CS340: Bayesian concept learning. Kevin Murphy Based on Josh Tenenbaum s PhD thesis (MIT BCS 1999)

Size: px
Start display at page:

Download "CS340: Bayesian concept learning. Kevin Murphy Based on Josh Tenenbaum s PhD thesis (MIT BCS 1999)"

Transcription

1 CS340: Bayesian concept learning Kevin Murpy Based on Jos Tenenbaum s PD tesis (MIT BCS 1999)

2 Concept learning (binary classification) from positive and negative examples

3 Concept learning from positive only examples How far out sould te rectangle go? No negative examples to act as an upper bound.

4 Human learning vs macine learning/ statistics Most ML metods for learning "concepts" suc as "dog" require a large number of positive and negative examples But people can learn from small numbers of positive only examples (look at te doggy!) Tis is called "one sot learning"

5 Everyday inductive leaps How can we learn so muc about... Meanings of words Properties of natural kinds Future outcomes of a dynamic process Hidden causal properties of an object Causes of a person s action (beliefs, goals) Causal laws governing a domain... from suc limited data?

6 Te Callenge How do we generalize successfully from very limited data? Just one or a few examples Often only positive examples Pilosopy: Induction called a problem, a riddle, a paradox, a scandal, or a myt. Macine learning and statistics: Focus on generalization from many examples, bot positive and negative.

7 Te solution: Bayesian inference Bayes rule: P ( H D) = P( H ) P( D P( D) H ) Various compelling (teoretical and experimental) arguments tat one sould represent one s beliefs using probability and update tem using Bayes rule

8 Bayesian belief updating Posterior probability p( d) = Likeliood H p( d ) p( ) p( d ) p( ) Prior probability Likeliood Posterior Prior Bayesian inference = Inverse probability teory

9 Derivation of Bayes rule By te defn of conditional prob p(a=a B=b)= p(a=a,b=b) p(b=b) By cain rule p(a=a,b=b)=p(b=b A=a)p(A=a) By rule of total probability p(b=b)= a p(b=b,a=a ) Hence we get Bayes rule ifp(b=b)>0 p(a=a B=b)= p(b=b A=a)p(A=a) a p(b=b A=a)p(A=a)

10 Bayesian inference: key ingredients Hypotesis space H Prior p() Likeliood p(d ) Algoritm for computing posterior p( D) = H p d p p d p d p ) ( ) ( ) ( ) ( ) (

11 Two examples Te number game inferring abstract patterns from sequences of integers Te ealty levels game inferring rectangles from points in R 2

12 Te number game Learning task: Observe one or more examples (numbers) Judge weter oter numbers are yes or no.

13 Te number game Examples of yes numbers Hypoteses multiples of 10 even numbers??? multiples of 10 even numbers numbers near 60

14 Human performance Diffuse similarity Rule: multiples of 10 Focused similarity: numbers near 50-60

15 Human performance Diffuse similarity Rule: multiples of 10 Focused similarity: numbers near Some penomena to explain: People can generalize from just positive examples. Generalization can appear eiter graded (uncertain) or all-or-none (confident).

16 H: Hypotesis space of possible concepts: X = {x 1,..., x n }: n examples of a concept C. Evaluate ypoteses given data using Bayes rule: p() [ prior ]: domain knowledge, pre-existing biases p(x ) [ likeliood ]: statistical information in examples. p( X) [ posterior ]: degree of belief tat is te true extension of C. = H p X p p X p X p ) ( ) ( ) ( ) ( ) ( Bayesian model

17 Hypotesis space Matematical properties (~50): odd, even, square, cube, prime, multiples of small integers powers of small integers same first (or last) digit Magnitude intervals (~5000): all intervals of integers wit endpoints between 1 and 100 Hypotesis can be defined by its extension ={x:(x)=1, x=1,2,...,100}

18 Likeliood p(x ) Size principle: Smaller ypoteses receive greater likeliood, and exponentially more so as n increases. p n 1 ( ) = if x, K, 1 X size( ) = 0 if any x i x n Follows from assumption of randomly sampled examples (strong sampling). Captures te intuition of a representative sample.

19 Example of likeliood X={20,40,60} H1 = multiples of 10 = {10,20,,100} H2 = even numbers = {2,4,,100} H3 = odd numbers = {1,3,,99} P(X H1) = 1/10 * 1/10 * 1/10 p(x H2) = 1/50 * 1/50 * 1/50 P(X H3) = 0

20

21 Likeliood function 100 x 1 =1x 2 =1 Since p( x ) is a distribution over vectors of lengt n, we require tat, for all, x It is easy to see tis is true, e.g., for =even numbers, n=2 100 p(x 1,x 2 )= x 1 =1x 2 =1 p(x 1 )p(x 2 )= x 1 evenx 2 even p(x )=1 If x is fixed, we do not require p(x )=1 Hence we are free to multiply te likeliood by any constant independent of =1

22 Illustrating te size principle

23 Illustrating te size principle Data sligtly more of a coincidence under 1

24 Illustrating te size principle Data muc more of a coincidence under 1

CS540 Machine learning L9 Bayesian statistics

CS540 Machine learning L9 Bayesian statistics CS540 Machine learning L9 Bayesian statistics 1 Last time Naïve Bayes Beta-Bernoulli 2 Outline Bayesian concept learning Beta-Bernoulli model (review) Dirichlet-multinomial model Credible intervals 3 Bayesian

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

Outline. Limits of Bayesian classification Bayesian concept learning Probabilistic models for unsupervised and semi-supervised category learning

Outline. Limits of Bayesian classification Bayesian concept learning Probabilistic models for unsupervised and semi-supervised category learning Outline Limits of Bayesian classification Bayesian concept learning Probabilistic models for unsupervised and semi-supervised category learning Limitations Is categorization just discrimination among mutually

More information

Basics of Statistical Estimation

Basics of Statistical Estimation Basics of Statistical Estimation Doug Downey, Nortwestern EECS 395/495, Spring 206 (several illustrations from P. Domingos, University of Wasington CSE Bayes Rule P(A B = P(B A P(A / P(B Example: P(symptom

More information

Bayesian Concept Learning

Bayesian Concept Learning Learning from positive and negative examples Bayesian Concept Learning Chen Yu Indiana University With both positive and negative examples, it is easy to define a boundary to separate these two. Just with

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab To appear in: Advances in Neural Information Processing Systems 9, eds. M. C. Mozer, M. I. Jordan and T. Petsce. MIT Press, 997 Bayesian Model Comparison by Monte Carlo Caining David Barber D.Barber@aston.ac.uk

More information

Minimizing D(Q,P) def = Q(h)

Minimizing D(Q,P) def = Q(h) Inference Lecture 20: Variational Metods Kevin Murpy 29 November 2004 Inference means computing P( i v), were are te idden variables v are te visible variables. For discrete (eg binary) idden nodes, exact

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks

Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Reading Group on Deep Learning Session 4 Unsupervised Neural Networks Jakob Verbeek & Daan Wynen 206-09-22 Jakob Verbeek & Daan Wynen Unsupervised Neural Networks Outline Autoencoders Restricted) Boltzmann

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Homework 1 Due: Wednesday, September 28, 2016

Homework 1 Due: Wednesday, September 28, 2016 0-704 Information Processing and Learning Fall 06 Homework Due: Wednesday, September 8, 06 Notes: For positive integers k, [k] := {,..., k} denotes te set of te first k positive integers. Wen p and Y q

More information

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering Outline Learning from eamples CSCE 78/878 Lecture : Concept Learning and te General-to-Specific Ordering Stepen D. Scott (Adapted from Tom Mitcell s slides) General-to-specific ordering over ypoteses Version

More information

Digital Filter Structures

Digital Filter Structures Digital Filter Structures Te convolution sum description of an LTI discrete-time system can, in principle, be used to implement te system For an IIR finite-dimensional system tis approac is not practical

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Probabilistic Graphical Models Homework 1: Due January 29, 2014 at 4 pm

Probabilistic Graphical Models Homework 1: Due January 29, 2014 at 4 pm Probabilistic Grapical Models 10-708 Homework 1: Due January 29, 2014 at 4 pm Directions. Tis omework assignment covers te material presented in Lectures 1-3. You must complete all four problems to obtain

More information

Complexity of Decoding Positive-Rate Primitive Reed-Solomon Codes

Complexity of Decoding Positive-Rate Primitive Reed-Solomon Codes 1 Complexity of Decoding Positive-Rate Primitive Reed-Solomon Codes Qi Ceng and Daqing Wan Abstract It as been proved tat te maximum likeliood decoding problem of Reed-Solomon codes is NP-ard. However,

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Spike train entropy-rate estimation using hierarchical Dirichlet process priors

Spike train entropy-rate estimation using hierarchical Dirichlet process priors publised in: Advances in Neural Information Processing Systems 26 (23), 276 284. Spike train entropy-rate estimation using ierarcical Diriclet process priors Karin Knudson Department of Matematics kknudson@mat.utexas.edu

More information

Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy

Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy Deep Belief Network Training Improvement Using Elite Samples Minimizing Free Energy Moammad Ali Keyvanrad a, Moammad Medi Homayounpour a a Laboratory for Intelligent Multimedia Processing (LIMP), Computer

More information

Regularized Regression

Regularized Regression Regularized Regression David M. Blei Columbia University December 5, 205 Modern regression problems are ig dimensional, wic means tat te number of covariates p is large. In practice statisticians regularize

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

b 1 A = bh h r V = pr

b 1 A = bh h r V = pr . Te use of a calculator is not permitted.. All variables and expressions used represent real numbers unless oterwise indicated.. Figures provided in tis test are drawn to scale unless oterwise indicated..

More information

Haplotyping. Biostatistics 666

Haplotyping. Biostatistics 666 Haplotyping Biostatistics 666 Previously Introduction to te E-M algoritm Approac for likeliood optimization Examples related to gene counting Allele frequency estimation recessive disorder Allele frequency

More information

Mass Lumping for Constant Density Acoustics

Mass Lumping for Constant Density Acoustics Lumping 1 Mass Lumping for Constant Density Acoustics William W. Symes ABSTRACT Mass lumping provides an avenue for efficient time-stepping of time-dependent problems wit conforming finite element spatial

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY APPLICATIONES MATHEMATICAE 36, (29), pp. 2 Zbigniew Ciesielski (Sopot) Ryszard Zieliński (Warszawa) POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY Abstract. Dvoretzky

More information

FloatBoost Learning for Classification

FloatBoost Learning for Classification loatboost Learning for Classification Stan Z. Li Microsoft Researc Asia Beijing, Cina Heung-Yeung Sum Microsoft Researc Asia Beijing, Cina ZenQiu Zang Institute of Automation CAS, Beijing, Cina HongJiang

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Matematics and Computer Science. ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Tuesday January 9 008, 9:00-:00

More information

EDML: A Method for Learning Parameters in Bayesian Networks

EDML: A Method for Learning Parameters in Bayesian Networks : A Metod for Learning Parameters in Bayesian Networks Artur Coi, Kaled S. Refaat and Adnan Darwice Computer Science Department University of California, Los Angeles {aycoi, krefaat, darwice}@cs.ucla.edu

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

Complexity of Decoding Positive-Rate Reed-Solomon Codes

Complexity of Decoding Positive-Rate Reed-Solomon Codes Complexity of Decoding Positive-Rate Reed-Solomon Codes Qi Ceng 1 and Daqing Wan 1 Scool of Computer Science Te University of Oklaoma Norman, OK73019 Email: qceng@cs.ou.edu Department of Matematics University

More information

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers.

Exponential and logarithmic functions (pp ) () Supplement October 14, / 1. a and b positive real numbers and x and y real numbers. MA123, Supplement Exponential and logaritmic functions pp. 315-319) Capter s Goal: Review te properties of exponential and logaritmic functions. Learn ow to differentiate exponential and logaritmic functions.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Frequentist Statistics and Hypothesis Testing Spring

Frequentist Statistics and Hypothesis Testing Spring Frequentist Statistics and Hypothesis Testing 18.05 Spring 2018 http://xkcd.com/539/ Agenda Introduction to the frequentist way of life. What is a statistic? NHST ingredients; rejection regions Simple

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21

Discrete Mathematics and Probability Theory Fall 2015 Lecture 21 CS 70 Discrete Mathematics and Probability Theory Fall 205 Lecture 2 Inference In this note we revisit the problem of inference: Given some data or observations from the world, what can we infer about

More information

Solution Set #1

Solution Set #1 05-738-0083 Solution Set # i. Evaluate δ [SINC []] = δ sin[π] π Recall relation for Dirac delta function wit functional argument (Fourier Metods, δ [g []] = δ [ 0] (6.38) dg =0 Te SINC function as zeros

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

Section 3.5 Geometric and Scientific Applications

Section 3.5 Geometric and Scientific Applications Section. Geometric and Scientific Applications 6 Section. Geometric and Scientific Applications.. I Prt I I 49.9 8700.08.Note: 8 monts. years Te interest is $49.9. I Prt 4 40 4 900r 4 r 900 0.06 r r Te

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Structure learning in human causal induction

Structure learning in human causal induction Structure learning in human causal induction Joshua B. Tenenbaum & Thomas L. Griffiths Department of Psychology Stanford University, Stanford, CA 94305 jbt,gruffydd @psych.stanford.edu Abstract We use

More information

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds.

Flavius Guiaş. X(t + h) = X(t) + F (X(s)) ds. Numerical solvers for large systems of ordinary differential equations based on te stocastic direct simulation metod improved by te and Runge Kutta principles Flavius Guiaş Abstract We present a numerical

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem

Improved Algorithms for Largest Cardinality 2-Interval Pattern Problem Journal of Combinatorial Optimization manuscript No. (will be inserted by te editor) Improved Algoritms for Largest Cardinality 2-Interval Pattern Problem Erdong Cen, Linji Yang, Hao Yuan Department of

More information

Max-Margin Min-Entropy Models

Max-Margin Min-Entropy Models Kevin Miller M. Pawan Kumar Ben Packer Stanford University Ecole Centrale Paris & INRIA Saclay Stanford University Danny Goodman Stanford University Dapne Koller Stanford University Abstract We propose

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Handling Missing Data on Asymmetric Distribution

Handling Missing Data on Asymmetric Distribution International Matematical Forum, Vol. 8, 03, no. 4, 53-65 Handling Missing Data on Asymmetric Distribution Amad M. H. Al-Kazale Department of Matematics, Faculty of Science Al-albayt University, Al-Mafraq-Jordan

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Modelling evolution in structured populations involving multiplayer interactions

Modelling evolution in structured populations involving multiplayer interactions Modelling evolution in structured populations involving multiplayer interactions Mark Broom City University London Complex Systems: Modelling, Emergence and Control City University London London June 8-9

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

RightStart Mathematics

RightStart Mathematics Most recent update: January 7, 2019 RigtStart Matematics Corrections and Updates for Level F/Grade 5 Lessons and Workseets, second edition LESSON / WORKSHEET CHANGE DATE CORRECTION OR UPDATE Lesson 7 04/18/2018

More information

Basic Probability and Statistics

Basic Probability and Statistics Basic Probability and Statistics Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Jerry Zhu, Mark Craven] slide 1 Reasoning with Uncertainty

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Characterization of reducible hexagons and fast decomposition of elementary benzenoid graphs

Characterization of reducible hexagons and fast decomposition of elementary benzenoid graphs Discrete Applied Matematics 156 (2008) 1711 1724 www.elsevier.com/locate/dam Caracterization of reducible exagons and fast decomposition of elementary benzenoid graps Andrej Taranenko, Aleksander Vesel

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

An Analysis of Locally Defined Principal Curves and Surfaces

An Analysis of Locally Defined Principal Curves and Surfaces An Analysis of Locally Defined Principal Curves and Surfaces James McQueen Department of Statistics, University of Wasington Seattle, WA, 98195, USA Abstract Principal curves are generally defined as smoot

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Efficient algorithms for for clone items detection

Efficient algorithms for for clone items detection Efficient algoritms for for clone items detection Raoul Medina, Caroline Noyer, and Olivier Raynaud Raoul Medina, Caroline Noyer and Olivier Raynaud LIMOS - Université Blaise Pascal, Campus universitaire

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

MATH 111 CHAPTER 2 (sec )

MATH 111 CHAPTER 2 (sec ) MATH CHAPTER (sec -0) Terms to know: function, te domain and range of te function, vertical line test, even and odd functions, rational power function, vertical and orizontal sifts of a function, reflection

More information

Notes on Neural Networks

Notes on Neural Networks Artificial neurons otes on eural etwors Paulo Eduardo Rauber 205 Consider te data set D {(x i y i ) i { n} x i R m y i R d } Te tas of supervised learning consists on finding a function f : R m R d tat

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

De-Coupler Design for an Interacting Tanks System

De-Coupler Design for an Interacting Tanks System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 3 (Sep. - Oct. 2013), PP 77-81 De-Coupler Design for an Interacting Tanks System

More information

On the Identifiability of the Post-Nonlinear Causal Model

On the Identifiability of the Post-Nonlinear Causal Model UAI 9 ZHANG & HYVARINEN 647 On te Identifiability of te Post-Nonlinear Causal Model Kun Zang Dept. of Computer Science and HIIT University of Helsinki Finland Aapo Hyvärinen Dept. of Computer Science,

More information

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein

THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS. L. Trautmann, R. Rabenstein Worksop on Transforms and Filter Banks (WTFB),Brandenburg, Germany, Marc 999 THE STURM-LIOUVILLE-TRANSFORMATION FOR THE SOLUTION OF VECTOR PARTIAL DIFFERENTIAL EQUATIONS L. Trautmann, R. Rabenstein Lerstul

More information

2011 Fermat Contest (Grade 11)

2011 Fermat Contest (Grade 11) Te CENTRE for EDUCATION in MATHEMATICS and COMPUTING 011 Fermat Contest (Grade 11) Tursday, February 4, 011 Solutions 010 Centre for Education in Matematics and Computing 011 Fermat Contest Solutions Page

More information

Online Learning: Bandit Setting

Online Learning: Bandit Setting Online Learning: Bandit Setting Daniel asabi Summer 04 Last Update: October 0, 06 Introduction [TODO Bandits. Stocastic setting Suppose tere exists unknown distributions ν,..., ν, suc tat te loss at eac

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60)

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60) First Name: OSU Number: Last Name: Signature: OKLAHOMA STATE UNIVERSITY Department of Matematics MATH 2144 (Calculus I) Instructor: Dr. Matias Sculze MIDTERM 1 September 17, 2008 Duration: 50 minutes No

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information