MTH-112 Quiz 1 Name: # :

Size: px
Start display at page:

Download "MTH-112 Quiz 1 Name: # :"

Transcription

1 MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation x = define as a function of x? {(, ), (, ), (, ), (, )} (a) Is tis a function? (b) Wat is te domain of te relation?. In te grap is a function of x? (es / no) (c) Wat is te range of te relation?. Evaluate te function = x x at te following values. (a) f( ) x - -. Use te grap to find g( ). (b) f(a) (c) f( x) g( ) = x - g(x) - -. Find te domain and range of te above function g(x). Write our answers in interval notation. Domain = Range =

2 MTH- Quiz - Solutions Words in italics are for explanation purposes onl (not necessar to write in te tests or quizzes).. Determine weter te given relation is a function. Give te domain and range of te relation. {(, ), (, ), (, ), (, )} (a) Is tis a function? Yes. Te first components do not repeat. (b) Wat is te domain of te relation? {,,, } Te first components of ordered pairs. Wen listing components use braces { }, not parenteses ( ). (c) Wat is te range of te relation? {, } Te second components of ordered pairs.. Evaluate te function = x x at te following values. (a) To find f( ), replace x wit. f( ) = ( ) ( ) = (8) ( 7) = 8 (b) To find f(a), replace x wit a. f(a) = (a) (a) = (a ) (8a ) = 8a a (c) To find f( x), replace x wit x. f( x) = ( x) ( x) = x + x. Does te equation x = define as a function of x? Solve te equation for in terms of x. x = = x Pick an x value; substitute, and find. If tere is onl one value, te equation is a function. Let x = : Ten = x = 9 Tere is onl one value. Yes.. In te grap is a function of x? ( es / no) If an vertical line crosses te grap at more tan one point, ten te grap is not a function. If ever vertical line crosses te grap onl once, ten te grap is a function x - -. Use te grap to find g( ). g( ) means te coordinate of te point on te grap, for wic te x coordinate is. g( ) = x - g(x) - -. Find te domain and range of te above function g(x). Write our answers in interval notation. Domain is te set of x coordinates of te points on te grap. Domain = [, ) Range is te set of coordinates of te points on te grap. Range = [, )

3 MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Use te grap to find te following: x (a) In wic interval, if an, is te function increasing?. Find te function value of given x values. Ten grap te function. = (a) f() = (b) f() = (c) f() = { x + if x if x > (b) In wic interval, if an, is te function decreasing? (c) In wic interval, if an, is te function a constant? (d) f() = (d) Te relative minimum is (write our answer as an ordered pair): (e) Grap te function. (e) Te relative maximum is (write our answer as an ordered pair): (f) Domain: (g) Range: () Is te function graped even, odd or neiter? (even / odd / neiter) x

4 . (, ) is a point on te grap of an even function. Wat oter point must be on te grap? (Write our answer as an ordered pair.). Determine weter te function is even, odd or neiter. (a) = x + x + 7 (even / odd / neiter). It is recommended tat, for ever our ou spend in class, ou stud two ours on our own. (Tat is, if ou spend tree ours in class, ou stud six ours on our own, and so on.) Let x represent te number of ours ou spend in class, and represent te recommended number of ours of stud on our own. Write as a function of x, in te equation form. (b) = x + x + 7 (even / odd / neiter). For te function = x +, find: (a) f(x + ) (b) Te difference quotient: f(x + ) 7. Te grap of a function is given below. Grap g(x) = f(x ) on te same coordinate plane x Is te given function in problem 7 even, odd or neiter? (even / odd / neiter)

5 MTH- Quiz - Solutions Words in italics are for explanation purposes onl (not necessar to write in te tests or quizzes).. Use te grap to find te following: x (a) In wic interval, if an, is te function increasing? From left to rigt, if te grap goes up, it is increasing. Wen writing increasing, decreasing, and constant intervals, use x values (not values). In te grap, te increasing part is in blue color, and te corresponding interval on te x- axis is saded in blue color. (, ) (b) In wic interval, if an, is te function decreasing? From left to rigt, if te grap goes down, it is decreasing. In te grap, te decreasing parts are in red color, and te corresponding intervals on te x- axis are saded in red color. (, ) (, ) (c) In wic interval, if an, is te function a constant? From left to rigt, if te grap does not go up or down, it is constant. None. (d) Te relative minimum is (write our answer as an ordered pair): A relative minimum is a point on te grap were te grap canges from decreasing to increasing. (, ) (e) Te relative maximum is (write our answer as an ordered pair): A relative maximum is a point on te grap were te grap canges from increasing to decreasing. (, ) (f) Domain: Domain is te set of x coordinates of te points on te grap. Domain = (, ) (g) Range: Range is te set of coordinates of te points on te grap. Range = (, ) () Is te function graped even, odd or neiter? (even / odd / neiter ) (, ) x - (, ) (, ) Te point (, ) is on te grap. But te smmetric point about te axis, wic is (, ), is not on te grap. Terefore te

6 grap is not smmetric wit respect to te axis. Tus, te function is not even. Te point (, ) is on te grap. But te smmetric point about te origin, wic is (, ), is not on te grap. Terefore te grap is not smmetric wit respect to te origin. Tus, te function is not odd.. Find te function value of given x values. Ten grap te function. { x + if x = if x > (a) Since te x value is less tan, use te top part of te function to find f(), tat is, = x +. f() = () + = (b) Since te x value is equal to, use te top part of te function to find f(), tat is, = x +. f() = () + = 0 (c) Since te x value is greater tan, use te bottom part of te function to find f(), tat is, =. f() = (d) Since te x value is greater tan, use te bottom part of te function to find f(), tat is, =. f() = (e) Grap te function. Separate te coordinate plane into two parts using te vertical line x = ; plot te four points found above (, ), (, 0), (, ), (, ); ten draw te graps troug tose points. Te rigt end point of te left piece must be a closed circle (because te left piece represents te grap for x ). Te left end point of te rigt piece must be on te vertical dotted line, and an open circle (because te rigt piece represents te grap for x > ) x -. (, ) is a point on te grap of an even function. Wat oter point must be on te grap? (Write our answer as an ordered pair.) Te smmetric point of (, ) wit respect to axis must also be on te grap. (, ). Determine weter te function is even, odd or neiter (a) = x +x+7 (even / odd / neiter ) Since tere are even exponents ( and 0), and an odd exponent (), te function is neiter even nor odd. (Te constant 7 is te same as 7x 0, and te exponent 0 is an even number.) (b) = x +x+7 (even / odd / neiter ) Since tere are odd exponents ( and ), and an even exponent (0), te function is neiter even nor odd.. For te function = x +, find: (a) To find f(x + ), replace x wit x +. f(x + ) = (x + ) + = x +

7 (b) Te difference quotient: f(x + ) x + ( x + ) = x + + x = = =. It is recommended tat, for ever our ou spend in class, ou stud two ours on our own. (Tat is, if ou spend tree ours in class, ou stud six ours on our own, and so on.) Let x represent te number of ours ou spend in class, and represent te recommended number of ours of stud on our own. Write as a function of x, in te equation form. x : te number of ours in class : te recommended number of ours of stud on our own = x 7. Te grap of a function is given below. Grap g(x) = f(x ) on te same coordinate plane. sifts te grap unit to te rigt, and sifts te grap units down x g(x) 8. Is te given function in problem 7 even, odd or neiter? ( even / odd / neiter) Te point (, ) is on te grap of. Te smmetric point about te axis, wic is (, ), is also on te grap. Terefore te grap is smmetric wit respect to te axis. Tus, te function is even.

8 MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Use te grap to find te following: x In te grap is a function of x? (es / no) x - -. For te function = x + x 9, find: (a) f(x + ) (a) In wic interval, if an, is te function increasing? (b) In wic interval, if an, is te function decreasing? (c) In wic interval, if an, is te function a constant? (d) Domain: (b) Te difference quotient: f(x + ) (e) Range: (f) Is te function graped even, odd or neiter? (even / odd / neiter) (g) Grap g(x) = f(x ) on te same coordinate plane.

9 . Grap te function. { x if x < = x + if x. Find te domain of te following functions. (Write our answers as intervals.) (a) = x x x x Domain: (b) g(x) = x 0. Determine weter te function is even, odd or neiter. (a) = x + x + (even / odd / neiter) Domain: (c) (x) = x + x + (b) = x + x + (even / odd / neiter) Domain:

10 MTH- Quiz - Solutions Words in italics are for explanation purposes onl (not necessar to write in te tests or quizzes).. Use te grap to find te following: x g(x) (a) In wic interval, if an, is te function increasing? From left to rigt, if te grap goes up, it is increasing. Wen writing increasing, decreasing, and constant intervals, use x values (not values). In te grap, te increasing part is in blue color, and te corresponding interval on te x- axis is saded in blue color. (0, ) (b) In wic interval, if an, is te function decreasing? From left to rigt, if te grap goes down, it is decreasing. In te grap, te decreasing part is in red color, and te corresponding interval on te x- axis is saded in red color. (, ) (c) In wic interval, if an, is te function a constant? From left to rigt, if te grap does not go up or down, it is constant. In te grap, te constant part is in green color, and te corresponding interval on te x- axis is saded in green color. (, 0) (d) Domain: Domain is te set of x coordinates of te points on te grap. Domain: (, ) (e) Range: Range is te set of coordinates of te points on te grap. Range: [, ) (f) Is te function graped even, odd or neiter? (even / odd / neiter ) (, ) x - (, ) (, ) Te point (, ) is on te grap. But te smmetric point about te axis, wic is (, ), is not on te grap. Terefore te grap is not smmetric wit respect to te axis. Tus, te function is not even. Te point (, ) is on te grap. But te smmetric point about te origin, wic is (, ), is not on te grap. Terefore te grap is not smmetric wit respect to te origin. Tus, te function is not odd. (g) Grap g(x) = f(x ) on te same coordinate plane. sifts te grap units to te rigt, and sign at te beginning reflects te grap over te x- axis.

11 . In te grap is a function of x? ( es / no) If an vertical line crosses te grap at more tan one point, ten te grap is not a function. If ever vertical line crosses te grap onl once, ten te grap is a function x - -. For te function = x + x 9, find: (a) f(x + ) To find f(x + ), replace x wit x +. f(x + ) = (x + ) + (x + ) 9 = (x + x + ) + x + 9 = x + x + + x + 9 (b) Te difference quotient: f(x + ) f(x + ) = x + x + + x + 9 (x + x 9) = x + x + + x + 9 x x + 9) = x + + (x + + ) = = x + +. Grap te function. { x if x < = x + if x Separate te coordinate plane into two parts using te vertical line x =. Find two points on eac side of te vertical line (find te values for an two x values less tan, and an two x values greater tan or equal to ). f( ) = ( ) = f(0) = (0) = f() = () + = f() = () + = Plot te four points found above (, ), (0, ), (, ), (, ); ten draw te graps troug tose points. Te rigt end point of te left piece must be on te vertical dotted line, and an open circle (because te left piece represents te grap for x < ). Te left end point of te rigt piece must be a closed circle (because te rigt piece represents te grap for x ) x Determine weter te function is even, odd or neiter. (a) = x +x + ( even / odd / neiter) Since all te exponents (, and 0) are even, te function is even.

12 (b) = x +x+ (even / odd / neiter ) Since tere are odd exponents ( and ), and an even exponent (0), te function is neiter even nor odd.. Find te domain of te following functions. (Write our answers as intervals.) (a) = x x x Te domain is all real numbers except te zeros of te bottom polnomial. Te domain is all real numbers except and. Domain: (, ) (, ) (, ) (b) g(x) = x 0 Inside te square root must be non-negative. x x Domain: (, 0] (c) (x) = x + x + x x = 0 (x )(x + ) = 0 x = x = Domain of an polnomial is all real numbers. Domain: (, )

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Name: Sept 21, 2017 Page 1 of 1

Name: Sept 21, 2017 Page 1 of 1 MATH 111 07 (Kunkle), Eam 1 100 pts, 75 minutes No notes, books, electronic devices, or outside materials of an kind. Read eac problem carefull and simplif our answers. Name: Sept 21, 2017 Page 1 of 1

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

1.5 Functions and Their Rates of Change

1.5 Functions and Their Rates of Change 66_cpp-75.qd /6/8 4:8 PM Page 56 56 CHAPTER Introduction to Functions and Graps.5 Functions and Teir Rates of Cange Identif were a function is increasing or decreasing Use interval notation Use and interpret

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section.1 Derivatives and Rates of Cange 2016 Kiryl Tsiscanka Derivatives and Rates of Cange Measuring te Rate of Increase of Blood Alcool Concentration Biomedical scientists ave studied te cemical and

More information

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon?

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon? 8.5 Solving Exponential Equations GOAL Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT te Mat All radioactive substances decrease in mass over time. Jamie works in

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers.

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers. MA123, Supplement Exponential and logaritmic functions pp. 315-319) Capter s Goal: Review te properties of exponential and logaritmic functions. Learn ow to differentiate exponential and logaritmic functions.

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

MATH 111 CHAPTER 2 (sec )

MATH 111 CHAPTER 2 (sec ) MATH CHAPTER (sec -0) Terms to know: function, te domain and range of te function, vertical line test, even and odd functions, rational power function, vertical and orizontal sifts of a function, reflection

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a)

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a) Capter Review Packet (questions - ) KEY. In eac case determine if te information or statement is correct (C) or incorrect (I). If it is incorrect, include te correction. f ( a ) f ( a) I A. represents

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

CHAPTER 2 Functions and Their Graphs

CHAPTER 2 Functions and Their Graphs CHAPTER Functions and Teir Graps Section. Linear Equations in Two Variables............ 9 Section. Functions......................... 0 Section. Analzing Graps of Functions............. Section. A Librar

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has

pancakes. A typical pancake also appears in the sketch above. The pancake at height x (which is the fraction x of the total height of the cone) has Volumes One can epress volumes of regions in tree dimensions as integrals using te same strateg as we used to epress areas of regions in two dimensions as integrals approimate te region b a union of small,

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators:

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators: Name: Section: Names of collaborators: Main Points:. Definition of derivative as limit of difference quotients. Interpretation of derivative as slope of grap. Interpretation of derivative as instantaneous

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules

Chapter. Differentiation: Basic Concepts. 1. The Derivative: Slope and Rates. 2. Techniques of Differentiation. 3. The Product and Quotient Rules Differentiation: Basic Concepts Capter 1. Te Derivative: Slope and Rates 2. Tecniques of Differentiation 3. Te Product and Quotient Rules 4. Marginal Analsis: Approimation b Increments 5. Te Cain Rule

More information