Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Size: px
Start display at page:

Download "Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1"

Transcription

1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only. In predictor-corrector metods wic we will discuss now, is also known as multi-step metods. To compute te value of y at t n+, we must know te solution y at t n, t n-, t n-2, etc. Tus, a predictor formula is used to predict te value of y at t n+ and ten a corrector formula is used to improve te value of y n+. Let us consider an IVP dy f (, t y), y( tn) yn dt = = Using simple Euler s and modified Euler s metod, we can write down a simple predictor-corrector pair (P C) as (0) P: yn+ = yn + f( tn, y ) n ( (0) C: yn+ = yn + f( tn, yn) + f( tn+, yn+ 2 Here, y n+ ( is te first corrected value of yn+. Te corrector formula may be used iteratively as defined below: ( r) ( r yn+ = yn + f( tn, yn) + f( tn+, yn+ ), r =,2, 2 Te iteration is terminated wen two successive iterates agree to te desired accuracy In tis pair, to extrapolate te value of y, we ave approximated te solution curve in n+ te interval (t n, t n+ ) by a straigt line passing troug (t n, y n ) and (t n+, y n+ ). Te accuracy of te predictor formula can be improved by considering a quadratic curve troug te equally spaced points (t n-, y n- ), (t n, y n ), (t n+, y n+ ) Suppose we fit a quadratic curve of te form y = a+ b( t tn + c( t tn)( t tn were a, b, c are constants to be determined As te curve passes troug (t, y ) and (t, y ) and satisfies n- n- n n dy = f ( tn, yn) dt ( tn, yn) We obtain yn = a, yn = a+ b= yn + b Terefore yn yn b = and Copyrigt Virtual University of Pakistan

2 Numerical Analysis MTH60 dy = f( tn, yn) = { b+ c[( t tn ) + ( t tn)]} ( t n, y n ) dt ( tn, yn) Wic give f ( tn, yn) = b+ c( tn tn = b+ c f( tn, yn) ( yn yn or c = 2 Substituting tese values of a, b and c into te quadratic equation, we get yn+ = yn + 2( yn yn + 2[ f( tn, yn) ( yn yn ] Tat is yn+ = yn + 2 f( tn, yn) Tus, instead of considering te P-C pair, we may consider te P-C pair given by P: yn+ = yn + 2 f( tn, yn) C: yn+ = yn + [ f( tn, yn) + f( tn+, yn+ ] 2 Te essential difference between tem is, te one given above is more accurate However, tis one can not be used to predict y for a given IVP, because its use n+ require te knowledge of past two points. In suc a situation, a R-K metod is generally used to start te predictor metod. Milne s Metod It is also a multi-step metod were we assume tat te solution to te given IVP is known at te past four equally spaced point t 0, t, t 2 and t. To derive Milne s predictor-corrector pair, let us consider a typical IVP dy f (, t y), y( t0) y0 dt = = On integration between te limits t and t, we get 0 t dy t dt = f (, t y ) dt t0 dt t0 t y y f (, t y ) dt 0 = t0 But we know from Newton s forward difference formula ss ( 2 ss ( ( s 2) f(, t y) = f0 + s f0 + f0 + f t t0 were s=, t = t0 + s t ss ( 2 ss ( ( s 2) y = y0 + t f0 + s f0 + f0 + f ss ( ( s 2)( s ) + f0 + dt 2 Now, by canging te variable of integration (from t to s), te limits of integration also canges (from 0 to ), and tus te above expression becomes Copyrigt Virtual University of Pakistan 2

3 Numerical Analysis MTH60 ss ( 2 ss ( ( s 2) y = y f + s f + f + f 2 6 ss ( ( s 2)( s ) + f0 + ds 2 wic simplifies to y y0 = + f0 + 8 f0 + f0 + f0 + f0 90 Substituting te differences 2 f0 = f f0, f0 = f2 2 f+ f0, It can be furter simplified to 28 y = y0 + (2 f f2 + 2 f) + f0 90 Alternatively, it can also be written as 28 y = y0 + (2y y y ) + y 0 90 Tis is known as Milne s predictor formula. Similarly, integrating te original over te interval t to t or s = 0 to 2 and repeating te 0 2 above steps, we get y2 = y0 + ( y 0 + y + y 2) y 0 90 wic is known as Milne s corrector formula. In general, Milne s predictor-corrector pair can be written as P: yn+ = yn + (2y n 2 y n + 2 y n) C: yn+ = yn + ( y n + y n + y n+ From tese equations, we observe tat te magnitude of te truncation error in / corrector formula is /90 y 0 wile te truncation error in predictor formula is / 28/ 90 y 0 Tus: TE in, c-formula is less tan te TE in p-formula. In order to apply tis P C metod to solve numerically any initial value problem, we first predict te value of y by means of predictor formula, were derivatives are n+ computed using te given differential equation itself. Using te predicted value y, we calculate te derivative y from te given n+ n+ differential equation and ten we use te corrector formula of te pair to ave te corrected value of y Tis in turn may be used to obtain improved value of y by n+ n+ using corrector again. Tis in turn may be used to obtain improved value of y n+ by using te corrector again. Tis cycle is repeated until we acieve te required accuracy. Example Copyrigt Virtual University of Pakistan

4 Numerical Analysis MTH60 dy Find y (2.0) if y ( t ) is te solution of ( t y ) dt = 2 + y (0) = 2, y (0.5) = 2.66, y (.0) =.595 and y(.5) =.968 Use Milne s P-C metod. Solution Taking t = 0.0, t = 0.5, t =.0, t =.5 y, y, y and y, are given, we ave to compute y, te solution of te given differential equation corresponding to t =2.0 Te Milne s P C pair is given as P: yn+ = yn + (2y n 2 y n + 2 y n) C: yn+ = yn + ( y n + y n + y n+ From te given differential equation, y = ( t+ y)/2 We ave t+ y y = = =.5680 t2 + y y 2 = = = t + y y = = =.20 Now, using predictor formula, we compute y = y0 + (2 y y y ) (0.5) = 2 + [ 2(.5680) (.20) ] = Using tis predicted value, we sall compute te improved value of y from corrector formula y = y2 + ( y 2 + y + y ) Using te available predicted value y and te initial values, we compute t + y y = = =.55 t + y y = = =.20 and y 2 = Tus, te first corrected value of y is given by Copyrigt Virtual University of Pakistan

5 Numerical Analysis MTH60 ( 0.5 y = [ (.2) +.55] = Suppose, we apply te corrector formula again, ten we ave (2) ( y = y2 + ( 2 ( ) y + y + y = (.2) = Finally, y (2.0) = y = Example dy Tabulate te solution of = t+ y, y(0) = in te interval [0, 0.] wit = 0., dt using Milne s P-C metod. Solution Milne s P-C metod demand te solution at first four points t, t, t and t. As it is not a 0 2 self starting metod, we sall use R-K metod of fourt order to get te required solution and ten switc over to Milne s P C metod. Tus, taking t 0 = 0, t = 0., t 2 = 0.2, t = 0. we get te corresponding y values using R K metod of t order; tat is y =, y =.0, y =.228 and y = (Reference Lecture 8) Now we compute y = t+ y = =.20 y 2 = t2 + y2 = =.28 y = t+ y = =.6997 Using Milne s predictor formula P: y = y0 + (2y y y ) (0.5) = + [ 2(.20) (.6997 ] =.586 Before using corrector formula, we compute y ( ) = t + y predicted value = =.986 Finally, using Milne s corrector formula, we compute Copyrigt Virtual University of Pakistan 5

6 Numerical Analysis MTH60 C: y = y2 + ( y + y + y 2) 0. = ( ) =.586 Te required solution is: t y Example Using Milne s Predictor-Corrector Formula find f(0.) from Ordinary Differential Equation / y = x y ; y(0) = ; = 0. wit te elp of following table. X Y Solution: Here, x = 0, x = 0., x = 0.2, x = 0., x = y ' = x y = = y ' = x y = = y ' = x y = = 0.86 Now, using Predictor Formula y = y0 + 2 y' y2' + 2 y' *0. y = + (-.95 y = ( ) Copyrigt Virtual University of Pakistan 6

7 Numerical Analysis MTH60 Using te predicted value, we sall now compute te corrected value as; y = y + y + y + y ( ' ' ') Now, y ' = x y = = Putting te values,int o te Corrector Formula; y = y2 + ( y2' + y' + y' ) 0. y = * y = ( ( )- ) y = Ans. Copyrigt Virtual University of Pakistan 7

8 Numerical Analysis MTH60 Copyrigt Virtual University of Pakistan 8

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

MA2264 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL. By Dr.T.Kulandaivel Department of Applied Mathematics SVCE

MA2264 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL. By Dr.T.Kulandaivel Department of Applied Mathematics SVCE MA64 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS B Dr.T.Kulandaivel Department of Applied Matematics SVCE Numerical ordinar differential equations is te part

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Matematics and Computer Science. ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Tuesday January 9 008, 9:00-:00

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t))

Runge-Kutta methods. With orders of Taylor methods yet without derivatives of f (t, y(t)) Runge-Kutta metods Wit orders of Taylor metods yet witout derivatives of f (t, y(t)) First order Taylor expansion in two variables Teorem: Suppose tat f (t, y) and all its partial derivatives are continuous

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2

1 1. Rationalize the denominator and fully simplify the radical expression 3 3. Solution: = 1 = 3 3 = 2 MTH - Spring 04 Exam Review (Solutions) Exam : February 5t 6:00-7:0 Tis exam review contains questions similar to tose you sould expect to see on Exam. Te questions included in tis review, owever, are

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly Global Journal of Pure and Applied Matematics. ISSN 0973-768 Volume 2, Number 2 (206), pp. 59-535 Researc India Publications ttp://www.ripublication.com/gjpam.tm Two Step Hybrid Block Metod wit Two Generalized

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits.

1. State whether the function is an exponential growth or exponential decay, and describe its end behaviour using limits. Questions 1. State weter te function is an exponential growt or exponential decay, and describe its end beaviour using its. (a) f(x) = 3 2x (b) f(x) = 0.5 x (c) f(x) = e (d) f(x) = ( ) x 1 4 2. Matc te

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

SKP Engineering College

SKP Engineering College S.K.P. Engineering College, Tiruvannamalai SKP Engineering College Tiruvannamalai 666 A Course Material on By S.Danasekar Assistant Professor Department of Matematics S.K.P. Engineering College, Tiruvannamalai

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

The Priestley-Chao Estimator

The Priestley-Chao Estimator Te Priestley-Cao Estimator In tis section we will consider te Pristley-Cao estimator of te unknown regression function. It is assumed tat we ave a sample of observations (Y i, x i ), i = 1,..., n wic are

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Differential equations. Differential equations

Differential equations. Differential equations Differential equations A differential equation (DE) describes ow a quantity canges (as a function of time, position, ) d - A ball dropped from a building: t gt () dt d S qx - Uniformly loaded beam: wx

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

= h. Geometrically this quantity represents the slope of the secant line connecting the points

= h. Geometrically this quantity represents the slope of the secant line connecting the points Section 3.7: Rates of Cange in te Natural and Social Sciences Recall: Average rate of cange: y y y ) ) ), ere Geometrically tis quantity represents te slope of te secant line connecting te points, f (

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

Exercises Copyright Houghton Mifflin Company. All rights reserved. EXERCISES {x 0 x < 6} 3. {x x 2} 2

Exercises Copyright Houghton Mifflin Company. All rights reserved. EXERCISES {x 0 x < 6} 3. {x x 2} 2 Eercises. CHAPTER Functions EXERCISES.. { 0 < 6}. a. Since and m, ten y, te cange in y, is y m. { } 7. For (, ) and (, ), te slope is Since and m, ten y, te cange in y, is y m 0 9. For (, 0) and (, ),

More information

Name: Sept 21, 2017 Page 1 of 1

Name: Sept 21, 2017 Page 1 of 1 MATH 111 07 (Kunkle), Eam 1 100 pts, 75 minutes No notes, books, electronic devices, or outside materials of an kind. Read eac problem carefull and simplif our answers. Name: Sept 21, 2017 Page 1 of 1

More information

Differential Equations

Differential Equations Pysics-based simulation xi Differential Equations xi+1 xi xi+1 xi + x x Pysics-based simulation xi Wat is a differential equation? Differential equations describe te relation between an unknown function

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

lecture 35: Linear Multistep Mehods: Truncation Error

lecture 35: Linear Multistep Mehods: Truncation Error 88 lecture 5: Linear Multistep Meods: Truncation Error 5.5 Linear ultistep etods One-step etods construct an approxiate solution x k+ x(t k+ ) using only one previous approxiation, x k. Tis approac enoys

More information

The algebra of functions Section 2.2

The algebra of functions Section 2.2 Te algebra of functions Section 2.2 f(a+) f(a) Q. Suppose f (x) = 2x 2 x + 1. Find and simplify. Soln: f (a + ) f (a) = [ 2(a + ) 2 ( a + ) + 1] [ 2a 2 a + 1 ] = [ 2(a 2 + 2 + 2a) a + 1] 2a 2 + a 1 = 2a

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points

Simpson s 1/3 Rule Simpson s 1/3 rule assumes 3 equispaced data/interpolation/integration points CE 05 - Lecture 5 LECTURE 5 UMERICAL ITEGRATIO COTIUED Simpson s / Rule Simpson s / rule assumes equispaced data/interpolation/integration points Te integration rule is based on approximating fx using

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Sample Problems for Exam II

Sample Problems for Exam II Sample Problems for Exam 1. Te saft below as lengt L, Torsional stiffness GJ and torque T is applied at point C, wic is at a distance of 0.6L from te left (point ). Use Castigliano teorem to Calculate

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

These errors are made from replacing an infinite process by finite one.

These errors are made from replacing an infinite process by finite one. Introduction :- Tis course examines problems tat can be solved by metods of approximation, tecniques we call numerical metods. We begin by considering some of te matematical and computational topics tat

More information

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007

MTH 119 Pre Calculus I Essex County College Division of Mathematics Sample Review Questions 1 Created April 17, 2007 MTH 9 Pre Calculus I Essex County College Division of Matematics Sample Review Questions Created April 7, 007 At Essex County College you sould be prepared to sow all work clearly and in order, ending

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information