initial condition: ẋ f(x, t) x(t 0 ) x 0 To solve x(t) numerically, we start out from x 0 and follow te canges defined by f tereafter

3 Vector field x Integral curves Te differential equation can be visualized as a vector field Any point on te curve indicates te integral of f from t0 x f (x, t) f (x, t) t0 p x1 How does te vector field look like if f depends directly on time? Numerical metods Get confused yet? x! f (x, t)dt t0 Numerical metods Explicit metods Wat do we know about te system? Explicit Euler s metod Wat are we trying to solve? Te midpoint metod Runge-Kutta metod Implicit metods Implicit Euler s metod

4 Explicit Euler s metod How do we get to te next state from te current state? x(t0 + ) Problems of Euler s metod Inaccuracy x(t0 + ) x0 + x (t0 ) Te circle turns into a spiral no matter ow small te step size is Instead of following real integral curve, p follows a polygonal pat x(t0 ) p Discrete time step determines te errors Problems of Euler s metod Performance of Euler s metod Cost per step is determined by te number of evaluations per step Instability f kx Oscillation: At eac step, x(t) can be written in te form of Taylor series: Divergence: x(t0 + ) x(t0 ) + x (t0 ) + How small te step size as to be? n n x 3 x (t0 ) + x(3) (t0 ) +...! 3! n! tn Wat is te order of te error term in Euler s metod?

5 Te midpoint metod Performance of midpoint metod 1. Compute an Euler s step Prove tat te midpoint metod is correct witin O(3) x f (x(t0 )). Evaluate f at te midpoint fmid f (x(t0 ) + x ) 3. Take a step using fmid x(t0 + ) x(t0 ) + fmid x(t + ) x0 + f (x0 + f (x0 )) Runge-Kutta metod 4-stage 4t order Runge-Kutta Runge-Kutta is a numeric metod of integrating ODEs by using a trial step at te midpoint of an interval to cancel out lower-order error terms k1 k k3 k4 x(t0 + ) Te second order Runge-Kutta is known as te midpoint metod 1. f (x0, t0 ) q-stage p-order Runge-Kutta evaluates te derivative function q times in eac iteration and its approximation of te next state is correct witin O(p+1) f (x0, t0 ) f (x0 + k1, t0 + ) f (x0 + k, t0 + ) f (x0 + k3, t0 + ) x k k + 13 k k4 x0. f (x0 + x 3. f (x0 + t k, t0 + ) k1, t0 + ) x(t0 + ) 4. f (x0 + k3, t0 + )

6 Stage vs. order Adaptive step size p q min(p) Te minimum number of stages necessary for an explicit metod to attain order p is still an open problem Wy is fourt order te most popular Runge Kutta metod? Ideally, we want to coose as large as possible, but not so large as to give us big error or instability We can vary as we marc forward in time Step doubling Embedding estimate Variable step, variable order Step doubling Embedding estimate e Estimate Estimate x a by taking a full Euler step x a x 0 + f(x 0, t 0 ) x b by taking two alf Euler steps x temp x 0 + f(x 0, t 0 ) x b x temp + f(x temp, t 0 + ) e x a x b is bound by O( ) Also called Runge-Kutta-Felberg Compare two estimates of x(t 0 + ) Fift order Runge-Kutta wit 6 stages Fort order Runge-Kutta wit 6 stages Given error tolerance ɛ, wat is te optimal step size? ( ɛ e)1

7 Variable step, variable order Problems of explicit metods Cange between metods of different order as well as step based on obtained error estimates Tese metods are currently te last work in numerical integration Do not work well wit stiff ODEs Simulation explodes if te step size is too big Simulation progresses slowly if te step size is too small Example: a bead on te wire Stiff equations y(t) x(t) Y(t) (x(t), y(t)) Ẏ d dt ( x(t) y(t) ) ( x(t) ky(t) ) Stiffness constant: k Explicit Euler s metod: Y new Y 0 + Ẏ(t 0) ( x(t) y(t) ) ( x(t) + ky(t) ) Step size is limited by te largest k Systems tat as some big k s mixed in are called stiff system Y new ( (1 )x(t) (1 k)y(t) )

8 Implicit metods Implicit metod Explicit Euler: Y new Y 0 + f(y 0 ) Implicit Euler: Y new Y 0 + f(y new ) Our goal is to solve for Y new suc tat Y new Y 0 + f(y new ) Approximating f(y new ) by linearizing f(y) f(y new ) f(y 0 ) + Yf (Y 0 ), were Y Y new Y 0 Solving for Y new suc tat! f, at time t 0 +, points directly back at!!! Y 0 Y new Y 0 + f(y 0 ) + Yf (Y 0 ) ( ) 1 1 Y I f (Y 0 ) f(y 0 ) f(y, t) Ẏ(t) f (Y, t) Y(t) Y Example: A bead on te wire Example: A bead on te wire Apply te implicit Euler s metod to te bead-on-wire example ( ) 1 1 Y I f (Y 0 ) f(y 0 ) x(t) f(y(t)) ky(t) f (Y(t)) f(y(t)) Y 1+ Y 0 1+k k +1 x 0 1+k ky k 1 x0 ky 0 x0 ky 0 Wat is te largest step size te implicit Euler s metod can take? lim Y lim +1 x 0 1+k ky 0 x 0 1 k ky 0 Y new Y 0 + ( Y 0 ) 0 x0 y 0

9 Implicit vs. explicit Second-order implicit Euler ẍ f(x(t), ẋ(t)) correct solution: x() e k x ẋ() kx() x(0) 1 d x(t) dt v(t) v(t) f(x, ẋ) explicit Euler: x() 1 k implicit Euler: x() k. I f f v f(x 0, ẋ 0 ) + f v x x v 0 Helpful ints Modular implementation Write solvers in terms of Reusable solver code Don t use explicit Euler s metod Do use adaptive step size Simple model implementation Generic operations: Get dim(x) Get/Set x and t Derivative evaluation at current (x, t)

10 Solver interface Summary GetDim How do we solve an ODE numerically? Wat are te drawbacks of Explicit Euler s metod? System Get/Set State Solver Wat is a stiff system? Deriv Eval Wy does implicit Euler allow us to take bigger steps tan explicit metods? Wat s next? How do we use Euler s metod to simulate te motion of a mass point? Wat are te equations of motion wen forces are applied to te mass point?

Differential Equations

Differential Equations Differential Equations Overview of differential equation! Initial value problem! Explicit numeric methods! Implicit numeric methods! Modular implementation Physics-based simulation An algorithm that

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t))

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t)) Runge-Kutta metods Wit orders of Taylor metods yet witout derivatives of f (t, y(t)) First order Taylor expansion in two variables Teorem: Suppose tat f (t, y) and all its partial derivatives are continuous

More information

Physically Based Modeling Differential Equation Basics

Physically Based Modeling Differential Equation Basics Physically Based Modeling Differential Equation Basics Andrew Witkin and David Baraff Pixar Animation Studios Please note: This document is 2001 by Andrew Witkin and David Baraff. This chapter may be freely

More information

Physically Based Modeling: Principles and Practice Differential Equation Basics

Physically Based Modeling: Principles and Practice Differential Equation Basics Physically Based Modeling: Principles and Practice Differential Equation Basics Andrew Witkin and David Baraff Robotics Institute Carnegie Mellon University Please note: This document is 1997 by Andrew

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Differential equations. Differential equations

Differential equations. Differential equations Differential equations A differential equation (DE) describes ow a quantity canges (as a function of time, position, ) d - A ball dropped from a building: t gt () dt d S qx - Uniformly loaded beam: wx

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester HIGHER ORDER METHODS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Chapter XI. Solution of Ordinary Differential Equations

Chapter XI. Solution of Ordinary Differential Equations dy d 7 Capter XI Solution of Ordinary Differential Equations Several approaces are described for te solution of ODE (ordinary differential equations). Tese include: Te Taylor series Metod Te Euler Metod

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 34, pp. 14-19, 2008. Copyrigt 2008,. ISSN 1068-9613. ETNA A NOTE ON NUMERICALLY CONSISTENT INITIAL VALUES FOR HIGH INDEX DIFFERENTIAL-ALGEBRAIC EQUATIONS

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Matematics and Computer Science. ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Tuesday January 9 008, 9:00-:00

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator

Chapter Seven The Quantum Mechanical Simple Harmonic Oscillator Capter Seven Te Quantum Mecanical Simple Harmonic Oscillator Introduction Te potential energy function for a classical, simple armonic oscillator is given by ZÐBÑ œ 5B were 5 is te spring constant. Suc

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

New Streamfunction Approach for Magnetohydrodynamics

New Streamfunction Approach for Magnetohydrodynamics New Streamfunction Approac for Magnetoydrodynamics Kab Seo Kang Brooaven National Laboratory, Computational Science Center, Building 63, Room, Upton NY 973, USA. sang@bnl.gov Summary. We apply te finite

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9)

Fall 2014 MAT 375 Numerical Methods. Numerical Differentiation (Chapter 9) Fall 2014 MAT 375 Numerical Metods (Capter 9) Idea: Definition of te derivative at x Obviuos approximation: f (x) = lim 0 f (x + ) f (x) f (x) f (x + ) f (x) forward-difference formula? ow good is tis

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

lecture 35: Linear Multistep Mehods: Truncation Error

lecture 35: Linear Multistep Mehods: Truncation Error 88 lecture 5: Linear Multistep Meods: Truncation Error 5.5 Linear ultistep etods One-step etods construct an approxiate solution x k+ x(t k+ ) using only one previous approxiation, x k. Tis approac enoys

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

A Brief Introduction to Numerical Methods for Differential Equations

A Brief Introduction to Numerical Methods for Differential Equations A Brief Introduction to Numerical Methods for Differential Equations January 10, 2011 This tutorial introduces some basic numerical computation techniques that are useful for the simulation and analysis

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Opuscula Matematica Vol. 26 No. 3 26 Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Abstract. In tis work a new numerical metod is constructed for time-integrating

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

Simple ODE Solvers - Derivation

Simple ODE Solvers - Derivation Simple ODE Solvers - Derivation These notes provide derivations of some simple algorithms for generating, numerically, approximate solutions to the initial value problem y (t =f ( t, y(t y(t 0 =y 0 Here

More information

Application of numerical integration methods to continuously variable transmission dynamics models a

Application of numerical integration methods to continuously variable transmission dynamics models a ttps://doi.org/10.1051/ssconf/2018440005 Application of numerical integration metods to continuously variable transmission dynamics models a Orlov Stepan 1 1 Peter te Great St. Petersburg Polytecnic University

More information

Implicit-explicit variational integration of highly oscillatory problems

Implicit-explicit variational integration of highly oscillatory problems Implicit-explicit variational integration of igly oscillatory problems Ari Stern Structured Integrators Worksop April 9, 9 Stern, A., and E. Grinspun. Multiscale Model. Simul., to appear. arxiv:88.39 [mat.na].

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

Ordinary Differential Equations

Ordinary Differential Equations Chapter 13 Ordinary Differential Equations We motivated the problem of interpolation in Chapter 11 by transitioning from analzying to finding functions. That is, in problems like interpolation and regression,

More information

Robotic manipulation project

Robotic manipulation project Robotic manipulation project Bin Nguyen December 5, 2006 Abstract Tis is te draft report for Robotic Manipulation s class project. Te cosen project aims to understand and implement Kevin Egan s non-convex

More information

Fundamentals Physics

Fundamentals Physics Fundamentals Physics And Differential Equations 1 Dynamics Dynamics of a material point Ideal case, but often sufficient Dynamics of a solid Including rotation, torques 2 Position, Velocity, Acceleration

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

The Electron in a Potential

The Electron in a Potential Te Electron in a Potential Edwin F. Taylor July, 2000 1. Stopwatc rotation for an electron in a potential For a poton we found tat te and of te quantum stopwatc rotates wit frequency f given by te equation:

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

ODE Runge-Kutta methods

ODE Runge-Kutta methods ODE Runge-Kutta methods The theory (very short excerpts from lectures) First-order initial value problem We want to approximate the solution Y(x) of a system of first-order ordinary differential equations

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Chap. 20: Initial-Value Problems

Chap. 20: Initial-Value Problems Chap. 20: Initial-Value Problems Ordinary Differential Equations Goal: to solve differential equations of the form: dy dt f t, y The methods in this chapter are all one-step methods and have the general

More information

Constrained dynamics

Constrained dynamics Constrained dynamics Simple particle system In principle, you can make just about anything out of spring systems In practice, you can make just about anything as long as it s jello Hard constraints Constraint

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

Stability regions of Runge-Kutta methods. Stephan Houben Eindhoven University of Technology

Stability regions of Runge-Kutta methods. Stephan Houben Eindhoven University of Technology Stability regions of Runge-Kutta methods Stephan Houben Eindhoven University of Technology February 19, 2002 1 Overview of the talk 1. Quick review of some concepts 2. Stability regions 3. L-stability

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Solving Ordinary Differential equations

Solving Ordinary Differential equations Solving Ordinary Differential equations Taylor methods can be used to build explicit methods with higher order of convergence than Euler s method. The main difficult of these methods is the computation

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method Int. J. Contemp. Mat. Sciences, Vol. 2, 27, no. 2, 983-989 An Approximation to te Solution of te Brusselator System by Adomian Decomposition Metod and Comparing te Results wit Runge-Kutta Metod J. Biazar

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Matematics, Vol.4, No.3, 6, 4 44. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS Guang-wei Yuan Xu-deng Hang Laboratory of Computational Pysics,

More information

du(l) 5 dl = U(0) = 1 and 1.) Substitute for U an unspecified trial function into governing equation, i.e. dx + = =

du(l) 5 dl = U(0) = 1 and 1.) Substitute for U an unspecified trial function into governing equation, i.e. dx + = = Consider an ODE of te form: Finite Element Metod du fu g d + wit te following Boundary Conditions: U(0) and du(l) 5 dl.) Substitute for U an unspecified trial function into governing equation, i.e. ^ U

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Virtual Reality & Physically-Based Simulation

Virtual Reality & Physically-Based Simulation Virtual Reality & Physically-Based Simulation Mass-Spring-Systems G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Definition: A mass-spring system is a system consisting of: 1. A set of

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

3.4 Algebraic Limits. Ex 1) lim. Ex 2)

3.4 Algebraic Limits. Ex 1) lim. Ex 2) Calculus Maimus.4 Algebraic Limits At tis point, you sould be very comfortable finding its bot grapically and numerically wit te elp of your graping calculator. Now it s time to practice finding its witout

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Finite Difference Method

Finite Difference Method Capter 8 Finite Difference Metod 81 2nd order linear pde in two variables General 2nd order linear pde in two variables is given in te following form: L[u] = Au xx +2Bu xy +Cu yy +Du x +Eu y +Fu = G According

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds.

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds. Numerical solvers for large systems of ordinary differential equations based on te stocastic direct simulation metod improved by te and Runge Kutta principles Flavius Guiaş Abstract We present a numerical

More information

Ordinary Differential Equations

Ordinary Differential Equations Chapter 7 Ordinary Differential Equations Differential equations are an extremely important tool in various science and engineering disciplines. Laws of nature are most often expressed as different equations.

More information

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients AM 205: lecture 13 Last time: ODE convergence and stability, Runge Kutta methods Today: the Butcher tableau, multi-step methods, boundary value problems Butcher tableau Can summarize an s + 1 stage Runge

More information

Numerical Algorithms for ODEs/DAEs (Transient Analysis)

Numerical Algorithms for ODEs/DAEs (Transient Analysis) Numerical Algorithms for ODEs/DAEs (Transient Analysis) Slide 1 Solving Differential Equation Systems d q ( x(t)) + f (x(t)) + b(t) = 0 dt DAEs: many types of solutions useful DC steady state: state no

More information

(5.5) Multistep Methods

(5.5) Multistep Methods (5.5) Mulstep Metods Consider te inial-value problem for te ordinary differenal equaon: y t f t, y, a t b, y a. Let y t be te unique soluon. In Secons 5., 5. and 5.4, one-step numerical metods: Euler Metod,

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information