Machine Learning 2D1431. Lecture 3: Concept Learning

Size: px
Start display at page:

Download "Machine Learning 2D1431. Lecture 3: Concept Learning"

Transcription

1 Machine Learning 2D1431 Lecture 3: Concept Learning

2 Question of the Day? What row of numbers comes next in this series?

3 Outline Learning from examples General-to specific ordering of hypotheses Version spaces and candidate elimination algorithm Inductive bias

4 Training Examples for Concept Enjoy Sport Concept: days on which my friend Aldo enjoys his favourite water sports Task: predict the value of Enjoy Sport for an arbitrary day based on the values of the other attributes Sky Sunny Sunny Rainy Sunny Temp Warm Warm Cold Warm Humid Wind Normal High Strong instance Strong High Strong High Strong Water Warm Warm Warm Cool Forecast Same Same Change Change Enjoy Sport Yes Yes No Yes

5 Representing Hypothesis Hypothesis h is a conjunction of constraints on attributes Each constraint can be: A specific value : e.g. Water=Warm A don t care value : e.g. Water=? No value allowed (null hypothesis): e.g. Water=Ø Example: hypothesis h Sky Temp Humid Wind Water Forecast < Sunny?? Strong? Same >

6 Prototypical Concept Learning Task Given: Instances X : Possible days decribed by the attributes Sky, Temp, Humidity, Wind, Water, Forecast Target function c: EnjoySport X {0,1} Hypotheses H: conjunction of literals e.g. < Sunny?? Strong? Same > Training examples D : positive and negative examples of the target function: <x 1,c(x 1 )>,, <x n,c(x n )> Determine: A hypothesis h in H such that h(x)=c(x) for all x in D.

7 Inductive Learning Hypothesis Any hypothesis found to approximate the target function well over the training examples, will also approximate the target function well over the unobserved examples.

8 Number of Instances, Concepts, Hypotheses Sky: Sunny, Cloudy, Rainy AirTemp: Warm, Cold Humidity: Normal, High Wind: Strong, Weak Water: Warm, Cold Forecast: Same, Change #distinct instances : 3*2*2*2*2*2 = 96 #distinct concepts : 2 96 #syntactically distinct hypotheses : 5*4*4*4*4*4=5120 #semantically distinct hypotheses : 1+4*3*3*3*3*3=973

9 General to Specific Order Consider two hypotheses: h 1 =< Sunny,?,?,Strong,?,?> h 2 =< Sunny,?,?,?,?,?> Set of instances covered by h 1 and h 2 : h 2 imposes fewer constraints than h 1 and therefore classifies more instances x as positive h(x)=1. Definition: Let h j and h k be boolean-valued functions defined over X. Then h j is more general than or equal to h k (written h j h k ) if and only if x X : [ (h k (x) = 1) (h j (x) = 1)] The relation imposes a partial order over the hypothesis space H that is utilized many concept learning methods.

10 Instance, Hypotheses and more general Instances Hypotheses specific x 1 h 3 h 1 x 2 h 2 h 1 h 2 h 3 h 2 general x 1 =< Sunny,Warm,High,Strong,Cool,Same> x 2 =< Sunny,Warm,High,Light,Warm,Same> h 1 =< Sunny,?,?,Strong,?,?> h 2 =< Sunny,?,?,?,?,?> h 3 =< Sunny,?,?,?,Cool,?>

11 Find-S Algorithm 1. Initialize h to the most specific hypothesis in H 2. For each positive training instance x For each attribute constraint a i in h If the constraint a i in h is satisfied by x then do nothing else replace a i in h by the next more general constraint that is satisfied by x 3. Output hypothesis h

12 Hypothesis Space Search by Find-S x 3 Instances Hypotheses h 0 specific x 1 x 2 h 1 h 2,3 x 4 h 4 general x h 0 =< Ø, Ø, Ø, Ø, Ø, Ø,> 1 =<Sunny,Warm,Normal,Strong,Warm,Same>+ h 1 =< Sunny,Warm,Normal, x 2 =<Sunny,Warm,High,Strong,Warm,Same>+ Strong,Warm,Same> x 3 =<Rainy,Cold,High,Strong,Warm,Change> - h 2,3 =< Sunny,Warm,?, Strong,Warm,Same> x 4 =<Sunny,Warm,High,Strong,Cool,Change> + h 4 =< Sunny,Warm,?, Strong,?,?>

13 Properties of Find-S Hypothesis space described by conjunctions of attributes Find-S will output the most specific hypothesis within H that is consistent with the positve training examples The output hypothesis will also be consistent with the negative examples, provided the target concept is contained in H.

14 Complaints about Find-S Can t tell if the learner has converged to the target concept, in the sense that it is unable to determine whether it has found the only hypothesis consistent with the training examples. Can t tell when training data is inconsistent, as it ignores negative training examples. Why prefer the most specific hypothesis? What if there are multiple maximally specific hypothesis?

15 Version Spaces A hypothesis h is consistent with a set of training examples D of target concept if and only if h(x)=c(x) for each training example <x,c(x)> in D. Consistent(h,D) := <x,c(x)> D h(x)=c(x) The version space, VS H,D, with respect to hypothesis space H, and training set D, is the subset of hypotheses from H consistent with all training examples: VS H,D = {h H Consistent(h,D) }

16 List-Then Eliminate Algorithm 1. VersionSpace a list containing every hypothesis in H 2. For each training example <x,c(x)> remove from VersionSpace any hypothesis that is inconsistent with the training example h(x) c(x) 3. Output the list of hypotheses in VersionSpace

17 Example Version Space S: {<Sunny,Warm,?,Strong,?,?>} <Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?> G: {<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, } x 1 = <Sunny Warm Normal Strong Warm Same> + x 2 = <Sunny Warm High Strong Warm Same> + x 3 = <Rainy Cold High Strong Warm Change> - x 4 = <Sunny Warm High Strong Cool Change> +

18 Representing Version Spaces The general boundary, G, of version space VS H,D is the set of maximally general members. The specific boundary, S, of version space VS H,D is the set of maximally specific members. Every member of the version space lies between these boundaries VS H,D = {h H ( s S) ( g G) (g h s) where x y means x is more general or equal than y

19 Candidate Elimination Algorithm G maximally general hypotheses in H S maximally specific hypotheses in H For each training example d=<x,c(x)> If d is a positive example Remove from G any hypothesis that is inconsistent with d For each hypothesis s in S that is not consistent with d remove s from S. Add to S all minimal generalizations h of s such that h consistent with d Some member of G is more general than h Remove from S any hypothesis that is more general than another hypothesis in S

20 Candidate Elimination Algorithm If d is a negative example Remove from S any hypothesis that is inconsistent with d For each hypothesis g in G that is not consistent with d remove g from G. Add to G all minimal specializations h of g such that h consistent with d Some member of S is more specific than h Remove from G any hypothesis that is less general than another hypothesis in G

21 Example Candidate Elimination S: {<,,,,, >} G: {<?,?,?,?,?,?>} x 1 = <Sunny Warm Normal Strong Warm Same> + S: G: {< Sunny Warm Normal Strong Warm Same >} {<?,?,?,?,?,?>} x 2 = <Sunny Warm High Strong Warm Same> + S: {< Sunny Warm? Strong Warm Same >} G: {<?,?,?,?,?,?>}

22 Example Candidate Elimination S: G: {< Sunny Warm? Strong Warm Same >} {<?,?,?,?,?,?>} x 3 = <Rainy Cold High Strong Warm Change> - S: {< Sunny Warm? Strong Warm Same >} G: {<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, <?,?,?,?,?,Same>} x 4 = <Sunny Warm High Strong Cool Change> + S: {< Sunny Warm? Strong?? >} G: {<Sunny,?,?,?,?,?>, <?,Warm,?,?,?> }

23 Example Candidate Elimination Instance space: integer points in the x,y plane with 0 x,y 10 hypothesis space : rectangles, that means hypotheses are of the form a x b, c y d, assume d Lab1: Assignment 1 c a b

24 Example Candidate Elimination examples = {ø} G={0,10,0,10} S={ø} G

25 Example Candidate Elimination examples = {(3,4),+} G={(0,10,0,10)} S={(3,3,4,4)} G S +

26 Classification of Unseen Data S: {<Sunny,Warm,?,Strong,?,?>} <Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?> G: {<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, } x 5 = <Sunny Warm Normal Strong Cool Change> x 6 = <Rainy Cold Normal Light Warm Same> x 7 = <Sunny Warm Normal Light Warm Same> x 8 = <Sunny Cold Normal Strong Warm Same> + 6/0-0/6? 3/3? 2/4

27 Inductive Leap + <Sunny Warm Normal Strong Cool Change> + <Sunny Warm Normal Light Warm Same> S : <Sunny Warm Normal???> new example <Sunny Warm Normal Strong Warm Same> How can we justify to classify the new example as positive? Since S is the specific boundary all other hypotheses in the version space are more general. So if the example satifies S it will also satisfy every other hypothesis in VS. inductive bias: We assume that the hypothesis space H contains the target concept c. In other words that c can be described by a conjunction of literals.

28 What Example to Query Next? S: {<Sunny,Warm,?,Strong,?,?>} <Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?> G: {<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, } What would be a good query for the learner to pose at that point? Choose an instance that is classified positive by some of the hypothesis and negative by the others. <Sunny, Warm, Normal, Light, Warm, Same> If the example is positive S can be generalized, if it is negative G can be specialized.

29 Biased Hypothesis Space Our hypothesis space is unable to represent a simple disjunctive target concept : (Sky=Sunny) v (Sky=Cloudy) x 1 = <Sunny Warm Normal Strong Cool Change> + S 1 : { <Sunny, Warm, Normal, Strong, Cool, Change> } x 2 = <Cloudy Warm Normal Strong Cool Change> + S 2 : { <?, Warm, Normal, Strong, Cool, Change> } x 3 = <Rainy Warm Normal Strong Cool Change> - S 3 : {} The third example x 3 contradicts the already overly general hypothesis space specific boundary S 2.

30 Unbiased Learner Idea: Choose H that expresses every teachable concept, that means H is the set of all possible subsets of X called the power set P(X) X =96, P(X) =2 96 ~ distinct concepts H = disjunctions, conjunctions, negations e.g. <Sunny Warm Normal???> v <????? Change> H surely contains the target concept.

31 Unbiased Learner What are S and G in this case? Assume positive examples (x 1, x 2, x 3 ) and negative examples (x 4, x 5 ) S : { (x 1 v x 2 v x 3 ) } G : { (x 4 v x 5 ) } The only examples that are classified are the training examples themselves. In other words in order to learn the target concept one would have to present every single instance in X as a training example. Each unobserved instance will be classified positive by precisely half the hypothesis in VS and negative by the other half.

32 Futility of Bias-Free Learning A learner that makes no prior assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances. No Free Lunch!

33 Inductive Bias Consider: Concept learning algorithm L Instances X, target concept c Training examples D c ={<x,c(x)>} Let L(x i,d c ) denote the classification assigned to instance x i by L after training on D c. Definition: The inductive bias of L is any minimal set of assertions B such that for any target concept c and corresponding training data D c ( x i X)[B D c x i ] -- L(x i, D c ) Where A -- B means that A logically entails B.

34 Inductive Systems and Equivalent Deductive Systems training examples new instance training examples new instance assertion H contains target concept candidate elimination algorithm using hypothesis space H equivalent deductive system theorem prover classification of new instance or don t know classification of new instance or don t know

35 Three Learners with Different Biases Rote learner: Store examples classify x if and only if it matches a previously observed example. No inductive bias Version space candidate elimination algorithm. Bias: The hypothesis space contains the target concept. Find-S Bias: The hypothesis space contains the target concept and all instances are negative instances unless the opposite is entailed by its other knowledge.

36 No Free Lunch Theorem If we can make no prior assumptions about the nature of the learning problem, there is no reason to prefer one learning algorithm over the other. If one algorithm seems to outperform another in a particular situation, it is a consequence of its fit to the particular problem, not the general superiority of the algorithm. For any two learning algorithms, the expected offtraining-set classification error averaged over all possible target functions is the same. No matter how clever we are at choosing a good learning algorithm and a bad algorithm, if all target functions are equally likely, then the good algorithm will not outperform the bad one.

37 training data D No Free Lunch Theorem for Binary Data x For the target function F(x) clearly algorithm 1 is superior to algorithm 2. For each of the 2 5 possible distinct target functions consistent with D, there is exactly one other target function whose output is inverted for each of the patterns outside the training set D, so that the contributions to ε 1 (E F,D) and ε 2 (E F,D) cancel. F h h ε 1 (E F,D)=0.4 ε 2 (E F,D)=0.6

38 Question of the Day? What row of numbers comes next in this series? Each row describes the series in the previous row, the first row has One One, the second Two Ones, the third row One Two and One One, the fourth row One One, One Two and Two Ones.so the answer is:

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning Question of the Day? Machine Learning 2D43 Lecture 3: Concept Learning What row of numbers comes next in this series? 2 2 22 322 3222 Outline Training Examples for Concept Enjoy Sport Learning from examples

More information

EECS 349: Machine Learning

EECS 349: Machine Learning EECS 349: Machine Learning Bryan Pardo Topic 1: Concept Learning and Version Spaces (with some tweaks by Doug Downey) 1 Concept Learning Much of learning involves acquiring general concepts from specific

More information

Concept Learning. Space of Versions of Concepts Learned

Concept Learning. Space of Versions of Concepts Learned Concept Learning Space of Versions of Concepts Learned 1 A Concept Learning Task Target concept: Days on which Aldo enjoys his favorite water sport Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

More information

Overview. Machine Learning, Chapter 2: Concept Learning

Overview. Machine Learning, Chapter 2: Concept Learning Overview Concept Learning Representation Inductive Learning Hypothesis Concept Learning as Search The Structure of the Hypothesis Space Find-S Algorithm Version Space List-Eliminate Algorithm Candidate-Elimination

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University Concept Learning Mitchell, Chapter 2 CptS 570 Machine Learning School of EECS Washington State University Outline Definition General-to-specific ordering over hypotheses Version spaces and the candidate

More information

Concept Learning.

Concept Learning. . Machine Learning Concept Learning Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg Martin.Riedmiller@uos.de

More information

Concept Learning through General-to-Specific Ordering

Concept Learning through General-to-Specific Ordering 0. Concept Learning through General-to-Specific Ordering Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 2 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell

More information

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University.

Concept Learning. Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University. Concept Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s

More information

Version Spaces.

Version Spaces. . Machine Learning Version Spaces Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials.

Concept Learning. Berlin Chen References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials. Concept Learning Berlin Chen 2005 References: 1. Tom M. Mitchell, Machine Learning, Chapter 2 2. Tom M. Mitchell s teaching materials MLDM-Berlin 1 What is a Concept? Concept of Dogs Concept of Cats Concept

More information

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination.

Outline. [read Chapter 2] Learning from examples. General-to-specic ordering over hypotheses. Version spaces and candidate elimination. Outline [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specic ordering over hypotheses Version spaces and candidate elimination algorithm Picking new examples

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering Outline Learning from eamples CSCE 78/878 Lecture : Concept Learning and te General-to-Specific Ordering Stepen D. Scott (Adapted from Tom Mitcell s slides) General-to-specific ordering over ypoteses Version

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

EECS 349: Machine Learning Bryan Pardo

EECS 349: Machine Learning Bryan Pardo EECS 349: Machine Learning Bryan Pardo Topic: Concept Learning 1 Concept Learning Much of learning involves acquiring general concepts from specific training examples Concept: subset of objects from some

More information

Computational Learning Theory

Computational Learning Theory 1 Computational Learning Theory 2 Computational learning theory Introduction Is it possible to identify classes of learning problems that are inherently easy or difficult? Can we characterize the number

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory Sinh Hoa Nguyen, Hung Son Nguyen Polish-Japanese Institute of Information Technology Institute of Mathematics, Warsaw University February 14, 2006 inh Hoa Nguyen, Hung Son

More information

Computational Learning Theory

Computational Learning Theory Computational Learning Theory [read Chapter 7] [Suggested exercises: 7.1, 7.2, 7.5, 7.8] Computational learning theory Setting 1: learner poses queries to teacher Setting 2: teacher chooses examples Setting

More information

Answers Machine Learning Exercises 2

Answers Machine Learning Exercises 2 nswers Machine Learning Exercises 2 Tim van Erven October 7, 2007 Exercises. Consider the List-Then-Eliminate algorithm for the EnjoySport example with hypothesis space H = {?,?,?,?,?,?, Sunny,?,?,?,?,?,

More information

Topics. Concept Learning. Concept Learning Task. Concept Descriptions

Topics. Concept Learning. Concept Learning Task. Concept Descriptions Topics Concept Learning Sattiraju Prabhakar CS898O: Lecture#2 Wichita State University Concept Description Using Concept Descriptions Training Examples Concept Learning Algorithm: Find-S 1/22/2006 ML2006_ConceptLearning

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Contents Introduction to Machine Learning Concept Learning Varun Chandola February 2, 2018 1 Concept Learning 1 1.1 Example Finding Malignant Tumors............. 2 1.2 Notation..............................

More information

Data Mining and Machine Learning

Data Mining and Machine Learning Data Mining and Machine Learning Concept Learning and Version Spaces Introduction Concept Learning Generality Relations Refinement Operators Structured Hypothesis Spaces Simple algorithms Find-S Find-G

More information

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016

Machine Learning. Computational Learning Theory. Eric Xing , Fall Lecture 9, October 5, 2016 Machine Learning 10-701, Fall 2016 Computational Learning Theory Eric Xing Lecture 9, October 5, 2016 Reading: Chap. 7 T.M book Eric Xing @ CMU, 2006-2016 1 Generalizability of Learning In machine learning

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information

Classification (Categorization) CS 391L: Machine Learning: Inductive Classification. Raymond J. Mooney. Sample Category Learning Problem

Classification (Categorization) CS 391L: Machine Learning: Inductive Classification. Raymond J. Mooney. Sample Category Learning Problem Classification (Categorization) CS 9L: Machine Learning: Inductive Classification Raymond J. Mooney University of Texas at Austin Given: A description of an instance, x X, where X is the instance language

More information

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012

Machine Learning. Computational Learning Theory. Le Song. CSE6740/CS7641/ISYE6740, Fall 2012 Machine Learning CSE6740/CS7641/ISYE6740, Fall 2012 Computational Learning Theory Le Song Lecture 11, September 20, 2012 Based on Slides from Eric Xing, CMU Reading: Chap. 7 T.M book 1 Complexity of Learning

More information

Computational Learning Theory

Computational Learning Theory 09s1: COMP9417 Machine Learning and Data Mining Computational Learning Theory May 20, 2009 Acknowledgement: Material derived from slides for the book Machine Learning, Tom M. Mitchell, McGraw-Hill, 1997

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning Lesson 34 Learning From Observations 12.2 Concept Learning Definition: The problem is to learn a function mapping examples into two classes: positive and negative. We are given

More information

Typical Supervised Learning Problem Setting

Typical Supervised Learning Problem Setting Typical Supervised Learning Problem Setting Given a set (database) of observations Each observation (x1,, xn, y) Xi are input variables Y is a particular output Build a model to predict y = f(x1,, xn)

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Concept Learning Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 /

More information

CS 6375: Machine Learning Computational Learning Theory

CS 6375: Machine Learning Computational Learning Theory CS 6375: Machine Learning Computational Learning Theory Vibhav Gogate The University of Texas at Dallas Many slides borrowed from Ray Mooney 1 Learning Theory Theoretical characterizations of Difficulty

More information

Computational Learning Theory (COLT)

Computational Learning Theory (COLT) Computational Learning Theory (COLT) Goals: Theoretical characterization of 1 Difficulty of machine learning problems Under what conditions is learning possible and impossible? 2 Capabilities of machine

More information

Computational Learning Theory

Computational Learning Theory 0. Computational Learning Theory Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 7 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell 1. Main Questions

More information

Linear Classifiers: Expressiveness

Linear Classifiers: Expressiveness Linear Classifiers: Expressiveness Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture outline Linear classifiers: Introduction What functions do linear classifiers express?

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Computational learning theory. PAC learning. VC dimension.

Computational learning theory. PAC learning. VC dimension. Computational learning theory. PAC learning. VC dimension. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics COLT 2 Concept...........................................................................................................

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning PAC Learning and VC Dimension Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

Decision Tree Learning and Inductive Inference

Decision Tree Learning and Inductive Inference Decision Tree Learning and Inductive Inference 1 Widely used method for inductive inference Inductive Inference Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

Lecture 9: Bayesian Learning

Lecture 9: Bayesian Learning Lecture 9: Bayesian Learning Cognitive Systems II - Machine Learning Part II: Special Aspects of Concept Learning Bayes Theorem, MAL / ML hypotheses, Brute-force MAP LEARNING, MDL principle, Bayes Optimal

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds

Lecture 25 of 42. PAC Learning, VC Dimension, and Mistake Bounds Lecture 25 of 42 PAC Learning, VC Dimension, and Mistake Bounds Thursday, 15 March 2007 William H. Hsu, KSU http://www.kddresearch.org/courses/spring2007/cis732 Readings: Sections 7.4.17.4.3, 7.5.17.5.3,

More information

Machine Learning: Exercise Sheet 2

Machine Learning: Exercise Sheet 2 Machine Learning: Exercise Sheet 2 Manuel Blum AG Maschinelles Lernen und Natürlichsprachliche Systeme Albert-Ludwigs-Universität Freiburg mblum@informatik.uni-freiburg.de Manuel Blum Machine Learning

More information

Course 395: Machine Learning

Course 395: Machine Learning Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

The Bayesian Learning

The Bayesian Learning The Bayesian Learning Rodrigo Fernandes de Mello Invited Professor at Télécom ParisTech Associate Professor at Universidade de São Paulo, ICMC, Brazil http://www.icmc.usp.br/~mello mello@icmc.usp.br First

More information

Midterm Exam, Spring 2005

Midterm Exam, Spring 2005 10-701 Midterm Exam, Spring 2005 1. Write your name and your email address below. Name: Email address: 2. There should be 15 numbered pages in this exam (including this cover sheet). 3. Write your name

More information

Computational Learning Theory

Computational Learning Theory CS 446 Machine Learning Fall 2016 OCT 11, 2016 Computational Learning Theory Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes 1 PAC Learning We want to develop a theory to relate the probability of successful

More information

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning Question of the Day Machine Learning 2D1431 How can you make the following equation true by drawing only one straight line? 5 + 5 + 5 = 550 Lecture 4: Decision Tree Learning Outline Decision Tree for PlayTennis

More information

Statistical Learning Learning From Examples

Statistical Learning Learning From Examples Statistical Learning Learning From Examples We want to estimate the working temperature range of an iphone. We could study the physics and chemistry that affect the performance of the phone too hard We

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 11, 2012 Today: Computational Learning Theory Probably Approximately Coorrect (PAC) learning theorem

More information

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997

A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 A Tutorial on Computational Learning Theory Presented at Genetic Programming 1997 Stanford University, July 1997 Vasant Honavar Artificial Intelligence Research Laboratory Department of Computer Science

More information

Bias-Variance in Machine Learning

Bias-Variance in Machine Learning Bias-Variance in Machine Learning Bias-Variance: Outline Underfitting/overfitting: Why are complex hypotheses bad? Simple example of bias/variance Error as bias+variance for regression brief comments on

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Decision Trees Part 1. Rao Vemuri University of California, Davis

Decision Trees Part 1. Rao Vemuri University of California, Davis Decision Trees Part 1 Rao Vemuri University of California, Davis Overview What is a Decision Tree Sample Decision Trees How to Construct a Decision Tree Problems with Decision Trees Classification Vs Regression

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Learning = improving with experience Improve over task T (e.g, Classification, control tasks) with respect

More information

B555 - Machine Learning - Homework 4. Enrique Areyan April 28, 2015

B555 - Machine Learning - Homework 4. Enrique Areyan April 28, 2015 - Machine Learning - Homework Enrique Areyan April 8, 01 Problem 1: Give decision trees to represent the following oolean functions a) A b) A C c) Ā d) A C D e) A C D where Ā is a negation of A and is

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition Introduction Decision Tree Learning Practical methods for inductive inference Approximating discrete-valued functions Robust to noisy data and capable of learning disjunctive expression ID3 earch a completely

More information

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell

CS340 Machine learning Lecture 4 Learning theory. Some slides are borrowed from Sebastian Thrun and Stuart Russell CS340 Machine learning Lecture 4 Learning theory Some slides are borrowed from Sebastian Thrun and Stuart Russell Announcement What: Workshop on applying for NSERC scholarships and for entry to graduate

More information

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University Decision Tree Learning Mitchell, Chapter 3 CptS 570 Machine Learning School of EECS Washington State University Outline Decision tree representation ID3 learning algorithm Entropy and information gain

More information

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 4 part 2 Bayesian inductive reasoning. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 4 part 2 Bayesian inductive reasoning Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied

More information

Learning Classification Trees. Sargur Srihari

Learning Classification Trees. Sargur Srihari Learning Classification Trees Sargur srihari@cedar.buffalo.edu 1 Topics in CART CART as an adaptive basis function model Classification and Regression Tree Basics Growing a Tree 2 A Classification Tree

More information

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, )

1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Logic FOL Syntax FOL Rules (Copi) 1. Courses are either tough or boring. 2. Not all courses are boring. 3. Therefore there are tough courses. (Cx, Tx, Bx, ) Dealing with Time Translate into first-order

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction 15-0: Learning vs. Deduction Artificial Intelligence Programming Bayesian Learning Chris Brooks Department of Computer Science University of San Francisco So far, we ve seen two types of reasoning: Deductive

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Algorithms for Classification: The Basic Methods

Algorithms for Classification: The Basic Methods Algorithms for Classification: The Basic Methods Outline Simplicity first: 1R Naïve Bayes 2 Classification Task: Given a set of pre-classified examples, build a model or classifier to classify new cases.

More information

Computational Learning Theory. Definitions

Computational Learning Theory. Definitions Computational Learning Theory Computational learning theory is interested in theoretical analyses of the following issues. What is needed to learn effectively? Sample complexity. How many examples? Computational

More information

Chapter 3: Decision Tree Learning

Chapter 3: Decision Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) Administration Books? New web page: http://www.cs.rutgers.edu/~mlittman/courses/ml03/ schedule lecture notes assignment info.

More information

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis Decision-Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) [read Chapter 3] [some of Chapter 2 might help ] [recommended exercises 3.1, 3.2] Decision tree representation

More information

Algorithm Independent Topics Lecture 6

Algorithm Independent Topics Lecture 6 Algorithm Independent Topics Lecture 6 Jason Corso SUNY at Buffalo Feb. 23 2009 J. Corso (SUNY at Buffalo) Algorithm Independent Topics Lecture 6 Feb. 23 2009 1 / 45 Introduction Now that we ve built an

More information

Propositional Logic: Equivalence

Propositional Logic: Equivalence Propositional Logic: Equivalence Alice Gao Lecture 5 Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek 1/42 Outline Propositional Logic:

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

Two hours. Note that the last two pages contain inference rules for natural deduction UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE

Two hours. Note that the last two pages contain inference rules for natural deduction UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE COMP 0 Two hours Note that the last two pages contain inference rules for natural deduction UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Mathematical Techniques for Computer Science Date: Friday

More information

Computational Learning Theory (VC Dimension)

Computational Learning Theory (VC Dimension) Computational Learning Theory (VC Dimension) 1 Difficulty of machine learning problems 2 Capabilities of machine learning algorithms 1 Version Space with associated errors error is the true error, r is

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B)

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B) Examples My mood can take 2 possible values: happy, sad. The weather can take 3 possible vales: sunny, rainy, cloudy My friends know me pretty well and say that: P(Mood=happy Weather=rainy) = 0.25 P(Mood=happy

More information

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson Natural Deduction Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. An example 1. Validity by truth table 2. Validity by proof 2. What s a proof 1. Proof checker 3. Rules of

More information

Decision Trees. Gavin Brown

Decision Trees. Gavin Brown Decision Trees Gavin Brown Every Learning Method has Limitations Linear model? KNN? SVM? Explain your decisions Sometimes we need interpretable results from our techniques. How do you explain the above

More information

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting

Estimating the accuracy of a hypothesis Setting. Assume a binary classification setting Estimating the accuracy of a hypothesis Setting Assume a binary classification setting Assume input/output pairs (x, y) are sampled from an unknown probability distribution D = p(x, y) Train a binary classifier

More information

Chapter 1: The Logic of Compound Statements. January 7, 2008

Chapter 1: The Logic of Compound Statements. January 7, 2008 Chapter 1: The Logic of Compound Statements January 7, 2008 Outline 1 1.1 Logical Form and Logical Equivalence 2 1.2 Conditional Statements 3 1.3 Valid and Invalid Arguments Central notion of deductive

More information

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Introduction to ML Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Why Bayesian learning? Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng 1 Decision Trees 2 Instances Describable by Attribute-Value Pairs Target Function Is Discrete Valued Disjunctive Hypothesis May Be Required Possibly Noisy Training Data Examples Equipment or medical diagnosis

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information