Typical Supervised Learning Problem Setting

Size: px
Start display at page:

Download "Typical Supervised Learning Problem Setting"

Transcription

1 Typical Supervised Learning Problem Setting Given a set (database) of observations Each observation (x1,, xn, y) Xi are input variables Y is a particular output Build a model to predict y = f(x1,, xn) First define criterion to measure model quality Split dataset into training and test sets Build model using training set Validate model using test set A Database (Example) X1 X2 X3 X4 X5 X6 Y f(x1,,x6) O GOOD GOOD O GOOD GOOD O GOOD GOOD O GOOD GOOD O GOOD GOOD O GOOD GOOD O BAD BAD O GOOD GOOD O GOOD GOOD O GOOD BAD O GOOD GOOD O GOOD GOOD O BAD BAD O GOOD GOOD O GOOD GOOD O BAD GOOD O GOOD GOOD O GOOD GOOD O BAD BAD O GOOD GOOD O BAD BAD O GOOD GOOD O GOOD GOOD O GOOD GOOD O GOOD GOOD O GOOD GOOD 1

2 Main Steps Select subset of relevant input variables Build a model using these variables Generate sequence of models Identify one (or various) as being good models Use only the training set Validate selected models Quantitatively : using the test set Qualitatively : using expert knowledge Main Classes of Methods Supervised learning (= input/output models) Decision/regression trees Neural networks Unsupervised learning (=p(x1,,xn) models) Bayesian networks Clustering 2

3 Inductive Learning Learning from examples The general problem of inductive inference Inductive bias Examples Training Examples for Concept Enjoy Sport Concept: days on which my friend Aldo enjoys his favourite water sports Task: predict the value of Enjoy Sport for an arbitrary day based on the values of the other attributes Sky Sunny Sunny Rainy Sunny Temp Warm Warm Cold Warm Humid rmal Wind instance Water Warm Warm Warm Cool Forecast Same Same Change Change Enjoy Sport 3

4 Inductive Learning Hypothesis Any hypothesis found to approximate the target function well over the training examples, will also approximate the target function well over the unobserved examples. Futility of Bias-Free Learning A learner that makes no prior assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances. Free Lunch! 4

5 Decision Trees Decision tree representation ID3 learning algorithm Entropy, information gain Overfitting What Is a Decision Tree? Value of X1 Small Medium or Large Value of X2 Y is big < 0.34 > 0.34 Y is very big Y is small 5

6 6 Training Examples Mild Rain D14 rmal Hot Overcast D13 Mild Overcast D12 rmal Mild Sunny D11 rmal Mild Rain D10 rmal Cold Sunny D9 Mild Sunny D8 rmal Cool Overcast D7 rmal Cool Rain D6 rmal Cool Rain D5 Mild Rain D4 Hot Overcast D3 Hot Sunny D2 Hot Sunny D1 Play Tennis Wind Humidity Temp. Outlook Day Decision Tree for PlayTennis Outlook Sunny Overcast Rain Humidity rmal Wind

7 Decision Tree for PlayTennis Outlook Sunny Overcast Rain Humidity Each internal node tests an attribute rmal Each branch corresponds to an attribute value node Each leaf node assigns a classification Decision Tree for PlayTennis Outlook Temperature Humidity Wind PlayTennis Sunny Hot? Outlook Sunny Overcast Rain Humidity Wind rmal 7

8 Decision Tree for Conjunction Outlook=Sunny Wind= Outlook Sunny Overcast Rain Wind Decision Tree for Disjunction Outlook=Sunny Wind= Outlook Sunny Overcast Rain Wind Wind 8

9 Decision Tree for XOR Outlook=Sunny XOR Wind= Outlook Sunny Overcast Rain Wind Wind Wind Decision Tree decision trees represent disjunctions of conjunctions Outlook Sunny Overcast Rain Humidity Wind rmal (Outlook=Sunny Humidity=rmal) (Outlook=Overcast) (Outlook=Rain Wind=) 9

10 When to consider Decision Trees Instances describable by attribute-value pairs Target function is discrete valued Disjunctive hypothesis may be required Possibly noisy training data Missing attribute values Examples: Medical diagnosis Credit risk analysis Object classification for robot manipulator (Tan 1993) Growing and Pruning Pictorially Data mis-fit Underfitting Overfitting Pruning Growing Tree complexity Final tree 10

11 An Application in Bioinformatics Genetics of complex traits Data base (see) Composed of observations on 1086 animals Inputs : 20x2 genetic markers Outputs : phenotypic measurements (numbers) Identify the location of involved chromosomal regions Results : unpruned and pruned Another Application in Bioinformatics Identification of protein origin Data base (see) Composed of frequency of aminoacids in different families Inputs : 20 frequencies Outputs : class of protein Objective: identify the family of the protein 11

12 Yet Another Application in Bioinformatics Identification of regulatory mechanisms between yeast genes Data from microarray experiments [Spellman et al., (1998). Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell 9, ] Want to predict which genes activate: CLN1, CLN2, CLN3, SW14 Decision tree for CNL1 activation YPL256C CLN2 <-0,375-0,375 CLN1 Não activo YPL120C CLB5 <-0,285-0,285 CLN1 Não activo YDR328C SKP1 <0,695 0,695 CLN1 CLN1 Activo Não activo % 1 0% Confusion matrix 1 22% 100% 12

13 Decision tree for CLN2 activation CLB5 <0 0 CLN2 Activo CLN3 <-0,455-0,455 CLN2 Não activo CLN2 Activo CDH1 <-0,475-0,475 CLN2 Não activo ,6% 1 20% Confusion matrix 1 33,3% 80% Decision tree for CLN3 activation YGL003 CDH1 < CLN3 Não activo SKP1 < CLN3 CDC53 Não activo <0.025 >0,025 CLN3 CLN3 Não activo Activo ,3% 16,6% 1 14,2% 85,7% Confusion matrix 13

14 Decision tree for SW14 activation MBP1 < <-0,28 SW14 Não activo MCM1-0,28 CLB1 SIC1 CLN2 < SW14 Activo % 9% 1 37% 90% <1,24 >1,24 SW14 Activo SW14 Não activo <0.025 >0,025 SW14 Não activo SW14 Activo Confusion matrix Top-Down Induction of Decision Trees ID3 1. A the best decision attribute for next node 2. Assign A as decision attribute for node 3. For each value of A create new descendant 4. Sort training examples to leaf node according to the attribute value of the branch 5. If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes. 14

15 Which Attribute is best? [29+,35-] A 1 =? A 2 =? [29+,35-] True False True False [21+, 5-] [8+, 30-] [18+, 33-] [11+, 2-] Entropy S is a sample of training examples p + is the proportion of positive examples p - is the proportion of negative examples Entropy measures the impurity of S Entropy(S) = -p + log 2 p + -p - log 2 p - 15

16 Entropy Entropy(S)= expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code) Why? Information theory optimal length code assign log 2 p bits to messages having probability p. So the expected number of bits to encode (+ or -) of random member of S: -p + log 2 p + -p - log 2 p - Information Gain Gain(S,A): expected reduction in entropy due to sorting S on attribute A Gain(S,A)=Entropy(S) - v values(a) S v / S Entropy(S v ) Entropy([29+,35-]) = -29/64 log 2 29/64 35/64 log 2 35/64 = 0.99 [29+,35-] A 1 =? A 2 =? [29+,35-] True False True False [21+, 5-] [8+, 30-] [18+, 33-] [11+, 2-] 16

17 Entropy([21+,5-]) = 0.71 Entropy([8+,30-]) = 0.74 Gain(S,A 1 )=Entropy(S) -26/64*Entropy([21+,5-]) -38/64*Entropy([8+,30-]) =0.27 Information Gain Entropy([18+,33-]) = 0.94 Entropy([8+,30-]) = 0.62 Gain(S,A 2 )=Entropy(S) -51/64*Entropy([18+,33-]) -13/64*Entropy([11+,2-]) =0.12 [29+,35-] A 1 =? A 2 =? [29+,35-] True False True False [21+, 5-] [8+, 30-] [18+, 33-] [11+, 2-] Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 Training Examples Outlook Temp. Humidity Wind Sunny Hot Sunny Hot Overcast Hot Rain Mild Rain Cool rmal Rain Cool rmal Overcast Cool rmal Sunny Mild Sunny Cold rmal Rain Mild rmal Sunny Mild rmal Overcast Mild Overcast Hot rmal Rain Mild Play Tennis 17

18 Selecting the Next Attribute S=[9+,5-] E=0.940 Humidity S=[9+,5-] E=0.940 Wind rmal [3+, 4-] [6+, 1-] E=0.985 Gain(S,Humidity) =0.940-(7/14)*0.985 (7/14)*0.592 =0.151 E=0.592 [6+, 2-] [3+, 3-] E=0.811 E=1.0 Gain(S,Wind) =0.940-(8/14)*0.811 (6/14)*1.0 =0.048 Selecting the Next Attribute Sunny S=[9+,5-] E=0.940 Outlook Over cast Rain [2+, 3-] [4+, 0] [3+, 2-] E=0.971 E=0.0 E=0.971 Gain(S,Outlook) =0.940-(5/14)* (4/14)*0.0 (5/14)* =

19 ID3 Algorithm [D1,D2,,D14] [9+,5-] Outlook Sunny Overcast Rain S sunny =[D1,D2,D8,D9,D11] [2+,3-] [D3,D7,D12,D13] [4+,0-] [D4,D5,D6,D10,D14] [3+,2-]?? Gain(S sunny, Humidity)=0.970-(3/5)0.0 2/5(0.0) = Gain(S sunny, Temp.)=0.970-(2/5)0.0 2/5(1.0)-(1/5)0.0 = Gain(S sunny, Wind)=0.970= -(2/5)1.0 3/5(0.918) = ID3 Algorithm Outlook Sunny Overcast Rain Humidity [D3,D7,D12,D13] Wind rmal [D1,D2] [D8,D9,D11] [D6,D14] [D4,D5,D10] 19

20 Hypothesis Space Search ID3 A A A2 A A A4 Hypothesis Space Search ID3 Hypothesis space is complete! Target function surely in there Outputs a single hypothesis backtracking on selected attributes (greedy search) Local minimal (suboptimal splits) Statistically-based search choices Robust to noisy data Inductive bias (search bias) Prefer shorter trees over longer ones Place high information gain attributes close to the root 20

21 Inductive Bias in ID3 H is the power set of instances X Unbiased? Preference for short trees, and for those with high information gain attributes near the root Bias is a preference for some hypotheses, rather than a restriction of the hypothesis space H Occam s razor: prefer the shortest (simplest) hypothesis that fits the data Occam s Razor Why prefer short hypotheses? Argument in favor: Fewer short hypotheses than long hypotheses A short hypothesis that fits the data is unlikely to be a coincidence A long hypothesis that fits the data might be a coincidence Argument opposed: There are many ways to define small sets of hypotheses E.g. All trees with a prime number of nodes that use attributes beginning with Z What is so special about small sets based on size of hypothesis 21

22 Overfitting in Decision Tree Learning Avoid Overfitting How can we avoid overfitting? Stop growing when data split not statistically significant Grow full tree then post-prune Minimum description length (MDL): Minimize: size(tree) + size(misclassifications(tree)) 22

23 Reduced-Error Pruning Split data into training and validation set Do until further pruning is harmful: 1. Evaluate impact on validation set of pruning each possible node (plus those below it) 2. Greedily remove the one that most improves the validation set accuracy Produces smallest version of most accurate subtree Effect of Reduced Error Pruning 23

24 Rule-Post Pruning 1. Convert tree to equivalent set of rules 2. Prune each rule independently of each other 3. Sort final rules into a desired sequence to use Method used in C4.5 Converting a Tree to Rules Outlook Sunny Overcast Rain Humidity Wind rmal R 1 : If (Outlook=Sunny) (Humidity=) Then PlayTennis= R 2 : If (Outlook=Sunny) (Humidity=rmal) Then PlayTennis= R 3 : If (Outlook=Overcast) Then PlayTennis= R 4 : If (Outlook=Rain) (Wind=) Then PlayTennis= R 5 : If (Outlook=Rain) (Wind=) Then PlayTennis= 24

25 Continuous Valued Attributes Create a discrete attribute to test continuous Temperature = C (Temperature > C) = {true, false} Where to set the threshold? Temperatur 15 0 C 18 0 C 19 0 C 22 0 C 24 0 C 27 0 C PlayTennis (see paper by [Fayyad, Irani 1993] Attributes with many Values Problem: if an attribute has many values, maximizing InformationGain will select it. E.g.: Imagine using Date= as attribute perfectly splits the data into subsets of size 1 Use GainRatio instead of information gain as criteria: GainRatio(S,A) = Gain(S,A) / SplitInformation(S,A) SplitInformation(S,A) = -Σ i=1..c S i / S log 2 S i / S Where S i is the subset for which attribute A has the value v i 25

26 Attributes with Cost Consider: Medical diagnosis : blood test costs 1000 SEK Robotics: width_from_one_feet has cost 23 secs. How to learn a consistent tree with low expected cost? Replace Gain by : Gain 2 (S,A)/Cost(A) [Tan, Schimmer 1990] 2 Gain(S,A) -1/(Cost(A)+1) w w [0,1] [Nunez 1988] Unknown Attribute Values What is some examples missing values of A? Use training example anyway sort through tree If node n tests A, assign most common value of A among other examples sorted to node n. Assign most common value of A among other examples with same target value Assign probability pi to each possible value vi of A Assign fraction pi of example to each descendant in tree Classify new examples in the same fashion 26

27 Cross-Validation Estimate the accuracy of a hypothesis induced by a supervised learning algorithm Predict the accuracy of a hypothesis over future unseen instances Select the optimal hypothesis from a given set of alternative hypotheses Pruning decision trees Model selection Feature selection Combining multiple classifiers (boosting) Holdout Method Partition data set D = {(v 1,y 1 ),,(v n,y n )} into training D t and validation set D h =D\D t Training D t Validation D\D t acc h = 1/h (vi,yi) Dh δ(i(d t,v i ),y i ) I(D t,v i ) : output of hypothesis induced by learner I trained on data D t for instance v i δ(i,j) = 1 if i=j and 0 otherwise Problems: makes insufficient use of data training and validation set are correlated 27

28 Cross-Validation k-fold cross-validation splits the data set D into k mutually exclusive subsets D 1,D 2,,D k D 1 D 2 D 3 D 4 Train and test the learning algorithm k times, each time it is trained on D\D i and tested on D i D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 D 1 D 2 D 3 D 4 acc cv = 1/n (vi,yi) D δ(i(d\d i,v i ),y i ) Cross-Validation Uses all the data for training and testing Complete k-fold cross-validation splits the dataset of size m in all (m over m/k) possible ways (choosing m/k instances out of m) Leave n-out cross-validation sets n instances aside for testing and uses the remaining ones for training (leave one-out is equivalent to n-fold crossvalidation) In stratified cross-validation, the folds are stratified so that they contain approximately the same proportion of labels as the original data set 28

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning Question of the Day Machine Learning 2D1431 How can you make the following equation true by drawing only one straight line? 5 + 5 + 5 = 550 Lecture 4: Decision Tree Learning Outline Decision Tree for PlayTennis

More information

Machine Learning in Bioinformatics

Machine Learning in Bioinformatics Machine Learning in Bioinformatics Arlindo Oliveira aml@inesc-id.pt Data Mining: Concepts and Techniques Data mining concepts Learning from examples Decision trees Neural Networks 1 Typical Supervised

More information

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis Decision-Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) [read Chapter 3] [some of Chapter 2 might help ] [recommended exercises 3.1, 3.2] Decision tree representation

More information

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University Decision Tree Learning Mitchell, Chapter 3 CptS 570 Machine Learning School of EECS Washington State University Outline Decision tree representation ID3 learning algorithm Entropy and information gain

More information

Administration. Chapter 3: Decision Tree Learning (part 2) Measuring Entropy. Entropy Function

Administration. Chapter 3: Decision Tree Learning (part 2) Measuring Entropy. Entropy Function Administration Chapter 3: Decision Tree Learning (part 2) Book on reserve in the math library. Questions? CS 536: Machine Learning Littman (Wu, TA) Measuring Entropy Entropy Function S is a sample of training

More information

Data Mining in Bioinformatics

Data Mining in Bioinformatics Data Mining in Bioinformatics Arlindo Oliveira aml@inesc-id.pt Data Mining: Concepts and Techniques Data mining concepts Learning from examples Decision trees Neural networks Clustering 1 Typical Supervised

More information

Chapter 3: Decision Tree Learning

Chapter 3: Decision Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) Administration Books? New web page: http://www.cs.rutgers.edu/~mlittman/courses/ml03/ schedule lecture notes assignment info.

More information

Decision Tree Learning

Decision Tree Learning 0. Decision Tree Learning Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 3 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell PLAN 1. Concept learning:

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Chapter 3: Decision Tree Learning (part 2)

Chapter 3: Decision Tree Learning (part 2) Chapter 3: Decision Tree Learning (part 2) CS 536: Machine Learning Littman (Wu, TA) Administration Books? Two on reserve in the math library. icml-03: instructional Conference on Machine Learning mailing

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

DECISION TREE LEARNING. [read Chapter 3] [recommended exercises 3.1, 3.4]

DECISION TREE LEARNING. [read Chapter 3] [recommended exercises 3.1, 3.4] 1 DECISION TREE LEARNING [read Chapter 3] [recommended exercises 3.1, 3.4] Decision tree representation ID3 learning algorithm Entropy, Information gain Overfitting Decision Tree 2 Representation: Tree-structured

More information

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition Introduction Decision Tree Learning Practical methods for inductive inference Approximating discrete-valued functions Robust to noisy data and capable of learning disjunctive expression ID3 earch a completely

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Decision Tree Learning and Inductive Inference

Decision Tree Learning and Inductive Inference Decision Tree Learning and Inductive Inference 1 Widely used method for inductive inference Inductive Inference Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently

More information

Learning Classification Trees. Sargur Srihari

Learning Classification Trees. Sargur Srihari Learning Classification Trees Sargur srihari@cedar.buffalo.edu 1 Topics in CART CART as an adaptive basis function model Classification and Regression Tree Basics Growing a Tree 2 A Classification Tree

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Learning = improving with experience Improve over task T (e.g, Classification, control tasks) with respect

More information

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Decision Trees Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, 2018 Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Roadmap Classification: machines labeling data for us Last

More information

Decision Tree Learning - ID3

Decision Tree Learning - ID3 Decision Tree Learning - ID3 n Decision tree examples n ID3 algorithm n Occam Razor n Top-Down Induction in Decision Trees n Information Theory n gain from property 1 Training Examples Day Outlook Temp.

More information

Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything.

Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything. Decision Trees Defining the Task Imagine we ve got a set of data containing several types, or classes. E.g. information about customers, and class=whether or not they buy anything. Can we predict, i.e

More information

Classification and Prediction

Classification and Prediction Classification Classification and Prediction Classification: predict categorical class labels Build a model for a set of classes/concepts Classify loan applications (approve/decline) Prediction: model

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Introduction to ML Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Why Bayesian learning? Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical

More information

Introduction Association Rule Mining Decision Trees Summary. SMLO12: Data Mining. Statistical Machine Learning Overview.

Introduction Association Rule Mining Decision Trees Summary. SMLO12: Data Mining. Statistical Machine Learning Overview. SMLO12: Data Mining Statistical Machine Learning Overview Douglas Aberdeen Canberra Node, RSISE Building Australian National University 4th November 2004 Outline 1 Introduction 2 Association Rule Mining

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Artificial Intelligence. Topic

Artificial Intelligence. Topic Artificial Intelligence Topic What is decision tree? A tree where each branching node represents a choice between two or more alternatives, with every branching node being part of a path to a leaf node

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof Ganesh Ramakrishnan October 20, 2016 1 / 25 Decision Trees: Cascade of step

More information

Decision Trees. Tirgul 5

Decision Trees. Tirgul 5 Decision Trees Tirgul 5 Using Decision Trees It could be difficult to decide which pet is right for you. We ll find a nice algorithm to help us decide what to choose without having to think about it. 2

More information

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng 1 Decision Trees 2 Instances Describable by Attribute-Value Pairs Target Function Is Discrete Valued Disjunctive Hypothesis May Be Required Possibly Noisy Training Data Examples Equipment or medical diagnosis

More information

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees!

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Summary! Input Knowledge representation! Preparing data for learning! Input: Concept, Instances, Attributes"

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Machine Learning 2nd Edi7on

Machine Learning 2nd Edi7on Lecture Slides for INTRODUCTION TO Machine Learning 2nd Edi7on CHAPTER 9: Decision Trees ETHEM ALPAYDIN The MIT Press, 2010 Edited and expanded for CS 4641 by Chris Simpkins alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e

More information

Decision Trees / NLP Introduction

Decision Trees / NLP Introduction Decision Trees / NLP Introduction Dr. Kevin Koidl School of Computer Science and Statistic Trinity College Dublin ADAPT Research Centre The ADAPT Centre is funded under the SFI Research Centres Programme

More information

Machine Learning & Data Mining

Machine Learning & Data Mining Group M L D Machine Learning M & Data Mining Chapter 7 Decision Trees Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University Top 10 Algorithm in DM #1: C4.5 #2: K-Means #3: SVM

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Classification and regression trees

Classification and regression trees Classification and regression trees Pierre Geurts p.geurts@ulg.ac.be Last update: 23/09/2015 1 Outline Supervised learning Decision tree representation Decision tree learning Extensions Regression trees

More information

Apprentissage automatique et fouille de données (part 2)

Apprentissage automatique et fouille de données (part 2) Apprentissage automatique et fouille de données (part 2) Telecom Saint-Etienne Elisa Fromont (basé sur les cours d Hendrik Blockeel et de Tom Mitchell) 1 Induction of decision trees : outline (adapted

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Intelligent Data Analysis. Decision Trees

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Intelligent Data Analysis. Decision Trees Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Intelligent Data Analysis Decision Trees Paul Prasse, Niels Landwehr, Tobias Scheffer Decision Trees One of many applications:

More information

the tree till a class assignment is reached

the tree till a class assignment is reached Decision Trees Decision Tree for Playing Tennis Prediction is done by sending the example down Prediction is done by sending the example down the tree till a class assignment is reached Definitions Internal

More information

The Solution to Assignment 6

The Solution to Assignment 6 The Solution to Assignment 6 Problem 1: Use the 2-fold cross-validation to evaluate the Decision Tree Model for trees up to 2 levels deep (that is, the maximum path length from the root to the leaves is

More information

Decision Trees. Gavin Brown

Decision Trees. Gavin Brown Decision Trees Gavin Brown Every Learning Method has Limitations Linear model? KNN? SVM? Explain your decisions Sometimes we need interpretable results from our techniques. How do you explain the above

More information

Data classification (II)

Data classification (II) Lecture 4: Data classification (II) Data Mining - Lecture 4 (2016) 1 Outline Decision trees Choice of the splitting attribute ID3 C4.5 Classification rules Covering algorithms Naïve Bayes Classification

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology Decision trees Special Course in Computer and Information Science II Adam Gyenge Helsinki University of Technology 6.2.2008 Introduction Outline: Definition of decision trees ID3 Pruning methods Bibliography:

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees Outline Top-Down Decision Tree Construction Choosing the Splitting Attribute Information Gain and Gain Ratio 2 DECISION TREE An internal node is a test on an attribute. A

More information

Classification II: Decision Trees and SVMs

Classification II: Decision Trees and SVMs Classification II: Decision Trees and SVMs Digging into Data: Jordan Boyd-Graber February 25, 2013 Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah Digging into Data: Jordan Boyd-Graber ()

More information

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation

Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan, Steinbach, Kumar Adapted by Qiang Yang (2010) Tan,Steinbach,

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many others who made their course materials freely available online. Feel

More information

Information Theory & Decision Trees

Information Theory & Decision Trees Information Theory & Decision Trees Jihoon ang Sogang University Email: yangjh@sogang.ac.kr Decision tree classifiers Decision tree representation for modeling dependencies among input variables using

More information

ARTIFICIAL INTELLIGENCE. Supervised learning: classification

ARTIFICIAL INTELLIGENCE. Supervised learning: classification INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Supervised learning: classification Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from

More information

Concept Learning. Space of Versions of Concepts Learned

Concept Learning. Space of Versions of Concepts Learned Concept Learning Space of Versions of Concepts Learned 1 A Concept Learning Task Target concept: Days on which Aldo enjoys his favorite water sport Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information

Algorithms for Classification: The Basic Methods

Algorithms for Classification: The Basic Methods Algorithms for Classification: The Basic Methods Outline Simplicity first: 1R Naïve Bayes 2 Classification Task: Given a set of pre-classified examples, build a model or classifier to classify new cases.

More information

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning

Question of the Day? Machine Learning 2D1431. Training Examples for Concept Enjoy Sport. Outline. Lecture 3: Concept Learning Question of the Day? Machine Learning 2D43 Lecture 3: Concept Learning What row of numbers comes next in this series? 2 2 22 322 3222 Outline Training Examples for Concept Enjoy Sport Learning from examples

More information

Decision Support. Dr. Johan Hagelbäck.

Decision Support. Dr. Johan Hagelbäck. Decision Support Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Decision Support One of the earliest AI problems was decision support The first solution to this problem was expert systems

More information

http://xkcd.com/1570/ Strategy: Top Down Recursive divide-and-conquer fashion First: Select attribute for root node Create branch for each possible attribute value Then: Split

More information

Decision Trees. Danushka Bollegala

Decision Trees. Danushka Bollegala Decision Trees Danushka Bollegala Rule-based Classifiers In rule-based learning, the idea is to learn a rule from train data in the form IF X THEN Y (or a combination of nested conditions) that explains

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Learning from Observations

Learning from Observations RN, Chapter 18 18.3 Learning from Observations Learning Decision Trees Framework Classification Learning Bias Def'n: Decision Trees Algorithm for Learning Decision Trees Entropy, Inductive Bias (Occam's

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order MACHINE LEARNING Definition 1: Learning is constructing or modifying representations of what is being experienced [Michalski 1986], p. 10 Definition 2: Learning denotes changes in the system That are adaptive

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

Machine Learning 2D1431. Lecture 3: Concept Learning

Machine Learning 2D1431. Lecture 3: Concept Learning Machine Learning 2D1431 Lecture 3: Concept Learning Question of the Day? What row of numbers comes next in this series? 1 11 21 1211 111221 312211 13112221 Outline Learning from examples General-to specific

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University

Concept Learning Mitchell, Chapter 2. CptS 570 Machine Learning School of EECS Washington State University Concept Learning Mitchell, Chapter 2 CptS 570 Machine Learning School of EECS Washington State University Outline Definition General-to-specific ordering over hypotheses Version spaces and the candidate

More information

Lecture 9: Bayesian Learning

Lecture 9: Bayesian Learning Lecture 9: Bayesian Learning Cognitive Systems II - Machine Learning Part II: Special Aspects of Concept Learning Bayes Theorem, MAL / ML hypotheses, Brute-force MAP LEARNING, MDL principle, Bayes Optimal

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

Decision Tree. Decision Tree Learning. c4.5. Example

Decision Tree. Decision Tree Learning. c4.5. Example Decision ree Decision ree Learning s of systems that learn decision trees: c4., CLS, IDR, ASSISA, ID, CAR, ID. Suitable problems: Instances are described by attribute-value couples he target function has

More information

Inductive Learning. Chapter 18. Why Learn?

Inductive Learning. Chapter 18. Why Learn? Inductive Learning Chapter 18 Material adopted from Yun Peng, Chuck Dyer, Gregory Piatetsky-Shapiro & Gary Parker Why Learn? Understand and improve efficiency of human learning Use to improve methods for

More information

Classification Using Decision Trees

Classification Using Decision Trees Classification Using Decision Trees 1. Introduction Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association

More information

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon I Decision Tree Learning Part I brainlinksystem.com $25+ / hr Illah Nourbakhsh s version Chapter 8, Russell and Norvig Thanks to all past instructors Carnegie Mellon Outline Learning and philosophy Induction

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

Decision Trees Part 1. Rao Vemuri University of California, Davis

Decision Trees Part 1. Rao Vemuri University of California, Davis Decision Trees Part 1 Rao Vemuri University of California, Davis Overview What is a Decision Tree Sample Decision Trees How to Construct a Decision Tree Problems with Decision Trees Classification Vs Regression

More information

Symbolic methods in TC: Decision Trees

Symbolic methods in TC: Decision Trees Symbolic methods in TC: Decision Trees ML for NLP Lecturer: Kevin Koidl Assist. Lecturer Alfredo Maldonado https://www.cs.tcd.ie/kevin.koidl/cs0/ kevin.koidl@scss.tcd.ie, maldonaa@tcd.ie 01-017 A symbolic

More information

Decision Tree And Random Forest

Decision Tree And Random Forest Decision Tree And Random Forest Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni. Koblenz-Landau, Germany) Spring 2019 Contact: mailto: Ammar@cu.edu.eg

More information

Decision Tree Analysis for Classification Problems. Entscheidungsunterstützungssysteme SS 18

Decision Tree Analysis for Classification Problems. Entscheidungsunterstützungssysteme SS 18 Decision Tree Analysis for Classification Problems Entscheidungsunterstützungssysteme SS 18 Supervised segmentation An intuitive way of thinking about extracting patterns from data in a supervised manner

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

The Quadratic Entropy Approach to Implement the Id3 Decision Tree Algorithm

The Quadratic Entropy Approach to Implement the Id3 Decision Tree Algorithm Journal of Computer Science and Information Technology December 2018, Vol. 6, No. 2, pp. 23-29 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). All Rights Reserved. Published by American

More information

Classification: Rule Induction Information Retrieval and Data Mining. Prof. Matteo Matteucci

Classification: Rule Induction Information Retrieval and Data Mining. Prof. Matteo Matteucci Classification: Rule Induction Information Retrieval and Data Mining Prof. Matteo Matteucci What is Rule Induction? The Weather Dataset 3 Outlook Temp Humidity Windy Play Sunny Hot High False No Sunny

More information

Rule Generation using Decision Trees

Rule Generation using Decision Trees Rule Generation using Decision Trees Dr. Rajni Jain 1. Introduction A DT is a classification scheme which generates a tree and a set of rules, representing the model of different classes, from a given

More information

Decision Trees. CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore

Decision Trees. CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore Decision Trees Claude Monet, The Mulberry Tree Slides from Pedro Domingos, CSC411/2515: Machine Learning and Data Mining, Winter 2018 Luke Zettlemoyer, Carlos Guestrin, and Andrew Moore Michael Guerzhoy

More information

CSCI 5622 Machine Learning

CSCI 5622 Machine Learning CSCI 5622 Machine Learning DATE READ DUE Mon, Aug 31 1, 2 & 3 Wed, Sept 2 3 & 5 Wed, Sept 9 TBA Prelim Proposal www.rodneynielsen.com/teaching/csci5622f09/ Instructor: Rodney Nielsen Assistant Professor

More information

Bayesian Learning. Bayesian Learning Criteria

Bayesian Learning. Bayesian Learning Criteria Bayesian Learning In Bayesian learning, we are interested in the probability of a hypothesis h given the dataset D. By Bayes theorem: P (h D) = P (D h)p (h) P (D) Other useful formulas to remember are:

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

( D) I(2,3) I(4,0) I(3,2) weighted avg. of entropies

( D) I(2,3) I(4,0) I(3,2) weighted avg. of entropies Decision Tree Induction using Information Gain Let I(x,y) as the entropy in a dataset with x number of class 1(i.e., play ) and y number of class (i.e., don t play outcomes. The entropy at the root, i.e.,

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

Artificial Intelligence Decision Trees

Artificial Intelligence Decision Trees Artificial Intelligence Decision Trees Andrea Torsello Decision Trees Complex decisions can often be expressed in terms of a series of questions: What to do this Weekend? If my parents are visiting We

More information