Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers.

Size: px
Start display at page:

Download "Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers."

Transcription

1 MA123, Supplement Exponential and logaritmic functions pp ) Capter s Goal: Review te properties of exponential and logaritmic functions. Learn ow to differentiate exponential and logaritmic functions. Learn about exponential growt or decay penomena. ) Supplement October 14, / 1 Laws of Exponents a and b positive real numbers and x and y real numbers. a 0 = 1 a x = 1 a x a x a y = a x+y a x a y = a x y a x ) y = a xy ab) x = a x b x a b ) x = a x b x ) Supplement October 14, / 1

2 Exponential Functions a 1 positive real number. fx) = a x is called an exponential function wit base a. a > 1 : exponential growt blue curve) 0 < a < 1 : exponential decay red curve) ) Supplement October 14, / 1 Derivative of Exponential Function fx) = a x. Wat is f x)? so fx + ) fx) = ax+ a x ) = ax a a x a 1 = a x, f x) = lim 0 fx + ) fx) a 1 But wat is lim? 0 = lim 0 ) a 1 a x, ) Supplement October 14, / 1

3 A Fundamental Limit: Te number e = is base of te natural exponential function. Fill te table below e Tus e 1 lim 0 = 1 ) Supplement October 14, / 1 Derivatives of exponential functions: Now Teorem e x ) = lim 0 ) e 1 e x = 1 e x = e x. e x ) = e x. Verbally: Te natural exponential function is its own derivative. Moreover, applying te cain rule d dx egx) ) = e gx) d dx gx)) e gx) ) = e gx) g x) ) Supplement October 14, / 1

4 Te Natural Logaritm Te natural logaritm, ln x, is te inverse function to e x : e ln x = x and ln e x = x. Alternatively, y = e x if and only if x = ln y. Te grap of lnx) in red) is obtained by reflecting y = e x in blue) across y = x dotted). ) Supplement October 14, / 1 Properties of Logaritms A and B are positive real numbers, p any real number. ln 1 = 0 lna B) = ln A + ln B ln A ) = ln A ln B B lna p ) = p ln A Domain of y = ln x is 0, ). lim ln x = x 0 + lim ln x = x Please note: Tere is no particularly nice way to simplify lna + B). In particular lna + B) lna) + lnb). ) Supplement October 14, / 1

5 Derivatives of logaritmic functions: Wat is ln x)? Using e ln x = x we see e ln x ) = x = 1. On te oter and e ln x ) = e ln x ln x) = x ln x) So x ln x) = 1; solving for te unknown ln x) : ln x) = 1 x. ) Supplement October 14, / 1 Derivatives of logaritmic functions: Teorem ln x) = 1 x d In Leibniz notation: dx [ln x] = 1 x Moreover, applying te cain rule d 1 d [ln gx)] = dx gx) dx [gx)] ln gx)) = g x) gx). ) Supplement October 14, / 1

6 Wat about more general derivatives? Observe tat we ave te identities a x = e lnax) = e x ln a log a x = ln x ln a. Tus using te previous results we obtain te following formulas for te derivatives of general exponential and logaritmic functions d dx ax ) = a x ln a and d dx log a x) = 1 x ln a. Note: Let fx) = 3 x. In Example 8 of Capter 4, we saw tat f 1) Using te above formula we ave tat f x) = 3 x ln3), so tat te exact value for f 1) is 3 ln3) = ln3 3 ) = ln27). ) Supplement October 14, / 1 Wy does te Power Rule Work? We ve made eavy use of x n ) = nx n 1, but wy does tis work? Examples 6-12 in Capter 4 proves tis for a few values of n, but none of tose arguments seem capable of proving it for general n. Lets view x n ) as our unknown. Now so ln x n ) = n ln x ln x n )) = n ln x) = n x. On te oter and using cain rule) ln x n )) = xn ) x n Solving for our unknown x n ) : so x n ) x n = n x. x n ) = n x xn = nx n 1. ) Supplement October 14, / 1

7 Example 1: Find te derivative wit respect to x of fx) = e 4x. e 4x ) = 4x) e 4x = 4e 4x. Evaluate f x) at x = 1/4. f 1 4 ) = 4e4 1/4) = 4e. Compute f x), f x) and f 10) x). Can you guess wat te nt derivative f n) x) of fx) looks like? f x) = 4e 4x ) = 4 4e 4x = 4 2 e 4x. f x) = 4 2 e 4x ) = 4 2 4e 4x = 4 3 e 4x. Eac derivative multiplies e 4x by anoter factor of 4: f n) x) = 4 n e 4x. ) Supplement October 14, / 1 Example 2: Find te derivative wit respect to x of gx) = x 2 e x. Evaluate g x) at x = 1. Tis requires te product rule: x 2 e x ) = x 2 ) e x + x 2 e x ) = 2xe x + x 2 e x = 2 + x)xe x. So g 1) = 2 + 1) 1 e 1 = 3e. ) Supplement October 14, / 1

8 Example 3: Find te derivative wit respect to t of ft) = e 3t 4. Tis requires te cain rule: e 3t 4) = 3t 4 ) e 3t 4. But 3t 4 ) = 3t 4) 1/2 ) = 1 2 3t 4) 1/2 3t 4) = 1 2 3t 4) 1/2 3 = 3 3t 4) 1/2 2 So f t) = 3 2 3t 4) 1/2 e 3t 4 = 3e 3t 4 2 3t 4 ) Supplement October 14, / 1 Example 4: Find te derivative wit respect to x of y = lne x ). Te natural logaritm and e x are inverses so ln e x = x. Terefore lne x )) = x = 1. Suppose we forgot tat lne x ) = x. We could ave still found te derivative: ln e x ) = ex ) = ex e x e = 1. x ) Supplement October 14, / 1

9 Example 5: Find te derivative wit respect to x of fx) = x ln x. Tis requires te product rule: x ln x) = x ln x + x ln x) = ln x + x 1 x = ln x + 1. ) Supplement October 14, / 1 Example 6: Find te derivative wit respect to x of y = ln5x + 1). Tis requires te cain rule: Outside = ln ) Outside = 1 ) Inside = 5x + 1 Inside = 5. ln5x + 1)) = 1 5x = 5 5x + 1. ) Supplement October 14, / 1

10 Example 7: Find te derivative wit respect to x of gx) = ln3x 4 7x 2 + 5). Tis requires te cain rule: Outside = ln ) Outside = 1 ) Inside = 3x 4 7x Inside = 12x 3 14x. ln3x 4 7x 2 + 5) ) = 1 3x 4 7x x3 14x) = 12x3 14x 3x 4 7x ) Supplement October 14, / 1 Example 8: Find te derivative wit respect to x of fx) = lnlnln x)). But Tus lnlnx))) = f x) = lnlnx))) lnlnx)) f x) = ln x) ln x = 1/x ln x = 1 x ln x. 1 xln x)lnlnx))) fx) = lnlnln x)) as been proven to go to infinity, but nobody as observed it do so. Indeed, to get fx) > 1 we need x 4, 000, 000. To get fx) > 2 need x x needs to ave more tan 700 digits!) ) Supplement October 14, / 1

11 Example 9: Find te derivative wit respect to x of x) = e x2 +3 ln x. ) e x2 +3 ln x = x ln x) e x2 +3 ln x = 2x ) e x2 +3 ln x x = 2x + 3 ) e x2 +3 ln x. x ) Supplement October 14, / 1 Te Law of Natural Growt Let Qt) denote te quantity of some substance as a function of time t. In many applications te rate at wic a quantity grows or srinks varies directly wit current amount of te quantity. Symbolically, Q t) = rqt). Te larger a bacteria culture is, te faster it will grow Te more money in your bank account, te faster your account will grow Te larger a sample of radioactive material, te more frequently it will emit radiation. Teorem If Q t) = rqt) ten Qt) = Q 0 e rt for some number Q 0. If Q t) = rqt) ten Qt) = Q 0 e rt for some number Q 0. ) Supplement October 14, / 1

12 Example 10: Te grap of te function gx) passes troug te point 0, 5). It is known tat te slope of g at any point P is 7 times te y P -coordinate of P. Find g2). Te slope at a point is g x), te y coordinate of tat point is gx). Tus g x) = 7gx) for all x and so for some number C. But gx) = Ce 7x 5 = g0) = Ce 7 0 = C. So gx) = 5e 7x. ) Supplement October 14, / 1 Example 11: If $10, 000 is invested at 6% interest, find te value of te investment at te end of 8 years if te interest is compounded continuously. Let At) be te accumulated value after t years. Continuously compounded interest at 6% implies A t) = 0.06At). Applying te law of natural growt wit r = 0.06, But Tus, and At) = A 0 e 0.06t. 10, 000 = A0) = A 0 e = A 0. At) = 10, 000e 0.06t A8) = 10, 000e = 10, 000e 0.48 = ) Supplement October 14, / 1

13 Example 12: How many years will it take an investment to quadruple in value if te interest rate is 7% compounded continuously? Let A 0 denote te initial amount and At) be te accumulated value after t years. By te law of natural growt At) = A 0 e 0.07t. Now find t so tat At) = 4A 0 4A 0 = A 0 e 0.07t 4 = e 0.07t ln 4 = 0.07t so t = ln = 19.8 years ) Supplement October 14, / 1 Banker s Rule of 70 Optional) Bankers often use te following approximation to find te doubling time of an investment: Time to double 70 Interest rate as a percent). Te doubling time in te previous example is tus 70 7 = 10. To quadruple, te investment would ave to double twice, so te quadrupling time sould be twice te doubling time: Time to quadruple 2 10 = 20 years. ) Supplement October 14, / 1

14 Example 13: An amount of P 0 dollars is invested at 5% interest compounded continuously. Find P 0 if at te end of 10 years te value of te investment is $20, 000. Let At) denote te accumulated valued after t years. Te law of natural growt gives At) = P 0 e 0.05t. But A10) = 20, 000 so 20, 000 = P 0 e = P 0 e 0.5 Multiplying troug by e 0.5 gives P 0 = 20000e 0.5 = ) Supplement October 14, / 1 Example 14: A bacteria culture starts wit 2, 000 bacteria and te population triples after 5 ours. Find a and b, were number of bacteria after t ours satisfies yt) = a e bt 2000 = y0) = a e b 0 = a and so yt) = 2000e bt. Te bacteria triples in 5 ours so y5) = = = y5) = 2000e 5b 3 = e 5b so ln 3 = 5b, b = ln 3 5. ) Supplement October 14, / 1

15 Example 15: A bacteria culture starts wit 5, 000 bacteria and te population quadruples after 3 ours. Find an expression for te number P t) of bacteria after t ours. If P t) is te number of bacteria after t ours ten P t) = 5000e rt. But P 3) = = and so = 5000e 3r so 4 = e 3r so So ln 4 = 3r so r = ln 4 3. P t) = 5000e ln 4 3 t = 5000 e ln 4) t/3 = t/3. ) Supplement October 14, / 1 Example 16: If te bacteria in a culture doubles in 3 our, ow many ours will it take before 7 times te original number is present? First, roug estimate: Doubles after 3 ours, so 4 times original after 6 ours, and 8 times original after 9 ours. Time to reac 7 times original amount will be between 6 and 9 ours, and closer to 9 tan 6. Exact: Qt) = Q 0 e rt satisfies 2Q 0 = Q 0 e 3r. 2 = e 3r so r = ln 2 3 so Now find t so tat 7Q 0 = Qt). Qt) = Q 0 e ln2)/3) t. 7Q 0 = Q 0 e ln2)/3) t so 7 = e ln2)/3) t ln 7 = ln 2 3 t so t = 3 ln 2 ln 7 = ours ) Supplement October 14, / 1

16 Example 17: If te world population in 2010 will be 6 billion and it were to grow exponentially wit a growt constant r = 1 ln 2, find te 30 population in billions) in te year Let P t) denote world population in billions t years after P t) = 6e 1 30 ln 2)t. Population in 2070 is ten P 60) = 6e 1 30 ln 2) 60 = 6e 2 ln 2 = 6 4 = 24. Population would be 24 billion. ) Supplement October 14, / 1 Example 18: Te alf-life of Cesium-137 is 30 years. Suppose we ave a 100 gram sample. How muc of te sample will remain after 50 years? Qt) is te amount of Cesium-137 in grams t years from te present. But Qt) = 100e rt. 50 = Q30) = 100e 30r alf is left after 30 years) So 1 2 = e 30r. Multiply by 2e 30r : so e 30r = 2 and so r = ln ln 2 Qt) = 100e 30 ) t ln 2 Q50) = 100e 30 ) 50 = 100e = 31.5 grams. ) Supplement October 14, / 1

17 Example 18 continued): Roug estimate: After 30 years te initial 100 grams are cut in alf, to 50 grams. After an additional 30 years te 50 grams are cut in alf, to 25 grams. Tus, after 60 years tere are 25 grams left. Tus, after 50 years, te amount left will be between 25 and 50 grams, and sould be closer to 25 tan to 50. Our roug estimate is consistent wit te exact value of 31.5 grams we found. ) Supplement October 14, / 1

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon?

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon? 8.5 Solving Exponential Equations GOAL Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT te Mat All radioactive substances decrease in mass over time. Jamie works in

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman)

MA123, Supplement: Exponential and logarithmic functions (pp , Gootman) MA23, Supplement: Exponential an logarithmic functions pp. 35-39, Gootman) Chapter Goals: Review properties of exponential an logarithmic functions. Learn how to ifferentiate exponential an logarithmic

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Math Test No Calculator

Math Test No Calculator Mat Test No Calculator MINUTES, QUESTIONS Turn to Section of your answer seet to answer te questions in tis section. For questions -, solve eac problem, coose te best answer from te coices provided, and

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Math 102: A Log-jam. f(x+h) f(x) h. = 10 x ( 10 h 1. = 10x+h 10 x h. = 10x 10 h 10 x h. 2. The hyperbolic cosine function is defined by

Math 102: A Log-jam. f(x+h) f(x) h. = 10 x ( 10 h 1. = 10x+h 10 x h. = 10x 10 h 10 x h. 2. The hyperbolic cosine function is defined by Mat 102: A Log-jam 1. If f(x) = 10 x, sow tat f(x+) f(x) ( 10 = 10 x ) 1 f(x+) f(x) = 10x+ 10 x = 10x 10 10 x = 10 x ( 10 1 ) 2. Te yperbolic cosine function is defined by cos(x) = ex +e x 2 Te yperbolic

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

1 Solutions to the in class part

1 Solutions to the in class part NAME: Solutions to te in class part. Te grap of a function f is given. Calculus wit Analytic Geometry I Exam, Friday, August 30, 0 SOLUTIONS (a) State te value of f(). (b) Estimate te value of f( ). (c)

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

0.1 Differentiation Rules

0.1 Differentiation Rules 0.1 Differentiation Rules From our previous work we ve seen tat it can be quite a task to calculate te erivative of an arbitrary function. Just working wit a secon-orer polynomial tings get pretty complicate

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

MATH 1020 Answer Key TEST 2 VERSION B Fall Printed Name: Section #: Instructor:

MATH 1020 Answer Key TEST 2 VERSION B Fall Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable.

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable. Derivatives 3. Derivatives Definition 3. Let f be a function an a < b be numbers. Te average rate of cange of f from a to b is f(b) f(a). b a Remark 3. Te average rate of cange of a function f from a to

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during tis exam. If you consider a question to be ambiguous, state your assumptions in te margin and do te best you can to provide te correct

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

1.3 Exponential Functions

1.3 Exponential Functions 22 Chapter 1 Prerequisites for Calculus 1.3 Exponential Functions What you will learn about... Exponential Growth Exponential Decay Applications The Number e and why... Exponential functions model many

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT01A1: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 22 Marc 2017 Semester Test 1 Scripts will be available for collection from Tursay morning. For marking

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators:

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators: Name: Section: Names of collaborators: Main Points:. Definition of derivative as limit of difference quotients. Interpretation of derivative as slope of grap. Interpretation of derivative as instantaneous

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

Today: 5.4 General log and exp functions (continued) Warm up:

Today: 5.4 General log and exp functions (continued) Warm up: Today: 5.4 General log and exp functions (continued) Warm up: log a (x) =ln(x)/ ln(a) d dx log a(x) = 1 ln(a)x 1. Evaluate the following functions. log 5 (25) log 7 p 7 log4 8 log 4 2 2. Di erentiate the

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information