Fundamentals of Concept Learning

Size: px
Start display at page:

Download "Fundamentals of Concept Learning"

Transcription

1 Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml Tis lecture aims to develop your understanding of representing and searcing ypotesis spaces for concept learning. Following it you sould be able to: define a representation for concepts define a ypotesis space in terms of generality ordering on concepts describe an algoritm to searc a ypotesis space express te framework of version spaces describe an algoritm to searc a ypotesis space using te framework of version spaces explain te role of inductive bias in concept learning COMP947: Marc, 009 Fundamentals of Concept Learning: Slide Overview Concept Learning inferring a Boolean-valued function from training examples of its input and output. Learning from examples General-to-specific ordering over ypoteses Version spaces and candidate elimination algoritm Picking new examples Te need for inductive bias Training Examples for EnjoySport Sky Temp Humid Wind Water Forecst EnjoySpt Sunny Warm Normal Strong Warm Same Yes Sunny Warm Hig Strong Warm Same Yes Rainy Cold Hig Strong Warm Cange No Sunny Warm Hig Strong Cool Cange Yes Wat is te general concept? Note: simple approac assuming no noise, illustrates key concepts COMP947: Marc, 009 Fundamentals of Concept Learning: Slide COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 3

2 Many possible representations... Representing Hypoteses Here, is a conjunction of constraints on attributes. Given: Te Prototypical Concept Learning Task Instances X: Possible days, eac described by te attributes Eac constraint can be: a specific value (e.g., W ater = W arm) don t care (e.g., W ater =? ) no value allowed (e.g., Water= ) For example, Sky AirTemp Humid Wind Water Forecst Sunny?? Strong? Same Attribute Sky AirTemp Humid Wind Water Forecast Values Sunny, Cloudy, Rainy Warm, Cold Normal, Hig Strong, Weak Warm, Cool Same, Cange COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 4 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 5 Te Prototypical Concept Learning Task Te inductive learning ypotesis Target function c: EnjoySport : X {0, } Hypoteses H: Conjunctions of literals. E.g.?, Cold, Hig,?,?,?. Training examples D: Positive and negative examples of te target function x, c(x ),... x m, c(x m ) Any ypotesis found to approximate te target function well over a sufficiently large set of training examples will also approximate te target function well over oter unobserved examples. Determine: A ypotesis in H suc tat (x) = c(x) for all x in D (usually called te target ypotesis). COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 6 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 7

3 Concept Learning as Searc Question: Wat can be learned? Answer: (only) wat is in te ypotesis space How big is te ypotesis space for EnjoySport? Instance space Sky AirTemp... Forecast = 3 = 96 Concept Learning as Searc Hypotesis space Sky AirTemp... Forecast = = 50 (semantically distinct only) = + ( ) = 973 any ypotesis wit an constraint covers no instances, ence all are semantically equivalent. Te learning problem searcing a ypotesis space. How? COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 8 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 9 Instances, Hypoteses, and More-General-Tan Instances X Hypoteses H Specific A generality order on ypoteses Definition: Let j and k be Boolean-valued functions defined over instances X. Ten j is more general tan or equal to k (written j g k ) if and only if x x 3 General ( x X)[( k (x) = ) ( j (x) = )] Intuitively, j is more general tan or equal to k if any instance satisfying k also satisfies j. x = <Sunny, Warm, Hig, Strong, Cool, Same> x = <Sunny, Warm, Hig, Ligt, Warm, Same> = <Sunny,?,?, Strong,?,?> = <Sunny,?,?,?,?,?> = <Sunny,?,?,?, Cool,?> 3 j is (strictly) more general tan k (written j > g k ) if and only if ( j g k ) ( k g j ). j is more specific tan k wen k is more general tan j. COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 0 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide

4 Te Find-S Algoritm Hypotesis Space Searc by Find-S Instances X Hypoteses H. Initialize to te most specific ypotesis in H. For eac positive training instance x For eac attribute constraint a i in If te constraint a i in is satisfied by x Ten do noting Else replace a i in by te next more general constraint tat is satisfied by x - x 3 x + x+ x+ 4 x = <Sunny Warm Normal Strong Warm Same>, + x = <Sunny Warm Hig Strong Warm Same>, + x 3 = <Rainy Cold Hig Strong Warm Cange>, - x = <Sunny Warm Hig Strong Cool Cange>, + 4 0,3 4 Specific General = <,,,,, > 0 = <Sunny Warm Normal Strong Warm Same> = <Sunny Warm? Strong Warm Same> = <Sunny Warm? Strong Warm Same> 3 = <Sunny Warm? Strong?? > 4 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 3 Find-S - does it work? Complaints about Find-S Assume: a ypotesis c H describes target function c, and training data is error-free. By definition, c is consistent wit all positive training examples and can never cover a negative example. For eac generated by Find-S, c is more general tan or equal to. So can never cover a negative example. Can t tell weter it as learned concept learned ypotesis may not be te only consistent ypotesis Can t tell wen training data inconsistent cannot andle noisy data Picks a maximally specific (wy?) migt require maximally general COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 4 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 5

5 Version Spaces Te List-Ten-Eliminate Algoritm A ypotesis is consistent wit a set of training examples D of target concept c if and only if (x) = c(x) for eac training example x, c(x) in D. Consistent(, D) ( x, c(x) D) (x) = c(x). V ersionspace a list containing every ypotesis in H. For eac training example, x, c(x) remove from V ersionspace any ypotesis for wic (x) c(x) 3. Output te list of ypoteses in V ersionspace Te version space, V S H,D, wit respect to ypotesis space H and training examples D, is te subset of ypoteses from H consistent wit all training examples in D. V S H,D { H Consistent(, D)} COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 6 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 7 Example Version Space Representing Version Spaces S: { <Sunny, Warm,?, Strong,?,?> } Te General boundary, G, of version space V S H,D is te set of its maximally general members G: { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?> } Te Specific boundary, S, of version space V S H,D is te set of its maximally specific members Every member of te version space lies between tese boundaries V S H,D = { H ( s S)( g G)(g s)} were x y means x is more general or equal to y COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 8 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 9

6 Te Candidate Elimination Algoritm G maximally general ypoteses in H S maximally specific ypoteses in H For eac training example d, do If d is a positive example Remove from G any ypotesis inconsistent wit d For eac ypotesis s in S tat is not consistent wit d Remove s from S Add to S all minimal generalizations of s suc tat. is consistent wit d, and. some member of G is more general tan Remove from S any ypotesis tat is more general tan anoter ypotesis in S If d is a negative example Te Candidate Elimination Algoritm Remove from S any ypotesis inconsistent wit d For eac ypotesis g in G tat is not consistent wit d Remove g from G Add to G all minimal specializations of g suc tat. is consistent wit d, and. some member of S is more specific tan Remove from G any ypotesis tat is less general tan anoter ypotesis in G COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 0 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide Example Trace Example Trace S 0 : {<Ø, Ø, Ø, Ø, Ø, Ø>} S 0 : { <,,,,, > } S : { <Sunny, Warm, Normal, Strong, Warm, Same> } S : { <Sunny, Warm,?, Strong, Warm, Same> } G 0, G, G : { <?,?,?,?,?,?>} G 0 : {<?,?,?,?,?,?>} Training examples:. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes. <Sunny, Warm, Hig, Strong, Warm, Same>, Enjoy Sport = Yes COMP947: Marc, 009 Fundamentals of Concept Learning: Slide COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 3

7 Example Trace Example Trace S, S 3 : { <Sunny, Warm,?, Strong, Warm, Same> } S 3 : { <Sunny, Warm,?, Strong, Warm, Same> } S 4 : { <Sunny, Warm,?, Strong,?,?>} G 3 : { <Sunny,?,?,?,?,?> <?, Warm,?,?,?,?> <?,?,?,?,?, Same> } G 4: { <Sunny,?,?,?,?,?> <?, Warm,?,?,?,?>} G : { <?,?,?,?,?,?> } G 3 : { <Sunny,?,?,?,?,?> <?, Warm,?,?,?,?> <?,?,?,?,?, Same> } Training Example: 3. <Rainy, Cold, Hig, Strong, Warm, Cange>, EnjoySport=No Training Example: 4.<Sunny, Warm, Hig, Strong, Cool, Cange>, EnjoySport = Yes COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 4 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 5 Example Trace Wic Training Example Is Best To Coose Next? S 4 : { <Sunny, Warm,?, Strong,?,?>} S: { <Sunny, Warm,?, Strong,?,?> } G 4 : { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?>} G: { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?> } COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 6 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 7

8 Wic Training Example To Coose Next? How Sould New Instances Be Classified? S: { <Sunny, Warm,?, Strong,?,?> } S: { <Sunny, Warm,?, Strong,?,?> } G: { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?> } Sunny W arm Normal Ligt W arm Same G: { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?> } Sunny Warm Normal Strong Cool Cange Rainy Cold Normal Ligt Warm Same Sunny Warm Normal Ligt Warm Same COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 8 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 9 How Sould New Instances Be Classified? Wat Justifies tis Inductive Leap? S: { <Sunny, Warm,?, Strong,?,?> } + Sunny W arm Normal Strong Cool Cange + Sunny W arm Normal Ligt W arm Same S : Sunny W arm Normal??? G: { <Sunny,?,?,?,?,?>, <?, Warm,?,?,?,?> } Sunny Warm Normal Strong Cool Cange (6 + /0 ) Rainy Cold Normal Ligt Warm Same (0 + /6 ) Sunny Warm Normal Ligt Warm Same (3 + /3 ) Wy believe we can classify tis unseen instance? Sunny W arm Normal Strong W arm Same COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 30 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 3

9 An UNBiased Learner Idea: Coose H tat expresses every teacable concept (i.e. H is te power set of X) Consider H = disjunctions, conjunctions, negations over previous H. E.g. Sunny W arm Normal???????? Cange Wat are S, G in tis case? S G Consider concept learning algoritm L instances X, target concept c Inductive Bias training examples D c = { x, c(x) } let L(x i, D c ) denote te classification assigned to te instance x i by L after training on data D c. Definition: Te inductive bias of L is any minimal set of assertions B suc tat for any target concept c and corresponding training examples D c ( x i X)[(B D c x i ) L(x i, D c )] were A B means A logically entails B COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 3 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 33 Inductive Systems and Equivalent Deductive Systems Training examples New instance Training examples New instance Inductive system Candidate Elimination Algoritm Using Hypotesis Space H Equivalent deductive system Teorem Prover Classification of new instance, or "don t know" Classification of new instance, or "don t know" Tree Learners wit Different Biases. Rote learner: Store examples, Classify x iff it matces previously observed example.. Version space candidate elimination algoritm 3. Find-S Assertion " H contains te target concept" Inductive bias made explicit COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 34 COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 35

10 Summary Points. Concept learning as searc troug H. General-to-specific ordering over H 3. Version space candidate elimination algoritm 4. S and G boundaries caracterize learner s uncertainty 5. Learner can generate useful queries 6. Inductive leaps possible only if learner is biased 7. Inductive learners can be modelled by equivalent deductive systems [Suggested reading: Mitcell, Capter ] COMP947: Marc, 009 Fundamentals of Concept Learning: Slide 36

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering Outline Learning from eamples CSCE 78/878 Lecture : Concept Learning and te General-to-Specific Ordering Stepen D. Scott (Adapted from Tom Mitcell s slides) General-to-specific ordering over ypoteses Version

More information

Concept Learning through General-to-Specific Ordering

Concept Learning through General-to-Specific Ordering 0. Concept Learning through General-to-Specific Ordering Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 2 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell

More information

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination.

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination. Outline [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specic ordering over hypotheses Version spaces and candidate elimination algorithm Picking new examples

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

Version Spaces.

Version Spaces. . Machine Learning Version Spaces Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Concept Learning.

Concept Learning. . Machine Learning Concept Learning Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg Martin.Riedmiller@uos.de

More information

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University Concept Learning Mitchell, Chapter 2 CptS 570 Machine Learning School of EECS Washington State University Outline Definition General-to-specific ordering over hypotheses Version spaces and the candidate

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning Question of the Day? Machine Learning 2D43 Lecture 3: Concept Learning What row of numbers comes next in this series? 2 2 22 322 3222 Outline Training Examples for Concept Enjoy Sport Learning from examples

More information

Overview. Machine Learning, Chapter 2: Concept Learning

Overview. Machine Learning, Chapter 2: Concept Learning Overview Concept Learning Representation Inductive Learning Hypothesis Concept Learning as Search The Structure of the Hypothesis Space Find-S Algorithm Version Space List-Eliminate Algorithm Candidate-Elimination

More information

Machine Learning 2D1431. Lecture 3: Concept Learning

Machine Learning 2D1431. Lecture 3: Concept Learning Machine Learning 2D1431 Lecture 3: Concept Learning Question of the Day? What row of numbers comes next in this series? 1 11 21 1211 111221 312211 13112221 Outline Learning from examples General-to specific

More information

Concept Learning. Space of Versions of Concepts Learned

Concept Learning. Space of Versions of Concepts Learned Concept Learning Space of Versions of Concepts Learned 1 A Concept Learning Task Target concept: Days on which Aldo enjoys his favorite water sport Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University.

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University. Concept Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s

More information

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials.

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials. Concept Learning Berlin Chen 2005 References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials MLDM-Berlin 1 What is a Concept? Concept of Dogs Concept of Cats Concept

More information

EECS 349: Machine Learning

EECS 349: Machine Learning EECS 349: Machine Learning Bryan Pardo Topic 1: Concept Learning and Version Spaces (with some tweaks by Doug Downey) 1 Concept Learning Much of learning involves acquiring general concepts from specific

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory [read Chapter 7] [Suggested exercises: 7.1, 7.2, 7.5, 7.8] Computational learning theory Setting 1: learner poses queries to teacher Setting 2: teacher chooses examples Setting

More information

Computational Learning Theory

Computational Learning Theory 1 Computational Learning Theory 2 Computational learning theory Introduction Is it possible to identify classes of learning problems that are inherently easy or difficult? Can we characterize the number

More information

Intuition Bayesian Classification

Intuition Bayesian Classification Intuition Bayesian Classification More ockey fans in Canada tan in US Wic country is Tom, a ockey ball fan, from? Predicting Canada as a better cance to be rigt Prior probability P(Canadian=5%: reflect

More information

Answers Machine Learning Exercises 2

Answers Machine Learning Exercises 2 nswers Machine Learning Exercises 2 Tim van Erven October 7, 2007 Exercises. Consider the List-Then-Eliminate algorithm for the EnjoySport example with hypothesis space H = {?,?,?,?,?,?, Sunny,?,?,?,?,?,

More information

Topics. Concept Learning. Concept Learning Task. Concept Descriptions

Topics. Concept Learning. Concept Learning Task. Concept Descriptions Topics Concept Learning Sattiraju Prabhakar CS898O: Lecture#2 Wichita State University Concept Description Using Concept Descriptions Training Examples Concept Learning Algorithm: Find-S 1/22/2006 ML2006_ConceptLearning

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Efficient algorithms for for clone items detection

Efficient algorithms for for clone items detection Efficient algoritms for for clone items detection Raoul Medina, Caroline Noyer, and Olivier Raynaud Raoul Medina, Caroline Noyer and Olivier Raynaud LIMOS - Université Blaise Pascal, Campus universitaire

More information

EECS 349: Machine Learning Bryan Pardo

EECS 349: Machine Learning Bryan Pardo EECS 349: Machine Learning Bryan Pardo Topic: Concept Learning 1 Concept Learning Much of learning involves acquiring general concepts from specific training examples Concept: subset of objects from some

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Sinh Hoa Nguyen, Hung Son Nguyen Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University February 14, 2006 inh Hoa Nguyen, Hung Son

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Regularized Regression

Regularized Regression Regularized Regression David M. Blei Columbia University December 5, 205 Modern regression problems are ig dimensional, wic means tat te number of covariates p is large. In practice statisticians regularize

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016 Machine Learning 10-701, Fall 2016 Computational Learning Theory Eric Xing Lecture 9, October 5, 2016 Reading: Chap. 7 T.M book Eric Xing @ CMU, 2006-2016 1 Generalizability of Learning In machine learning

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Data Mining and Machine Learning

Data Mining and Machine Learning Data Mining and Machine Learning Concept Learning and Version Spaces Introduction Concept Learning Generality Relations Refinement Operators Structured Hypothesis Spaces Simple algorithms Find-S Find-G

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

CS340: Bayesian concept learning. Kevin Murphy Based on Josh Tenenbaum s PhD thesis (MIT BCS 1999)

CS340: Bayesian concept learning. Kevin Murphy Based on Josh Tenenbaum s PhD thesis (MIT BCS 1999) CS340: Bayesian concept learning Kevin Murpy Based on Jos Tenenbaum s PD tesis (MIT BCS 1999) Concept learning (binary classification) from positive and negative examples Concept learning from positive

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Contents Introduction to Machine Learning Concept Learning Varun Chandola February 2, 2018 1 Concept Learning 1 1.1 Example Finding Malignant Tumors............. 2 1.2 Notation..............................

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon?

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon? 8.5 Solving Exponential Equations GOAL Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT te Mat All radioactive substances decrease in mass over time. Jamie works in

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f =

Introduction to Machine Learning. Recitation 8. w 2, b 2. w 1, b 1. z 0 z 1. The function we want to minimize is the loss over all examples: f = Introduction to Macine Learning Lecturer: Regev Scweiger Recitation 8 Fall Semester Scribe: Regev Scweiger 8.1 Backpropagation We will develop and review te backpropagation algoritm for neural networks.

More information

Decision Tree Learning and Inductive Inference

Decision Tree Learning and Inductive Inference Decision Tree Learning and Inductive Inference 1 Widely used method for inductive inference Inductive Inference Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Classification (Categorization) CS 391L: Machine Learning: Inductive Classification. Raymond J. Mooney. Sample Category Learning Problem

Classification (Categorization) CS 391L: Machine Learning: Inductive Classification. Raymond J. Mooney. Sample Category Learning Problem Classification (Categorization) CS 9L: Machine Learning: Inductive Classification Raymond J. Mooney University of Texas at Austin Given: A description of an instance, x X, where X is the instance language

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Machine Learning 2007: Slides 1. Instructor: Tim van Erven Website: erven/teaching/0708/ml/

Machine Learning 2007: Slides 1. Instructor: Tim van Erven Website:   erven/teaching/0708/ml/ Machine 2007: Slides 1 Instructor: Tim van Erven (Tim.van.Erven@cwi.nl) Website: www.cwi.nl/ erven/teaching/0708/ml/ September 6, 2007, updated: September 13, 2007 1 / 37 Overview The Most Important Supervised

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algoritms for Data Science Arya Mazumdar University of Massacusetts at Amerst Fall 2018 Lecture 11 Locality Sensitive Hasing Midterm exam Average 28.96 out of 35 (82.8%). One exam is still

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Concept Learning Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 /

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

AVL trees. AVL trees

AVL trees. AVL trees Dnamic set DT dnamic set DT is a structure tat stores a set of elements. Eac element as a (unique) ke and satellite data. Te structure supports te following operations. Searc(S, k) Return te element wose

More information