Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B)

Size: px
Start display at page:

Download "Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B)"

Transcription

1 Examples My mood can take 2 possible values: happy, sad. The weather can take 3 possible vales: sunny, rainy, cloudy My friends know me pretty well and say that: P(Mood=happy Weather=rainy) = 0.25 P(Mood=happy Weather=sunny) =0.4 P(Mood=happy Weather=cloudy) = 0.05 Can you compute: P(Mood=happy)? P(Mood=sad)? P(Weather=rainy)? Bayesian learning algorithms use probability theory as an approach to concept classification. Bayesian approaches typically do not generate an explicit hypothesis. Statistical data is used to represent implicit hypotheses. Bayesian classifiers generally produce probabilities for (possibly multiple) class assignments, rather than a single definite classification. To use Bayesian techniques, we often need to make independence assumptions that often aren t valid (but we make them anyway!). 4 1 Conditional Probability P(A B) represents the probability of A given that B isknowntobetrue. We call this a conditional or posterior probability. P(A B) = 1 is equivalent to B A. For example, suppose Rover rarely howls: P(Rover howls) = 0.01 But when there is a full moon, he always howls! Then P(Rover howls full moon) =1.0 Two Roles for Bayesian Methods 1. Provides practical learning algorithms Naive Bayes learning Bayesian belief network learning Combine prior knowledge (prior probabilities) with observed data Requires prior probabilities 2. Provides useful conceptual framework Provides gold standard for evaluating other learning algorithms Additional insight into Occam s razor 5 2 The Chain Rule Prior Probability and Random Variables P (A B) = P (A B) P (B) We can rewrite this as: P (A B) =P (A B) P (B) which is called the chain rule because we can chain together probabilities to compute the likelihood of conjunctions. Example: P (A) =0.5 P (B A) =0.6 P (C A B) =0.8 What is P (A B C)? P(A) represents the prior or unconditional probability that statement A is true, in the absence of other information. A random variable represents different outcomes of an event. Each random variable has a domain of possible values x 1...x n,which each have a probability. The probabilities for all possible outcomes must sum to 1. For example: P(Disease=CAVITY) = 0.5 P(Disease=GUM DISEASE) = 0.3 P(Disease=IMPACTED TOOTH) = 0.1 P(Disease=ROOT INFECTION) =

2 Basic Formulas for Probabilities Bayes Theorem applied to machine learning P (h D) = P (h) = prior probability of hypothesis h = prior probability of training data D P (h D) = probability of h given D P (D h) = probability of D given h Product (or Chain ) Rule: probability of a conjunction of two events: P (A B) =P (A B)P (B) =P (B A)P (A) Sum Rule: probability of a disjunction of two events: P (A B) =P (A)+P(B) P (A B) Theorem of total probability: if events A 1,...,A n are mutually n exclusive with P (A i )=1, then n P (B) = P (B A i )P (A i ) 10 7 Bayes Rule Increasing Probability with more Data Simple form: P( h) P(h D1) P(h D1,D2) P (A B) = P (A) P (B A) P (B) hypotheses hypotheses hypotheses ( a) ( b) ( c) General form: P (A B,X) = P (A X) P (B A,X) P (B X) 11 8 Choosing Hypotheses P (h D) = Generally want the most probable hypothesis given the training data. Maximum a posteriori hypothesis h MAP : P (h D) Bayes Rule Example Let S = patient has a stiff neck, M = disease is meningitis. Assume that: P(S M) =0.5 P(M) = 1/5000 P(S) = 1/20 If assume P (h i )=P(h j ) then can further simplify. The Maximum Likelihood hypothesis: h ML = argmax P (D h i ) P(M S) =? 12 9

3 Most Probable Classification of New Instances So far we ve sought the most probable hypothesis given the data D (i.e., h MAP ) Given new instance x, what is its most probable classification? h MAP (x) is not the most probable classification! Consider: Three possible hypotheses: P (h 1 D) =.4, P(h 2 D) =.3, P(h 3 D) =.3 Given new instance x h 1 (x) =+,h 2 (x) =, h 3 (x) = Brute Force MAP Hypothesis Learner For each hypothesis h in H, calculate the posterior probability: P (h D) = Output the hypothesis h MAP with the highest posterior probability: P (h D) What s most probable classification of x? Bayes Optimal Classifier Example: therefore and argmax P (h i D)P (c j h i ) P (h 1 D) =.4, P( h 1 )=0, P(+ h 1 )=1 P (h 2 D) =.3, P( h 2 )=1, P(+ h 2 )=0 P (h 3 D) =.3, P( h 3 )=1, P(+ h 3 )=0 P (h i D)P (+ h i ) =.4 P (h i D)P ( h i ) =.6 arg max v j V P (v j h i )P (h i D) = Relation to Concept Learning Consider our usual concept learning task Instance space X, hypothesis space H, training examples D Consider the FINDS learning algorithm (outputs most specific hypothesis from the version space VS H,D ) What would Bayes rule produce as the MAP hypothesis? Does FINDS output a MAP hypothesis?? Naive Bayes Classifier One of the most practical learning methods, along with decision trees, neural networks, nearest neighbor methods, etc. Requires: 1. Moderate or large training set. 2. Attributes that describe instances should be conditionally independent given the classification. Successful applications include diagnosis and text classification. Relation to Concept Learning, II Assume fixed set of instances x 1,...,x n Assume D is the set of classifications c(x 1 ),...,c(x n) Choose P (D h) P (D h) =1if h consistent with D P (D h) =0otherwise Choose P (h) to be uniform distribution: P (h) = 1 for all h H H Then, 1 if h is consistent with D P (h D) = VS H,D 0 otherwise 18 15

4 Sparse Data What if none of the training instances with class c j have attribute value a i? Then ˆP (a i c j )=0 Naive Bayes Classifier Assume target function f : X C, where each instance x is described by attributes a 1,a 2...a n. so ˆP (c j ) i ˆP (a i c j )=0!!! Most probable value of f(x) is: Typical solution is m-estimate for ˆP (a i c j ) nc + mp ˆP (a i c j ) n + m where n is number of training examples for which c = c j n c number of examples for which c = c j and a = a i p is prior estimate for ˆP (a i c j ) m is weight given to prior (i.e. # of virtual examples) c MAP = argmax c MAP = argmax c MAP = argmax P (c j a 1,a 2...a n) P (a 1,a 2...a n c j )P (c j ) P (a 1,a 2...a n) P (a 1,a 2...a n c j )P (c j ) Naive Bayes Example Consider a medical diagnosis problem with 3 possible diagnoses (Well, Cold, Allergy) and 3 symptoms (sneeze, cough, fever). Diagnosis Well Cold Allergy P (d) P (sneeze d) P (cough d) P (fever d) P (well sneeze cough fever)= Naive Bayes assumption To make the problem tractable, we often need to make the following independence assumption: P (a 1,a 2...a n c j )= P (a i c j ) i which allows us to define the Naive Bayes Classifier: c NB = argmax P (c j ) i P (a i c j ) Example, II Diagnosis Well Cold Allergy P (d) P (sneeze d) P (cough d) P (fever d) P (cold sneeze cough fever)= Naive Bayes Algorithm Naive Bayes Learn(examples) For each possible class c j ˆP (c j ) estimate P (c j ) For each attribute value a i of each attribute a ˆP (a i c j ) estimate P (a i c j ) P (allergy sneeze cough fever)= P (sneeze cough fever)= Classify New Instance(x) c NB = argmax ˆP (c j ) ˆP (a i c j ) a i x 24 21

5 Bayesian Belief Networks Naive Bayes conditional independence assumption sometimes still too restrictive But it s impossible to estimate all parameters without some such assumptions Bayesian Belief Networks describe conditional independence among subsets of variables Allows combining prior knowledge about (in)dependencies with observed training data Comments on Naive Bayes Generally works quite well despite the blanket assumption of independence Experiments show it can be quite competitive with other methods (C4.5) on standard data sets Although it does not estimate probabilities accurately when independence is violated, still often picks correct category Does not perform search! Has a fairly strong bias Hypothesis not guaranteed to fit the training data Handles noise well Conditional Independence Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if ( x i,y j,z k )P (X = x i Y = y j,z = z k )=P(X = x i Z = z k ) Abbreviated: P (X Y,Z)=P (X Z) Example: Thunder is conditionally independent of Rain, given Lightning P (Thunder Rain, Lightning) =P (Thunder Lightning) Naive Bayes uses this to justify: P (X, Y Z) =P (X Y,Z)=P (X Z)P (Y Z) Minimum Description Length Principle Occam s razor: prefer the shortest hypothesis MDL: prefer the hypothesis that minimizes: h MDL = argmin L C 1 (h)+l C2 (D h) where L C (x) is the description length of x under encoding C For example: H=decision trees, D=labels from training data L C1 (h) is # bits to describe tree h L C2 (D h) is # bits to describe D given h Note: L C2 (D h) =0if examples classified perfectly by h. Need only describe exceptions Hence h MDL trades off tree size for training errors Bayesian Belief Network MDL, Continued Lightning Storm BusTourGroup Campfire C C S,B S, B S,B S, B h MAP = argmin log 2 P (D h)+log 2 P (h) log 2 P (D h) log 2 P (h) (1) Thunder ForestFire Campfire Network represents a set of conditional independence assertions: Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors Directed acyclic graph Each node has an associated conditional probability table Interesting fact from information theory: The optimal (shortest expected coding length) code for an event with probability p is log 2 p bits. So interpret (1): log 2 P (h) is length of h under optimal code log 2 P (D h) is length of D given h under optimal code By Occam s razor, prefer the hypothesis that minimizes length(h) + length(misclassifications) 30 27

6 Summary: Bayesian Belief Networks Combine prior knowledge with observed data Impact of prior knowledge (when correct!) is to lower the sample complexity Active research area: Extend from boolean to real-valued variables Parameterized distributions instead of tables Extend to first-order instead of propositional systems More effective inference methods... Interpretation The net and its associated table represents the joint probability distribution over all variables and their values In general, n P (y 1,...,y k )= P (y i Parents(Y i )) where Parents(Y i ) denotes immediate predecessors of Y i in the graph Therefore, joint distribution is fully defined by graph, plus the conditional probabilities Example: P (S, L, T, C, F, B) =? Statistical Speech Recognition Model What is the most likely sequence of words that the speech signal represents? P (words signal) = P (words)p (signal words) P (signal) P (words) is the language model. For example, fat cat is more likely than hat cat. P (signal words) is the acoustic model. For example, cat is likely to be pronounced as kæt. Learning of Bayesian Networks Several variants of this learning task Network structure might be known or unknown Training examples might provide values of all network variables, or just some If structure known and all variables observed Then it reduces to training as with a Naive Bayes classifier P (signal) is the likelihood of the speech signal, but this is constant across all interpretations of the signal so we can ignore it The Language Model (P (words)) Ideally, we d like a complete model of the English language to tell us the exact probability of a sentence. But there is no complete model of English. (Or any other natural language.) You d need to know the probability of every sentence that could ever be uttered! A grammar should be helpful, but there is no complete grammar for English and spoken language is notoriously ungrammatical anyway. Learning Bayes Nets Suppose structure known, variables partially observable Similar to training neural network with hidden units In fact, can learn Bayes Net conditional probability tables using gradient ascent! Converge to network h that (locally) maximizes P (D h) Statistical speech recognition systems approximate the likelihood of sentences by collecting n-gram statistics of word usage from large spoken language corpora

7 Summary: Probabilistic inference lends power and flexibility, can incorporate prior probabilistic knowledge Can make statistically invalid assumptions and still get reasonably good results (Naive Bayes) Provides insights into algorithms that don t even use probabilities (explicitly) Bayesian Belief Networks let us incorporate even more types of prior knowledge (than standard Bayes techniques) Many techniques that have proven their success in many application areas N-grams A unigram represents a single word. We estimate: P (w) = frequency of w in corpus / number of words in corpus. A bigram represents a pair of sequential words. We estimate: P (w 2 w 1) = frequency of w 2 following w 1 / frequency of w 1. A trigram represents a triple of sequential words. We estimate: P (w 3 w 1,w 2) = frequency of w 3 following w 1,w 2 / frequency of w 1, Unigram/Bigram Statistics Word Unigram Previous words Count OF IN IS ON TO FROM THAT WITH LINE VISION THE ON OF TO IS A THAT WE LINE VISION The N-gram language model Ideally, we d like to compute: P (w 1...w n)=p (w 1 )P (w 2 w 1 )P (w 3 w 1 w 2 )...P (w n w 1...w n 1 ) But we rarely have the data necessary to compute those statistics reliably. So we estimate by making independence assumptions and using bigrams (or trigams). The bigram model is: P (w 1...w n)=p (w 1 )P (w 2 w 1 )P (w 3 w 2 )...P (w n w n 1 ) n P (w 1...w n)= P (w i w i 1 ) Does amazingly well at predicting the next word! 39

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses

Bayesian Learning. Two Roles for Bayesian Methods. Bayes Theorem. Choosing Hypotheses Bayesian Learning Two Roles for Bayesian Methods Probabilistic approach to inference. Quantities of interest are governed by prob. dist. and optimal decisions can be made by reasoning about these prob.

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

Stephen Scott.

Stephen Scott. 1 / 28 ian ian Optimal (Adapted from Ethem Alpaydin and Tom Mitchell) Naïve Nets sscott@cse.unl.edu 2 / 28 ian Optimal Naïve Nets Might have reasons (domain information) to favor some hypotheses/predictions

More information

Lecture 9: Bayesian Learning

Lecture 9: Bayesian Learning Lecture 9: Bayesian Learning Cognitive Systems II - Machine Learning Part II: Special Aspects of Concept Learning Bayes Theorem, MAL / ML hypotheses, Brute-force MAP LEARNING, MDL principle, Bayes Optimal

More information

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas

CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models. Stephen Scott. Introduction. Outline. Bayes Theorem. Formulas ian ian ian Might have reasons (domain information) to favor some hypotheses/predictions over others a priori ian methods work with probabilities, and have two main roles: Naïve Nets (Adapted from Ethem

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classification n Uncertainty & robability n Baye's rule n Choosing Hypotheses- Maximum a posteriori n Maximum Likelihood - Baye's concept learning n Maximum Likelihood of real valued function n Bayes

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Two Roles for Bayesian Methods

Two Roles for Bayesian Methods Bayesian Learning Bayes Theorem MAP, ML hypotheses MAP learners Minimum description length principle Bayes optimal classifier Naive Bayes learner Example: Learning over text data Bayesian belief networks

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4375 --- Fall 2018 Bayesian a Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell 1 Uncertainty Most real-world problems deal with

More information

Introduction to Machine Learning

Introduction to Machine Learning Uncertainty Introduction to Machine Learning CS4375 --- Fall 2018 a Bayesian Learning Reading: Sections 13.1-13.6, 20.1-20.2, R&N Sections 6.1-6.3, 6.7, 6.9, Mitchell Most real-world problems deal with

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

BAYESIAN LEARNING. [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.6]

BAYESIAN LEARNING. [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.6] 1 BAYESIAN LEARNING [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theorem MAP, ML hypotheses, MAP learners Minimum description length principle Bayes optimal classifier, Naive Bayes learner Example:

More information

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty Machine Learning CS6375 --- Spring 2015 a Bayesian Learning (I) 1 Uncertainty Most real-world problems deal with uncertain information Diagnosis: Likely disease given observed symptoms Equipment repair:

More information

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA)

Bayesian Learning. Chapter 6: Bayesian Learning. Bayes Theorem. Roles for Bayesian Methods. CS 536: Machine Learning Littman (Wu, TA) Bayesian Learning Chapter 6: Bayesian Learning CS 536: Machine Learning Littan (Wu, TA) [Read Ch. 6, except 6.3] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theore MAP, ML hypotheses MAP learners Miniu

More information

Bayesian Learning Features of Bayesian learning methods:

Bayesian Learning Features of Bayesian learning methods: Bayesian Learning Features of Bayesian learning methods: Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct. This provides a more

More information

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning

Topics. Bayesian Learning. What is Bayesian Learning? Objectives for Bayesian Learning Topics Bayesian Learning Sattiraju Prabhakar CS898O: ML Wichita State University Objectives for Bayesian Learning Bayes Theorem and MAP Bayes Optimal Classifier Naïve Bayes Classifier An Example Classifying

More information

Machine Learning. Bayesian Learning.

Machine Learning. Bayesian Learning. Machine Learning Bayesian Learning Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg Martin.Riedmiller@uos.de

More information

Bayesian Learning Extension

Bayesian Learning Extension Bayesian Learning Extension This document will go over one of the most useful forms of statistical inference known as Baye s Rule several of the concepts that extend from it. Named after Thomas Bayes this

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information

Bayesian Learning. Bayesian Learning Criteria

Bayesian Learning. Bayesian Learning Criteria Bayesian Learning In Bayesian learning, we are interested in the probability of a hypothesis h given the dataset D. By Bayes theorem: P (h D) = P (D h)p (h) P (D) Other useful formulas to remember are:

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction

Bayesian Learning. Artificial Intelligence Programming. 15-0: Learning vs. Deduction 15-0: Learning vs. Deduction Artificial Intelligence Programming Bayesian Learning Chris Brooks Department of Computer Science University of San Francisco So far, we ve seen two types of reasoning: Deductive

More information

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others)

Text Categorization CSE 454. (Based on slides by Dan Weld, Tom Mitchell, and others) Text Categorization CSE 454 (Based on slides by Dan Weld, Tom Mitchell, and others) 1 Given: Categorization A description of an instance, x X, where X is the instance language or instance space. A fixed

More information

Bayesian Learning. Remark on Conditional Probabilities and Priors. Two Roles for Bayesian Methods. [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.

Bayesian Learning. Remark on Conditional Probabilities and Priors. Two Roles for Bayesian Methods. [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6. Machine Learning Bayesian Learning Bayes Theorem Bayesian Learning [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.6] Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses

[read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] General-to-specific ordering over hypotheses 1 CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Learning from examples General-to-specific ordering over hypotheses Version spaces and

More information

Probability Based Learning

Probability Based Learning Probability Based Learning Lecture 7, DD2431 Machine Learning J. Sullivan, A. Maki September 2013 Advantages of Probability Based Methods Work with sparse training data. More powerful than deterministic

More information

Machine Learning. Bayesian Learning. Acknowledgement Slides courtesy of Martin Riedmiller

Machine Learning. Bayesian Learning. Acknowledgement Slides courtesy of Martin Riedmiller Machine Learning Bayesian Learning Dr. Joschka Boedecker AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg jboedeck@informatik.uni-freiburg.de

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Machine Learning (CS 567)

Machine Learning (CS 567) Machine Learning (CS 567) Time: T-Th 5:00pm - 6:20pm Location: GFS 118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol Han (cheolhan@usc.edu)

More information

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables Probability, Conditional Probability & Bayes Rule A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) 2 Discrete random variables A random variable can take on one of a set of different values, each with an

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Introduction to Bayesian Learning. Machine Learning Fall 2018

Introduction to Bayesian Learning. Machine Learning Fall 2018 Introduction to Bayesian Learning Machine Learning Fall 2018 1 What we have seen so far What does it mean to learn? Mistake-driven learning Learning by counting (and bounding) number of mistakes PAC learnability

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning

CS 446 Machine Learning Fall 2016 Nov 01, Bayesian Learning CS 446 Machine Learning Fall 206 Nov 0, 206 Bayesian Learning Professor: Dan Roth Scribe: Ben Zhou, C. Cervantes Overview Bayesian Learning Naive Bayes Logistic Regression Bayesian Learning So far, we

More information

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Introduction to ML Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Why Bayesian learning? Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical

More information

Machine Learning, Midterm Exam: Spring 2009 SOLUTION

Machine Learning, Midterm Exam: Spring 2009 SOLUTION 10-601 Machine Learning, Midterm Exam: Spring 2009 SOLUTION March 4, 2009 Please put your name at the top of the table below. If you need more room to work out your answer to a question, use the back of

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/?? 13-0: Uncertainty

More information

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato Basic Probability Robert Platt Northeastern University Some images and slides are used from: 1. AIMA 2. Chris Amato (Discrete) Random variables What is a random variable? Suppose that the variable a denotes

More information

Probabilistic Classification

Probabilistic Classification Bayesian Networks Probabilistic Classification Goal: Gather Labeled Training Data Build/Learn a Probability Model Use the model to infer class labels for unlabeled data points Example: Spam Filtering...

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Statistical Learning. Philipp Koehn. 10 November 2015

Statistical Learning. Philipp Koehn. 10 November 2015 Statistical Learning Philipp Koehn 10 November 2015 Outline 1 Learning agents Inductive learning Decision tree learning Measuring learning performance Bayesian learning Maximum a posteriori and maximum

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Why Probability? It's the right way to look at the world.

Why Probability? It's the right way to look at the world. Probability Why Probability? It's the right way to look at the world. Discrete Random Variables We denote discrete random variables with capital letters. A boolean random variable may be either true or

More information

Uncertainty. Chapter 13

Uncertainty. Chapter 13 Uncertainty Chapter 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? Problems: 1. partial observability (road state, other drivers' plans, noisy

More information

13.4 INDEPENDENCE. 494 Chapter 13. Quantifying Uncertainty

13.4 INDEPENDENCE. 494 Chapter 13. Quantifying Uncertainty 494 Chapter 13. Quantifying Uncertainty table. In a realistic problem we could easily have n>100, makingo(2 n ) impractical. The full joint distribution in tabular form is just not a practical tool for

More information

PROBABILITY. Inference: constraint propagation

PROBABILITY. Inference: constraint propagation PROBABILITY Inference: constraint propagation! Use the constraints to reduce the number of legal values for a variable! Possible to find a solution without searching! Node consistency " A node is node-consistent

More information

COMP 328: Machine Learning

COMP 328: Machine Learning COMP 328: Machine Learning Lecture 2: Naive Bayes Classifiers Nevin L. Zhang Department of Computer Science and Engineering The Hong Kong University of Science and Technology Spring 2010 Nevin L. Zhang

More information

BITS F464: MACHINE LEARNING

BITS F464: MACHINE LEARNING BITS F464: MACHINE LEARNING Lecture-09: Concept Learning Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems Engineering, BITS Pilani, Rajasthan-333031 INDIA Jan

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Introduction to Bayesian Learning

Introduction to Bayesian Learning Course Information Introduction Introduction to Bayesian Learning Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Apprendimento Automatico: Fondamenti - A.A. 2016/2017 Outline

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

Expectation Maximization (EM)

Expectation Maximization (EM) Expectation Maximization (EM) The EM algorithm is used to train models involving latent variables using training data in which the latent variables are not observed (unlabeled data). This is to be contrasted

More information

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning)

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Bayes Theorem & Naïve Bayes (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Review: Bayes Theorem & Diagnosis P( a b) Posterior Likelihood Prior P( b a) P( a)

More information

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture?

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture? Bayes Rule CS789: Machine Learning and Neural Network Bayesian learning P (Y X) = P (X Y )P (Y ) P (X) Jakramate Bootkrajang Department of Computer Science Chiang Mai University P (Y ): prior belief, prior

More information

Bayesian Learning. Bayes Theorem. MAP, MLhypotheses. MAP learners. Minimum description length principle. Bayes optimal classier. Naive Bayes learner

Bayesian Learning. Bayes Theorem. MAP, MLhypotheses. MAP learners. Minimum description length principle. Bayes optimal classier. Naive Bayes learner Bayesian Learning [Read Ch. 6] [Suggested exercises: 6.1, 6.2, 6.6] Bayes Theorem MAP, MLhypotheses MAP learners Minimum description length principle Bayes optimal classier Naive Bayes learner Example:

More information

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers:

Bayesian Inference. Definitions from Probability: Naive Bayes Classifiers: Advantages and Disadvantages of Naive Bayes Classifiers: Bayesian Inference The purpose of this document is to review belief networks and naive Bayes classifiers. Definitions from Probability: Belief networks: Naive Bayes Classifiers: Advantages and Disadvantages

More information

Algorithm-Independent Learning Issues

Algorithm-Independent Learning Issues Algorithm-Independent Learning Issues Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007, Selim Aksoy Introduction We have seen many learning

More information

Uncertainty. Chapter 13

Uncertainty. Chapter 13 Uncertainty Chapter 13 Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Uncertainty Let s say you want to get to the airport in time for a flight. Let action A

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Uncertainty Chapter 13

More information

Confusion matrix. a = true positives b = false negatives c = false positives d = true negatives 1. F-measure combines Recall and Precision:

Confusion matrix. a = true positives b = false negatives c = false positives d = true negatives 1. F-measure combines Recall and Precision: Confusion matrix classifier-determined positive label classifier-determined negative label true positive a b label true negative c d label Accuracy = (a+d)/(a+b+c+d) a = true positives b = false negatives

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Statistical learning. Chapter 20, Sections 1 3 1

Statistical learning. Chapter 20, Sections 1 3 1 Statistical learning Chapter 20, Sections 1 3 Chapter 20, Sections 1 3 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Pengju XJTU 2016

Pengju XJTU 2016 Introduction to AI Chapter13 Uncertainty Pengju Ren@IAIR Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Wumpus World Environment Squares adjacent to wumpus are

More information

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality.

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality. In today s lecture COSC343: Artificial Intelligence Lecture 5: Bayesian Reasoning Conditional probability independence Curse of dimensionality Lech Szymanski Dept. of Computer Science, University of Otago

More information

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag Decision Trees Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Supervised Learning Input: labelled training data i.e., data plus desired output Assumption:

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

T Machine Learning: Basic Principles

T Machine Learning: Basic Principles Machine Learning: Basic Principles Bayesian Networks Laboratory of Computer and Information Science (CIS) Department of Computer Science and Engineering Helsinki University of Technology (TKK) Autumn 2007

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 rofessor Dan Moldovan Section 12 robabilistic Reasoning Acting under uncertainty Logical agents assume propositions are - True - False - Unknown acting under uncertainty

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Machine Learning. Bayesian Learning. Michael M. Richter. Michael M. Richter

Machine Learning. Bayesian Learning. Michael M. Richter.   Michael M. Richter Machine Learning Bayesian Learning Email: mrichter@ucalgary.ca Topic This is concept learning the probabilistic way. That means, everything that is stated is done in an exact way but not always true. That

More information

Artificial Intelligence Uncertainty

Artificial Intelligence Uncertainty Artificial Intelligence Uncertainty Ch. 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? A 25, A 60, A 3600 Uncertainty: partial observability (road

More information

Maxent Models and Discriminative Estimation

Maxent Models and Discriminative Estimation Maxent Models and Discriminative Estimation Generative vs. Discriminative models (Reading: J+M Ch6) Introduction So far we ve looked at generative models Language models, Naive Bayes But there is now much

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses

Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Relationship between Least Squares Approximation and Maximum Likelihood Hypotheses Steven Bergner, Chris Demwell Lecture notes for Cmpt 882 Machine Learning February 19, 2004 Abstract In these notes, a

More information

Bayesian networks. Chapter Chapter

Bayesian networks. Chapter Chapter Bayesian networks Chapter 14.1 3 Chapter 14.1 3 1 Outline Syntax Semantics Parameterized distributions Chapter 14.1 3 2 Bayesian networks A simple, graphical notation for conditional independence assertions

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Some Concepts of Probability (Review) Volker Tresp Summer 2018

Some Concepts of Probability (Review) Volker Tresp Summer 2018 Some Concepts of Probability (Review) Volker Tresp Summer 2018 1 Definition There are different way to define what a probability stands for Mathematically, the most rigorous definition is based on Kolmogorov

More information

1. True/False (40 points) total

1. True/False (40 points) total Name: 1 2 3 4 5 6 7 total 40 20 45 45 20 15 15 200 UMBC CMSC 671 Final Exam December 20, 2009 Please write all of your answers on this exam. The exam is closed book and has seven problems that add up to

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Y. Xiang, Inference with Uncertain Knowledge 1

Y. Xiang, Inference with Uncertain Knowledge 1 Inference with Uncertain Knowledge Objectives Why must agent use uncertain knowledge? Fundamentals of Bayesian probability Inference with full joint distributions Inference with Bayes rule Bayesian networks

More information

Lecture 2: Foundations of Concept Learning

Lecture 2: Foundations of Concept Learning Lecture 2: Foundations of Concept Learning Cognitive Systems II - Machine Learning WS 2005/2006 Part I: Basic Approaches to Concept Learning Version Space, Candidate Elimination, Inductive Bias Lecture

More information

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

Naïve Bayes. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 Naïve Bayes Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative HW 1 out today. Please start early! Office hours Chen: Wed 4pm-5pm Shih-Yang: Fri 3pm-4pm Location: Whittemore 266

More information

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science Probabilistic Reasoning Kee-Eung Kim KAIST Computer Science Outline #1 Acting under uncertainty Probabilities Inference with Probabilities Independence and Bayes Rule Bayesian networks Inference in Bayesian

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information