The Electron in a Potential

Size: px
Start display at page:

Download "The Electron in a Potential"

Transcription

1 Te Electron in a Potential Edwin F. Taylor July, Stopwatc rotation for an electron in a potential For a poton we found tat te and of te quantum stopwatc rotates wit frequency f given by te equation: f E = (for te poton -- zero mass) (1) Tis is te frequency wit wic te stopwatc and rotates (rotations/second) as te poton explores alternative pats. For te free electron (te electron free of any forces or potentials) we postulated tat te and of te quantum cloc rotates at te following rate: f KE = (for te free electron) (2) Here KE is te inetic energy of te electron. Now suppose te electron as potential energy, possibly due to te electric attraction of a positively-carge nucleus. How do we combine inetic and potential energy to find a frequency for te stopwatc rotation wen an electron explores a pat in tis potential? We are tempted to use equation (2) also for tis case, wit inetic energy KE replaced by total energy E equal to inetic energy plus potential energy: E = KE + PE. WRONG! Wy wrong? Because if we sould tae f = E/ for te electron, substituting te total energy in tis formula, te minimum number of rotations would favor pats in wic PE, te potential energy, is low to mae E = KE + PE low and ence rotation rate f low. Between baseball pitcer and catcer (playing in a vacuum!), te trown electron would drop in eigt (lowering its PE and slowing its quantum cloc) and ten rise up again to eep its fixed appointment wit te catcer s mitt. By going down and ten rising, te pitced electron decreases its PE and minimizes te number of rotations of its quantum cloc between pitcer and catcer. But tis is absurd. Antigravity? Impossible! Wit tis WRONG coice for frequency, quantum pysics would not go over smootly into classical mecanics as te mass of te trown particle increases from tat of an electron to tat of a baseball. So it is WRONG to use te SUM of KE and PE in calculating te rate of rotation of te stopwatc as te electron explores pats. 43

2 But we now ow a baseball flies. We now te quantity tat is minimized in te classical pat. Te baseball moves so as to minimize te ACTION between fixed events of pitcing and catcing as described in te Feynman lecture on te Principle of Least Action, Lecture 19 of Volume II of Te Feynman Lectures in Pysics. and in te earlier section of tis manual titled Te Principle of Least Action. ALMOST ALL of te classical mecanics for a single particle can be derived from te Principle of Least Action. And tis principle involves summing up over time te contributions from te expression KE PE, wit a MINUS sign before te potential energy PE. Te quantum result, it turns out, simply adapts te ting tat we sum over time to get te classical action, namely KE PE. Te rate of rotation (in cycles/second) of te stopwatc and for an electron exploring a pat (for speeds muc less tan te speed of ligt) is: f KE PE = (for te electron) (3) We find te number of rotations along a worldline by a summing process: During a small increment of time dt, te number of rotations (or fraction of a rotation) is f dt = (KE - PE) dt/. We sum tis for all time increments along te worldline: rotations along a = worldline along ( KE PE ) dt worldline (4) But te numerator on te rigt side of (4) is simply te action S (defined in equation (1) in te preceding section on te Principle of Least Action). Hence te number of rotations along a worldline is just: rotations along a = worldline Action along tat worldline = S (for te electron) (5) Looing at equations (4) and (5), we see tat te number of revolutions between pitcer and catcer can be made minimum by increasing PE in order to reduce te frequency f of te quantum cloc since PE enters tese equations wit a minus sign. Increase PE by letting te pat rise. But it cannot rise too far, because ten KE must increase so tat te electron can rus along te longer pat to eep te fixed appointment wit te catcer s mitt. [Bot events pitc (emit) and catc (detect) are fixed in quantum as well as in classical descriptions.] Te actual pat is a 44

3 compromise between increasing PE (tat lowers te frequency f) and increasing KE (tat raises f). In a vacuum, ten, te greatest contribution to te resulting arrow for detection of te electron comes from trajectories near te classical pat of parabolic motion in a uniform vertical gravitational field. Wit increasing mass, te pat of minimum quantum rotations for te electron goes over smootly to te pat of minimum classical action for te baseball. We ave found a crucial connection between classical mecanics and quantum mecanics. Actually, we ave found someting vastly more important: We ave found te quantum mecanical basis for most of classical mecanics. Classical mecanics as no answer to te question, WHY does a particle moving in a potential (including zero potential) follow te pat predicted by te Principle of Least Action? Te answer true for bot quantum and classical worlds is, Because tis pat minimizes te number of rotations of te quantum cloc. So wat is te DIFFERENCE between te quantum world and te classical world? Te answer is embodied in Planc s constant in te denominator of te rigt-and sides of equations (3) tru (5) along wit te mass m of te particle idden in te numerator. Te electron as te smallest mass of any stable particle tat we now. A small mass in te numerator in (3) balances te tiny value of in te denominator. Te resulting frequency f (dividing numerator by denominator) can be low enoug so tat total cloc rotations along nearby pats are not too different. A sligtly different pat can ave a total rotation of, say, one-eigt turn more tan te pat for minimum total rotation. Ten to calculate te resulting arrow, you must tae account of tis nearby pat, along wit oters. Te electron sniffs out a fuzzy range of pats around te minimum-totalrotation pat; tis is wat we mean by quantum beavior! In contrast, for a large mass in te numerators in equations (3) tru (5) te mass of a baseball, for example te tiny value of in te denominator maes te frequency f extremely rapid. In tis case, a sligtly different pat will ave a total rotation undreds of turns more tan te pat for minimum total rotation. In tis case contributions from all nearby pats tend to cancel out. In te limit of large mass, only te single pat of minimum rotation needs to be taen into account, te pat predicted by te Principle of Least Action. Te baseball appears to follow a single pat; tat is wat we mean by classical beavior! Te electron can also explore all pats inside an atom or molecule. In tis case te nuclear carge provides potential energy tat influences te rotation rate of te electron cloc different rotation rates for different distances from te nucleus. Tis rotation rate canges as te electron explores regions of different potential PE 45

4 along eac pat. Tis simple story is complicated by spin and by te presence of oter electrons in te atom or molecule. You didn t really tin tat we would also cover all of cemistry, did you? 3. Tis Is a Derivation? Te above story line is NOT a derivation. Tere is no nown derivation of te fundamental laws of quantum mecanics. Certainly no derivation can come from classical pysics! No fundamental derivation appears possible. Neverteless, tere is powerful evidence for te correctness of te derivation. Long ago Feynman 1 sowed tat tis stopwatc way of tining leads rigorously to te usual macinery of quantum pysics expressed in te so-called Scroedinger equation. And te Scroedinger equation is te basis for our predictions about all non-relativistic quantum structures and experiments, including cemical bonding and te periodic table. Notice two limitations of te classical Principle of Least Action tat turn out to be advantages wen tis principle is applied to quantum mecanics: FIRST, te Principle of Least Action requires tat we fix in bot space time te two events of pitc and catc. But tis is an advantage in quantum mecanics, were we want to coose te event of emission and also coose te time and place were we will try to detect te particle. So te Principle of Least Action limits te description of motion to just tose conditions we want for our quantum description. SECOND, te Principle of Least Action does not apply classically wen tere is friction. You must be able to define a potential, wic you cannot do if friction is all te time robbing your moving stone of energy. But tis is OK in quantum mecanics, because tere is no friction at te atomic level: potential plus inetic energy is conserved rigorously in non-relativistic quantum pysics. Once again, te Principle of Least Action limits attention to just tose conditions we want for our quantum description. 4. Terminology Te function KE PE for a low-velocity particle is called te Lagrangian and given te symbol L (sometimes a script L). So we ave: L = KE PE (6) and from equation (3): 46

5 f = KE PE L = (electrons & oter particles wit mass) (7) Tose wo would lie to measure cloc rotation rate ω in radians per second instead of f in revolutions per second can use te usual relation between te two: ω π = L π = L 2 f 2 2π = L (electrons, etc.) (8) Here, written as wit a little diagonal strie across it, is pronounced -bar and stands for te expression: 2π So now we now ow fast te quantum cloc rotates for te electron. (9) Appendix: Some Formalism Leading Toward te Wave Function We try to avoid formalism. If matematics irritates and frustrates you, sip te following. But some people lie te clean condensation tat matematics can bring. And a big payoff in tis case is an understanding of te quantum mecanical wave function. Feynman develops a set of rules for reconing te final arrow at a detector. Te probability tat te detector will record te particle is proportional to te square of te lengt of tis final arrow. Te rules can be placed in a ierarcy derived from pages 37 and 61 of QED: GRAND PRINCIPLE: Te probability of an event is proportional to te square of te lengt of a resulting arrow, tis arrow called te quantum amplitude. (Feynman calls it by te confusing name probability amplitude. ) RULE FOR ALTERNATIVE PATHS: If an event can appen in alternative ways, draw an arrow for eac way, ten combine ( add ) te arrows by ooing te ead of one to te tail of te next. Te final arrow is ten drawn from te tail of te first arrow to te ead of te last arrow. Tis final arrow is te resulting arrow used in te GRAND PRINCIPLE RULE FOR SEQUENTIAL STEPS IN EACH PATH: Wen eac way tat an event can appen involves a series of steps in sequence, tin of eac step as a srin and turn of te little arrow. To find te arrow for tat complete pat, multiply te srins for all steps in te pat and add te angle canges (turns) for all steps in te pat. Te arrow 47

6 for tat complete pat is added to oters from ALTERNATIVE PATHS to give te resulting arrow used in te GRAND PRINCIPLE. Is tere a matematical quantity tat beaves in tese ways? First, one must be able to ADD suc quantities as arrows are added. Second, MULTIPLICATION of suc quantities must mean finding te product of teir magnitudes and te sum of teir angles of rotation. Suc a matematical quantity is te complex number, wic can be expressed in two forms tat are entirely equivalent: iθ Ae Acos θ + i A sin θ (10) Here e = is te base of natural logaritms and i 1 is te basis of imaginary numbers. Complex numbers combine real and imaginary numbers. REFERENCE: Te Feynman Lectures on Pysics, Volume I, Capter 22, especially pages 22-7 tru Adding two complex numbers means adding teir real parts and ten separately adding teir imaginary parts. Tis is equivalent to adding separately te x- components and te y-components of two arrows to obtain te components of te resulting arrow. For two complex numbers, designated by te subscripts 1 and 2, we ave: iθ iθ1 iθ2 1 2 Ae A e + A e = A1cos θ1 + ia1sin θ1 + A2 cos θ2 + ia2 sin θ2 = ( A cos θ + A cos θ )+ i A sin θ + A sin θ ( ) (11) Multiplying complex numbers is even easier: ( ) Ae i θ A e i θ A e i θ A A e i ( θ + θ ) = (12) Tis is a direct example of te rule for finding te arrow for a sequence of steps in one pat: MULTIPLY te magnitudes of te arrows for eac sequential step in te pat and ADD te angle canges. If A 2 is less tan unity, multiplying A 1 by A 2 corresponds to a srin. Adding te angles corresponds to a turn. Te probability for te final outcome is proportional to te square of te magnitude (te square of te lengt or A-value) of te resulting complex number. You may ave been told tat quantum mecanical quantities, suc as wave functions, are complex functions. Wy is tis so? Complex numbers and complex functions are just ways we combine te little arrows to form a resulting arrow, te 48

7 probability amplitude, wose square is proportional to te probability. Complex numbers are used to trac te srining, turning, and adding of tose little arrows tat lead to a resulting arrow and a final probability. Using tis notation, we can describe te motion of te electron along alternative pats. Te angles θ used in te complex notation are expressed in radians. Te rotation rate ω for te electron cloc in radians per second is given by combining equations (6) and (8). L KE PE ω = = (13) How many times will te little cloc and rotate along a given pat (call it pat ) from initial event 1 to final event 2? We can compute tis, starting wit te action S for tat pat: S = KE PE dt (14) pat ( ) Here eac pat is required to start at te same initial event 1 and to end at te same final event 2, so te time along te pat is te same for every alternative pat. Tis means tat te inetic energy is different for different pats, and total energy is not te same for alternative pats. (For an arbitrary pat, te total energy may not even be constant along tis single pat.) But for large-mass particles te little arrows from all pats point in very different directions and tend to cancel out except tose near te pat of least action, for wic te little arrows point in nearly te same direction. For tese pats te total energy is conserved, as we saw in te ACTION software. Te contribution to te probability amplitude for a single pat is given by: is Ae (15a) For tose of us wit failing eyesigt, tese exponentials may be too small, so we use te function exp() to represent te exponential wit e: A exp( is / ) (15b) Ten te probability amplitude for te given outcome is reconed from te sum of tese contributions for every alternative pat (indexed by ) between a fixed initial event 1 and a fixed final event 2: or Probability amplitude (from 1 to 2) = Ae all pats from event 1 is (16a) 49

8 Probability amplitude (from 1 to 2) = A exp( is / ) (16b) all pats from event 1 Tis is te probability amplitude tat te electron starts at a particular initial event 1 and arrives at a particular final event 2 placed at, say, x and t. We can call tis te wave function ψ(x,t) for a particle emitted from event 1: or ( ) = ψ xt, Ae all pats from event 1 is (17a) ( ) = ψ xt, A exp( is / ) (17b) all pats from event 1 Tis is te meaning of Feynman s statement in is abstract for te 1948 article in Reviews of Modern Pysics: 1 Te total contribution from all pats reacing x,t from te past is te wave function ψ(x,t). Reference 1 R. P. Feynman, Space-Time Approac to Non-Relativistic Quantum Mecanics, Reviews of Modern Pysics, Volume 20, Number 2, April 1948, pages Copyrigt 2000, Edwin F. Taylor 50

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Quantum Theory of the Atomic Nucleus

Quantum Theory of the Atomic Nucleus G. Gamow, ZP, 51, 204 1928 Quantum Teory of te tomic Nucleus G. Gamow (Received 1928) It as often been suggested tat non Coulomb attractive forces play a very important role inside atomic nuclei. We can

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2

Physics 121, April 1, Equilibrium. Physics 121. April 1, Physics 121. April 1, Course Information. Discussion of Exam # 2 Pysics 121, April 1, 2008. Pysics 121. April 1, 2008. Course Information Discussion of Exam # 2 Topics to be discussed today: Requirements for Equilibrium Gravitational Equilibrium Sample problems Pysics

More information

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions

University of Alabama Department of Physics and Astronomy PH 101 LeClair Summer Exam 1 Solutions University of Alabama Department of Pysics and Astronomy PH 101 LeClair Summer 2011 Exam 1 Solutions 1. A motorcycle is following a car tat is traveling at constant speed on a straigt igway. Initially,

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES M12/4/PHYSI/HPM/ENG/TZ1/XX 22126507 Pysics Higer level Paper 1 Tursday 10 May 2012 (afternoon) 1 our INSTRUCTIONS TO CANDIDATES Do not open tis examination paper until instructed to do so. Answer all te

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS INTODUCTION ND MTHEMTICL CONCEPTS PEVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips of sine,

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations

Physically Based Modeling: Principles and Practice Implicit Methods for Differential Equations Pysically Based Modeling: Principles and Practice Implicit Metods for Differential Equations David Baraff Robotics Institute Carnegie Mellon University Please note: Tis document is 997 by David Baraff

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Problem Set 4: Whither, thou turbid wave SOLUTIONS

Problem Set 4: Whither, thou turbid wave SOLUTIONS PH 253 / LeClair Spring 2013 Problem Set 4: Witer, tou turbid wave SOLUTIONS Question zero is probably were te name of te problem set came from: Witer, tou turbid wave? It is from a Longfellow poem, Te

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 4 Solutions 1. Group velocity of a wave. For a free relativistic quantum particle moving wit speed v, te

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Cubic Functions: Local Analysis

Cubic Functions: Local Analysis Cubic function cubing coefficient Capter 13 Cubic Functions: Local Analysis Input-Output Pairs, 378 Normalized Input-Output Rule, 380 Local I-O Rule Near, 382 Local Grap Near, 384 Types of Local Graps

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom Extracting Atomic and Molecular Parameters From te de Broglie Bor Model of te Atom Frank ioux Te 93 Bor model of te ydrogen atom was replaced by Scrödingerʹs wave mecanical model in 96. However, Borʹs

More information

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA

The Krewe of Caesar Problem. David Gurney. Southeastern Louisiana University. SLU 10541, 500 Western Avenue. Hammond, LA Te Krewe of Caesar Problem David Gurney Souteastern Louisiana University SLU 10541, 500 Western Avenue Hammond, LA 7040 June 19, 00 Krewe of Caesar 1 ABSTRACT Tis paper provides an alternative to te usual

More information

The structure of the atoms

The structure of the atoms Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C.

More information

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II

Excursions in Computing Science: Week v Milli-micro-nano-..math Part II Excursions in Computing Science: Week v Milli-micro-nano-..mat Part II T. H. Merrett McGill University, Montreal, Canada June, 5 I. Prefatory Notes. Cube root of 8. Almost every calculator as a square-root

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon?

Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT the Math. What is the half-life of radon? 8.5 Solving Exponential Equations GOAL Solve exponential equations in one variable using a variety of strategies. LEARN ABOUT te Mat All radioactive substances decrease in mass over time. Jamie works in

More information

Fractional Derivatives as Binomial Limits

Fractional Derivatives as Binomial Limits Fractional Derivatives as Binomial Limits Researc Question: Can te limit form of te iger-order derivative be extended to fractional orders? (atematics) Word Count: 669 words Contents - IRODUCIO... Error!

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

APPENDIXES. Let the following constants be established for those using the active Mathcad

APPENDIXES. Let the following constants be established for those using the active Mathcad 3 APPENDIXES Let te following constants be establised for tose using te active Matcad form of tis book: m.. e 9.09389700 0 3 kg Electron rest mass. q.. o.6077330 0 9 coul Electron quantum carge. µ... o.5663706

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

SIMG Solution Set #5

SIMG Solution Set #5 SIMG-303-0033 Solution Set #5. Describe completely te state of polarization of eac of te following waves: (a) E [z,t] =ˆxE 0 cos [k 0 z ω 0 t] ŷe 0 cos [k 0 z ω 0 t] Bot components are traveling down te

More information

Finite Difference Methods Assignments

Finite Difference Methods Assignments Finite Difference Metods Assignments Anders Söberg and Aay Saxena, Micael Tuné, and Maria Westermarck Revised: Jarmo Rantakokko June 6, 1999 Teknisk databeandling Assignment 1: A one-dimensional eat equation

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

Chapter 2 Ising Model for Ferromagnetism

Chapter 2 Ising Model for Ferromagnetism Capter Ising Model for Ferromagnetism Abstract Tis capter presents te Ising model for ferromagnetism, wic is a standard simple model of a pase transition. Using te approximation of mean-field teory, te

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Problem Solving. Problem Solving Process

Problem Solving. Problem Solving Process Problem Solving One of te primary tasks for engineers is often solving problems. It is wat tey are, or sould be, good at. Solving engineering problems requires more tan just learning new terms, ideas and

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim

, meant to remind us of the definition of f (x) as the limit of difference quotients: = lim Mat 132 Differentiation Formulas Stewart 2.3 So far, we ave seen ow various real-world problems rate of cange and geometric problems tangent lines lead to derivatives. In tis section, we will see ow to

More information

KEY CONCEPT: THE DERIVATIVE

KEY CONCEPT: THE DERIVATIVE Capter Two KEY CONCEPT: THE DERIVATIVE We begin tis capter by investigating te problem of speed: How can we measure te speed of a moving object at a given instant in time? Or, more fundamentally, wat do

More information

Math 34A Practice Final Solutions Fall 2007

Math 34A Practice Final Solutions Fall 2007 Mat 34A Practice Final Solutions Fall 007 Problem Find te derivatives of te following functions:. f(x) = 3x + e 3x. f(x) = x + x 3. f(x) = (x + a) 4. Is te function 3t 4t t 3 increasing or decreasing wen

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter.

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter. Slide 1 / 63 Slide 2 / 63 emistry Optional Review Ligt and Matter 2015-10-27 www.njctl.org Slide 3 / 63 Slide 4 / 63 Ligt and Sound Ligt and Sound In 1905 Einstein derived an equation relating mass and

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Notes on Planetary Motion

Notes on Planetary Motion (1) Te motion is planar Notes on Planetary Motion Use 3-dimensional coordinates wit te sun at te origin. Since F = ma and te gravitational pull is in towards te sun, te acceleration A is parallel to te

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

Calculus I Homework: The Derivative as a Function Page 1

Calculus I Homework: The Derivative as a Function Page 1 Calculus I Homework: Te Derivative as a Function Page 1 Example (2.9.16) Make a careful sketc of te grap of f(x) = sin x and below it sketc te grap of f (x). Try to guess te formula of f (x) from its grap.

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Lecture: Experimental Solid State Physics Today s Outline

Lecture: Experimental Solid State Physics Today s Outline Lecture: Experimental Solid State Pysics Today s Outline Te quantum caracter of particles : Wave-Particles dualism Heisenberg s uncertainty relation Te quantum structure of electrons in atoms Wave-particle

More information

Polynomials 3: Powers of x 0 + h

Polynomials 3: Powers of x 0 + h near small binomial Capter 17 Polynomials 3: Powers of + Wile it is easy to compute wit powers of a counting-numerator, it is a lot more difficult to compute wit powers of a decimal-numerator. EXAMPLE

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information