The structure of the atoms

Size: px
Start display at page:

Download "The structure of the atoms"

Transcription

1 Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C. November 013 Josep Jon Tomson Tomson model (190) Te atom models Atoms are stable Teir cemical properties sow periodicity (Mendeleev 1869) After excitation tey emit ligt, and teir emission spectra is linear electron Plum pudding Joann Jacob Balmer s empirical formula (1885): R 4 n n: 3,4,5 R: Rydberg constant (R = m -1 ) Ernest Ruterford Ruterford model (1911) Ruterford s conclusions 1. Te majority of matter is empty space!. Te positive carge is concentrated into a tiny space (nucleus ~10-15 m). 3. Electrons are revolving around te nucleus, like planets around te Sun. 1

2 Niels Bor Bor s model Bor s postulates: 1. Electrons in an atom can only ave defined orbits. Te formula defining te radius of te allowed orbits is: L mrv n r n n mv Stationary wave! Te conclusions of te Bor s model 1. Radius of te 1 st orbit: r 1 = m (Bor-radius) r = 4r 1, r 3 = 9r 1.. r n = n r 1. Energy of te first orbit: E 1 = ev (because it is bound) E E3 E n 4 9 n. Wen te electron jumps from one allowed orbit to anoter, te energy difference of te two states is emitted as a poton wit te energy of ν: v E E 1 Te proof of te Bor s model Te Frank-Hertz experiment Quantum mecanical atom model Matter wave wave function () Described by te Scrödinger s equation Atoms can absorb only precisely given amounts of energy. Te Hg atoms e.g. 4,9 ev. Te 4,9 ev is equals to te energy difference between te ground state and te first excited state of a Hg atom. Te position of te ground state electron of a ydrogen atom, around te nucleus. Te density of te spots is proportional to te finding probability of te electron. Te grap sows Ψ in te function of te distance measured from te nucleus. Probability of occurrence of an electron: Heisenberg s uncertainty principle (197) It is impossible to precisely determine te position and te of te particle at te same time. Te multiplication of te uncertainty (error) of two measurements at te same time is always iger tan / : x p x An example to te Heisenberg s uncertainty principle Te Large Hadron Collider ( LHC ) at CERN will be accelerating protons close to te speed of ligt, C, wose rest mass is Before acieving smasing protons at close to C, let's suppose tat te protons are speeding at wit a 1% measurement precision or Terefore, te uncertainty in measurement of proton velocity is and by te Heisenberg Uncertainty Principle, te uncertainty in simultaneously determining proton velocity and position is given as follows: Te relation gives a limit of principle: te multiplication of te measured uncertainty of te two quantities can not be smaller tan /. ttp:// certainty_principle.stml

3 describe values of conserved quantities in te dynamics of te quantum system. Tey often describe specifically te energies of electrons in atoms, but oter possibilities include angular, spin etc. It is already known from te Bor s atom model tat te energy of te electrons is quantized so tey can ave only one value. Te energy values are determined by te n principal quantum number. Te quantum mecanics is proved tat tere are sublevels of te given energy levels tat is wy te n principal quantum number is not enoug and more oter quantum numbers are needed. Te principal quantum number (n) It is known tat te principal quantum number defines te energy, and an energy value belongs to every n value ( n En ). Te electrons wit given n values are forming sells wic are named wit K, L, M, etc. letters. Tere can be more oter states inside a sell wic states are determined by te orbital quantum number. Bor ad predicted te positions of orbits wit amazing accuracy but did not take count tat tis is not te only position of electron, tis is te place were te electron can be found wit te igest probability. Te orbital quantum number (l) It defines te magnitude of te angular of an electron. Angular : Te angular of a body wic is revolving around an r radius orbital wit v speed is a vectored quantity. Its value is L = mvr. Its direction is perpendicular to te plane of te velocity. Te angular resulting from te movements of te electrons on teir orbital can only be: L l( l 1) were is te Planck constant and l is te orbital quantum number, wic can be an integer between 0 and n-1. Example: n = ; l = 0 (s state): L = 0 l = 1 (p state): L Te orbital quantum number (l) It defines te magnitude of te angular of an electron. Its value is L = mvr. Its direction is perpendicular to te plane of te velocity. Sample calculation: Te Moon: Mass = kg Average orbital speed = 1.05 km/s Distance from Eart (average) = km Angular =? kg m /s, vagy N m s Te magnetic quantum number (m) It defines te direction of te angular of an electron. Tat is wy te angular can be set only in given directions. Te projection of te angular on te direction of te outer magnetic field can only be: L z m were m is te magnetic quantum number wic values are wole numbers between -l and +l. Tis determines te direction of te angular definitely. How can it define te angular : Example: if n = ; l = 0, 1; m = -1, 0, +1 Zeeman effect I Wen an atom turns from an initial iger energy level to a stationary level wit lower energy ten te energy difference can be emitted as a poton. Tis may gives a line in te visible spectrum. In te presence of an external magnetic field, tese different states will ave different energies dueto aving different orientations of te magnetic dipoles in te external field, so te atomic energy levels are split into a larger number of levels and te spectral lines are also split. Te rate of split is proportional to te applied magnetic field. Te new lines appear symmetrically on te rigt and on te left side of te original line. Tis is te so-called Zeeman effect (normal Zeeman effect). 3

4 Te spin quantum number (s) It defines te value of te spin angular of te electron. It is imagined as te electron (like te Eart) not just revolving around its orbit but it is spinning around its own axis. Te electron s own angular s can only be: S s( s 1) were s is te spin quantum number. Te spin quantum number can only be ½. It does not defines oter sublevels. Te magnetic spin quantum number (m s ) It defines te direction of spin angular of an electron. Te projection of te angular on te direction of te outer magnetic field (z) can only be: S z m were m s is te magnetic spin quantum number wic is ½ or -½, so te spin (owned angular ) can be set only in two directions. s Zeeman effect II As an atom is placed into a magnetic field eac of its fine structure lines furter splits into a series of equidistant lines wit a spacing proportional to te magnetic field strengt. Te Stern-Gerlac experiment For some atoms, te spectrum displays a more complex pattern of splittings. Tat is te so-called anomalous Zeeman effect. In tese cases, it is found tat te number of Zeeman sub-levels is actually even rater tan odd. Tis cannot be explained witin te normal Zeeman teory. However, it suggests te possible existence of an angular like quantity. Te proximate proof for te evidence of spin angular was found by te Stern-Gerlac experiment. Te Stern-Gerlac experiment involves sending a beam of particles troug an inomogeneous magnetic field and observing teir deflection. Te particles passing troug te Stern-Gerlac apparatus are deflected eiter up or down by a specific amount. Tis result indicates tat spin angular is quantized (it can only take on discrete values), so tat tere is not a continuous distribution of possible angular momenta. Te Stern-Gerlac experiment Conclusions: 1 st Te experiment proves tat te angular is quantized. nd Wy is te beam deflected into two beams? if l=0 => m=0 => no deflection if l=1 => m=0, 1 => deflects into tree beams (tat is wy a two-beam deflection can not caused by direction of te angular ) Pipps and Taylor reproduced te effect using ydrogen atoms in teir ground state in Ulenbeck and Goudsmit formulated teir ypotesis of te existence of te electron spin. 19 Te Einstein-de Haas effect A freely suspended body consisting of a ferromagnetic material acquires a rotation wen its magnetization canges. Because of te cange of te external magnetic field mecanical rotation of te ferromagnetic material is appened associated wit te mecanical angular, wic, by te law of conservation of angular, must be compensated by an equally large and oppositely directed angular inside te ferromagnetic material. 4

5 Quantum number Symbol Quantized value Values Principle n Energy 1,,3 Orbital l Value of angular 0,1 n-1 ttp://dilc.upd.edu.p/images/lo/cem/quantum/quantum.swf Magnetic m Direction of angular -l, -l+1 0 l-1, l Spin s Value of own angular Magnetic spin m s Direction of own angular ½ ½, +½ 5

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Preview from Notesale.co.uk Page 2 of 42

Preview from Notesale.co.uk Page 2 of 42 1 PHYSICAL CHEMISTRY Dalton (1805) Tomson (1896) - Positive and negative carges Ruterford (1909) - Te Nucleus Bor (1913) - Energy levels Atomic Model : Timeline CATHODE RAYS THE DISCOVERY OF ELECTRON Scrödinger

More information

Quantum Mechanics and Atomic Theory

Quantum Mechanics and Atomic Theory A. Electromagnetic Radiation Quantum Mecanics and Atomic Teory 1. Ligt: consists of waves of oscillating electric field ( E ) and magnetic field ( B ) tat are perpendicular to eac oter and to te direction

More information

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1

nucleus orbital electron wave 2/27/2008 Quantum ( F.Robilliard) 1 r nucleus orbital electron wave λ /7/008 Quantum ( F.Robilliard) 1 Wat is a Quantum? A quantum is a discrete amount of some quantity. For example, an atom is a mass quantum of a cemical element te mass

More information

Part C : Quantum Physics

Part C : Quantum Physics Part C : Quantum Pysics 1 Particle-wave duality 1.1 Te Bor model for te atom We begin our discussion of quantum pysics by discussing an early idea for atomic structure, te Bor model. Wile tis relies on

More information

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom

Extracting Atomic and Molecular Parameters From the de Broglie Bohr Model of the Atom Extracting Atomic and Molecular Parameters From te de Broglie Bor Model of te Atom Frank ioux Te 93 Bor model of te ydrogen atom was replaced by Scrödingerʹs wave mecanical model in 96. However, Borʹs

More information

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin.

Quantum Mechanics Chapter 1.5: An illustration using measurements of particle spin. I Introduction. Quantum Mecanics Capter.5: An illustration using measurements of particle spin. Quantum mecanics is a teory of pysics tat as been very successful in explaining and predicting many pysical

More information

Test on Nuclear Physics

Test on Nuclear Physics Test on Nuclear Pysics Examination Time - 40 minutes Answer all questions in te spaces provided Tis wole test involves an imaginary element called Bedlum wic as te isotope notation sown below: 47 11 Bd

More information

1. ATOMIC STRUCTURE. Specific Charge (e/m) c/g

1. ATOMIC STRUCTURE. Specific Charge (e/m) c/g 1. ATOMIC STRUCTURE Synopsis : Fundamental particles: According to Dalton atom is te smallest indivisible particle. But discarge tube experiments ave proved tat atom consists of some more smaller particles.

More information

DUAL NATURE OF RADIATION AND MATTER

DUAL NATURE OF RADIATION AND MATTER DUAL NATURE OF RADIATION AND MATTER Important Points: 1. J.J. Tomson and Sir William Crookes studied te discarge of electricity troug gases. At about.1 mm of Hg and at ig voltage invisible streams called

More information

APPENDIXES. Let the following constants be established for those using the active Mathcad

APPENDIXES. Let the following constants be established for those using the active Mathcad 3 APPENDIXES Let te following constants be establised for tose using te active Matcad form of tis book: m.. e 9.09389700 0 3 kg Electron rest mass. q.. o.6077330 0 9 coul Electron quantum carge. µ... o.5663706

More information

Problem Set 4 Solutions

Problem Set 4 Solutions University of Alabama Department of Pysics and Astronomy PH 253 / LeClair Spring 2010 Problem Set 4 Solutions 1. Group velocity of a wave. For a free relativistic quantum particle moving wit speed v, te

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Lecture: Experimental Solid State Physics Today s Outline

Lecture: Experimental Solid State Physics Today s Outline Lecture: Experimental Solid State Pysics Today s Outline Te quantum caracter of particles : Wave-Particles dualism Heisenberg s uncertainty relation Te quantum structure of electrons in atoms Wave-particle

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery

Graviton Induced Nuclear Fission through Electromagnetic Wave Flux Phil Russell, * Jerry Montgomery Graviton Induced Nuclear Fission troug Electromagnetic Wave Flux Pil Russell, * Jerry Montgomery Nort Carolina Central University, Duram, NC 27707 Willowstick Tecnologies LLC, Draper, UT 84020 (Dated:

More information

Homework 1. L φ = mωr 2 = mυr, (1)

Homework 1. L φ = mωr 2 = mυr, (1) Homework 1 1. Problem: Streetman, Sixt Ed., Problem 2.2: Sow tat te tird Bor postulate, Eq. (2-5) (tat is, tat te angular momentum p θ around te polar axis is an integer multiple of te reduced Planck constant,

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

7. QUANTUM THEORY OF THE ATOM

7. QUANTUM THEORY OF THE ATOM 7. QUANTUM TEORY OF TE ATOM Solutions to Practice Problems Note on significant figures: If te final answer to a solution needs to be rounded off, it is given first wit one nonsignificant figure, and te

More information

QUESTIONS ) Of the following the graph which represents the variation of Energy (E) of the photon with the wavelength (λ) is E E 1) 2) 3) 4)

QUESTIONS ) Of the following the graph which represents the variation of Energy (E) of the photon with the wavelength (λ) is E E 1) 2) 3) 4) CET II PUC: PHYSICS: ATOMIC PHYSICS INTRODUCTION TO ATOMIC PHYSICS, PHOTOELECTRIC EFFECT DUAL NATURE OF MATTER, BOHR S ATOM MODEL SCATTERING OF LIGHT and LASERS QUESTIONS ) Wic of te following statements

More information

CHAPTER 7 QUANTUM THEORY AND ATOMIC STRUCTURE

CHAPTER 7 QUANTUM THEORY AND ATOMIC STRUCTURE CHAPTER 7 QUANTUM THEORY AND ATOMIC STRUCTURE Te value for te speed of ligt will be 3.00x0 8 m/s except wen more significant figures are necessary, in wic cases,.9979x0 8 m/s will be used. TOOLS OF THE

More information

The Electromagnetic Spectrum. Today

The Electromagnetic Spectrum. Today Today Announcements: HW#7 is due after Spring Break on Wednesday Marc 1 t Exam # is on Tursday after Spring Break Te fourt extra credit project will be a super bonus points project. Tis extra credit can

More information

2.2 WAVE AND PARTICLE DUALITY OF RADIATION

2.2 WAVE AND PARTICLE DUALITY OF RADIATION Quantum Mecanics.1 INTRODUCTION Te motion of particles wic can be observed directly or troug microscope can be explained by classical mecanics. But wen te penomena like potoelectric effect, X-rays, ultraviolet

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

Contents. Theory Exercise Exercise Exercise Exercise Answer Key 28-29

Contents. Theory Exercise Exercise Exercise Exercise Answer Key 28-29 ATOMIC STRUCTURE Topic Contents Page No. Teory 0-04 Exercise - 05-4 Exercise - 5-9 Exercise - 3 0-3 Exercise - 4 4-7 Answer Key 8-9 Syllabus Bor model, spectrum of ydrogen atom, quantum numbers; Wave-particle

More information

A Reconsideration of Matter Waves

A Reconsideration of Matter Waves A Reconsideration of Matter Waves by Roger Ellman Abstract Matter waves were discovered in te early 20t century from teir wavelengt, predicted by DeBroglie, Planck's constant divided by te particle's momentum,

More information

CHAPTER 4 QUANTUM PHYSICS

CHAPTER 4 QUANTUM PHYSICS CHAPTER 4 QUANTUM PHYSICS INTRODUCTION Newton s corpuscular teory of ligt fails to explain te penomena like interference, diffraction, polarization etc. Te wave teory of ligt wic was proposed by Huygen

More information

Assignment Solutions- Dual Nature. September 19

Assignment Solutions- Dual Nature. September 19 Assignment Solutions- Dual Nature September 9 03 CH 4 DUAL NATURE OF RADIATION & MATTER SOLUTIONS No. Constants used:, = 6.65 x 0-34 Js, e =.6 x 0-9 C, c = 3 x 0 8 m/s Answers Two metals A, B ave work

More information

Dual Nature of matter and radiation: m v 1 c

Dual Nature of matter and radiation: m v 1 c Dual Nature of matter and radiation: Potons: Electromagnetic radiation travels in space in te form discrete packets of energy called potons. Tese potons travel in straigt line wit te speed of ligt. Important

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

28 64 Ni is - g/mole Se (D)

28 64 Ni is - g/mole Se (D) EXERCISE-0 CHECK YOUR GRASP SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER). Te element aving no neutron in te nucleus of its atom is - (A) ydrogen (B) nitrogen (C) elium (D) boron. Te particles

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES

M12/4/PHYSI/HPM/ENG/TZ1/XX. Physics Higher level Paper 1. Thursday 10 May 2012 (afternoon) 1 hour INSTRUCTIONS TO CANDIDATES M12/4/PHYSI/HPM/ENG/TZ1/XX 22126507 Pysics Higer level Paper 1 Tursday 10 May 2012 (afternoon) 1 our INSTRUCTIONS TO CANDIDATES Do not open tis examination paper until instructed to do so. Answer all te

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING 9. Te work function of a certain metal is. J. Ten te maximum kinetic energy of potoelectrons emitted by incident radiation of wavelengt 5 A is: (9 E)

More information

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit.

Reminder: Exam 3 Friday, July 6. The Compton Effect. General Physics (PHY 2140) Lecture questions. Show your work for credit. General Pysics (PHY 2140) Lecture 15 Modern Pysics Cater 27 1. Quantum Pysics Te Comton Effect Potons and EM Waves Wave Proerties of Particles Wave Functions Te Uncertainty Princile Reminder: Exam 3 Friday,

More information

UNIT-1 MODERN PHYSICS

UNIT-1 MODERN PHYSICS UNIT- MODERN PHYSICS Introduction to blackbody radiation spectrum: A body wic absorbs all radiation tat is incident on it is called a perfect blackbody. Wen radiation allowed to fall on suc a body, it

More information

Line spectrum (contd.) Bohr s Planetary Atom

Line spectrum (contd.) Bohr s Planetary Atom Line spectrum (contd.) Hydrogen shows lines in the visible region of the spectrum (red, blue-green, blue and violet). The wavelengths of these lines can be calculated by an equation proposed by J. J. Balmer:

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4)

Physics Teach Yourself Series Topic 15: Wavelike nature of matter (Unit 4) Pysics Teac Yourself Series Topic 15: Wavelie nature of atter (Unit 4) A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tss.co.au E: info@tss.co.au TSSM 2017 Page 1 of 8 Contents

More information

38. Photons and Matter Waves

38. Photons and Matter Waves 38. Potons and Matter Waves Termal Radiation and Black-Body Radiation Color of a Tungsten filament as temperature increases Black Red Yellow Wite T Termal radiation : Te radiation depends on te temperature

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Notes on wavefunctions II: momentum wavefunctions

Notes on wavefunctions II: momentum wavefunctions Notes on wavefunctions II: momentum wavefunctions and uncertainty Te state of a particle at any time is described by a wavefunction ψ(x). Tese wavefunction must cange wit time, since we know tat particles

More information

Quantum Theory of the Atomic Nucleus

Quantum Theory of the Atomic Nucleus G. Gamow, ZP, 51, 204 1928 Quantum Teory of te tomic Nucleus G. Gamow (Received 1928) It as often been suggested tat non Coulomb attractive forces play a very important role inside atomic nuclei. We can

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Krazy Katt, the mechanical cat

Krazy Katt, the mechanical cat Krazy Katt, te mecanical cat Te cat rigting relex is a cat's innate ability to orient itsel as it alls in order to land on its eet. Te rigting relex begins to appear at 3 4 weeks o age, and is perected

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Tutorial 2 (Solution) 1. An electron is confined to a one-dimensional, infinitely deep potential energy well of width L = 100 pm.

Tutorial 2 (Solution) 1. An electron is confined to a one-dimensional, infinitely deep potential energy well of width L = 100 pm. Seester 007/008 SMS0 Modern Pysics Tutorial Tutorial (). An electron is confined to a one-diensional, infinitely deep potential energy well of widt L 00 p. a) Wat is te least energy te electron can ave?

More information

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY Warning: The mercury spectral lamps emit UV radiation. Do not stare into the lamp. Avoid exposure where possible. Introduction

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Problems with the atomic model?

Problems with the atomic model? Modern Atomic Theory- Electronic Structure of Atoms DR HNIMIR-CH7 Where should (-) electrons be found? Problems with the atomic model? First, a Little About Electromagnetic Radiation- Waves Another Look

More information

3. Particle nature of matter

3. Particle nature of matter 3. Particle nature of matter 3.1 atomic nature of matter Democrit(us) 470-380 B.C.: there is only atoms and empty space, everything else is mere opinion (atoms are indivisible) Dalton (chemist) 180: chemical

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter.

Chemistry. Slide 1 / 63 Slide 2 / 63. Slide 4 / 63. Slide 3 / 63. Slide 6 / 63. Slide 5 / 63. Optional Review Light and Matter. Slide 1 / 63 Slide 2 / 63 emistry Optional Review Ligt and Matter 2015-10-27 www.njctl.org Slide 3 / 63 Slide 4 / 63 Ligt and Sound Ligt and Sound In 1905 Einstein derived an equation relating mass and

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden CHAPTER 4 Structure of the Atom 4.1 The Atomic Models of Thomson and Rutherford 4. Rutherford Scattering 4.3 The Classic Atomic Model 4.4 The Bohr Model of the Hydrogen Atom 4.5 Successes & Failures of

More information

Phase space in classical physics

Phase space in classical physics Pase space in classical pysics Quantum mecanically, we can actually COU te number of microstates consistent wit a given macrostate, specified (for example) by te total energy. In general, eac microstate

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

The Electron in a Potential

The Electron in a Potential Te Electron in a Potential Edwin F. Taylor July, 2000 1. Stopwatc rotation for an electron in a potential For a poton we found tat te and of te quantum stopwatc rotates wit frequency f given by te equation:

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Lasers & Optical Fibers

Lasers & Optical Fibers Lasers & Optical Fibers 1. Emmission of a poton by an excited atom due to interaction wit passing poton nearby is called A) Spontaneous emission B) Stimulated emission C) induced absorption D) termionic

More information

Why gravity is not an entropic force

Why gravity is not an entropic force Wy gravity is not an entropic force San Gao Unit for History and Pilosopy of Science & Centre for Time, SOPHI, University of Sydney Email: sgao7319@uni.sydney.edu.au Te remarkable connections between gravity

More information

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other.

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other. Chapter 7 7. Electron Spin * Fine structure:many spectral lines consist of two separate lines that are very close to each other. ex. H atom, first line of Balmer series n = 3 n = => 656.3nm in reality,

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine? 1 1 Power is transferred troug a macine as sown. power input P I macine power output P O power loss P L Wat is te efficiency of te macine? P I P L P P P O + P L I O P L P O P I 2 ir in a bicycle pump is

More information

Molecular symmetry. An introduction to symmetry analysis

Molecular symmetry. An introduction to symmetry analysis Molecular symmetry 6 Symmetry governs te bonding and ence te pysical and spectroscopic properties of molecules In tis capter we explore some of te consequences of molecular symmetry and introduce te systematic

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

(c) (d) insufficient information

(c) (d) insufficient information Final Exam Pysics 130 Monday December 16, 00 Point distribution: Te multiple coice questions (1-5) are wort 5 points eac and answers sould be bubbled onto te answer seet. Questions 6-8 are long-answer

More information

PHYS 3313 Section 001 Lecture #14

PHYS 3313 Section 001 Lecture #14 PHYS 3313 Section 001 Lecture #14 Monday, March 6, 2017 The Classic Atomic Model Bohr Radius Bohr s Hydrogen Model and Its Limitations Characteristic X-ray Spectra 1 Announcements Midterm Exam In class

More information

UNIT : 3 STRUCTURE OF ATOM

UNIT : 3 STRUCTURE OF ATOM Composition of atom Electron ( e o ) () It was discovered by J.J. Tomson (897) and is negatively carged particle. () Electron is a component particle of catode rays. (3) Catode rays were discovered by

More information

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households

Volume 29, Issue 3. Existence of competitive equilibrium in economies with multi-member households Volume 29, Issue 3 Existence of competitive equilibrium in economies wit multi-member ouseolds Noriisa Sato Graduate Scool of Economics, Waseda University Abstract Tis paper focuses on te existence of

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Quantization of electrical conductance

Quantization of electrical conductance 1 Introduction Quantization of electrical conductance Te resistance of a wire in te classical Drude model of metal conduction is given by RR = ρρρρ AA, were ρρ, AA and ll are te conductivity of te material,

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide

Mathematics 105 Calculus I. Exam 1. February 13, Solution Guide Matematics 05 Calculus I Exam February, 009 Your Name: Solution Guide Tere are 6 total problems in tis exam. On eac problem, you must sow all your work, or oterwise torougly explain your conclusions. Tere

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Review Models of the Atom

Review Models of the Atom Review Models of the Atom Copyright 2007 Pearson Benjamin Cummings. All rights reserved. Dalton proposes the indivisible unit of an element is the atom. Thomson discovers electrons, believed to reside

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

6.4: THE WAVE BEHAVIOR OF MATTER

6.4: THE WAVE BEHAVIOR OF MATTER 6.4: THE WAVE BEHAVIOR OF MATTER SKILLS TO DEVELOP To understand te wave particle duality of matter. Einstein s potons of ligt were individual packets of energy aving many of te caracteristics of particles.

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e.,

1. For d=3,2 from ε<< ε F it follows that ετ >> e-e h, i.e., Quasiparticle decay rate at T = 0 in a clean Fermi Liquid. ω +ω Fermi Sea τ e e ( ) F ( ) log( ) Conclusions:. For d=3, from > e-e, i.e., tat te qusiparticles are well determined

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information