REVIEWS. Engineering half-heusler thermoelectric materials using Zintl chemistry

Size: px
Start display at page:

Download "REVIEWS. Engineering half-heusler thermoelectric materials using Zintl chemistry"

Transcription

1 Engineering hlf-heusler thermoeletri mterils using Zintl hemistry Wolfgng G. Zeier 1, Jennifer Shmit, Geoffroy Hutier 3, Umut Aydemir 1, Zhry M. Gis 4, Cludi Felser 5 nd G. Jeffrey Snyder 1 Astrt Hlf-Heusler ompounds sed on XNiSn nd XCoS (X = Ti, Zr or Hf) hve rpidly eome importnt thermoeletri mterils for onverting wste het into eletriity. In this Review, we provide n overview on the eletroni properties of hlf-heusler ompounds in n ttempt to understnd their si struturl hemistry nd physil properties, nd to guide their further development. Hlf-Heusler ompounds n exhiit semionduting trnsport ehviour even though they re desried s intermetlli ompounds. Therefore, it is most useful to onsider these systems s rigid-nd semiondutors within the frmework of Zintl (or vlene-preise) ompounds. These onsidertions id our understnding of their properties, suh s the ndgp nd low hole moility euse of interstitil Ni defets in XNiSn. Understnding the struturl nd onding hrteristis, inluding the presene of defets, will help to develop different strtegies to improve nd design etter hlf-heusler thermoeletri mterils. 1 Deprtment of Mterils Siene nd Engineering, Northwestern University, Evnston, Illinois 60208, USA. 2 Institut für Anorgnishe und Anlytishe Chemie, Johnnes Gutenerg Universität, Studingerweg 9, Minz, Germny. 3 Institute of Condensed Mtter nd Nnosienes (IMCN), Université tholique de Louvin, 1348 Louvinl Neuve, Belgium. 4 Division of Chemistry nd Chemil Engineering, Cliforni Institute of Tehnology, Psden, Cliforni 91125, USA. 5 Mx-Plnk-Institut für Chemishe Physik fester Stoffe, Nöthnitzer Strße 40, Dresden, Germny. Correspondene to G.J.S. jeff.snyder@northwestern.edu Artile numer: doi: /ntrevmts Pulished online 17 My 2016 The inresing demnd for lterntive energy tehnologies hs sprked renewed interest in thermoeletri mterils, whih diretly onvert wste het into eletriity. As solid-stte energy onverters, thermoeletris offer simpliity ompred with onventionl systems tht rely on vpour-ompression yle. Thermoeletri genertors hve een suessfully used in spe missions using rdioisotope het soures, whih lst more thn 30 yers 1. In nother exmple, the utomotive industry is investigting thermoeletri mterils for reovering wste het from exhust systems 2, in whih ost, reliility nd sfety, s well s effiieny, re importnt onsidertions. Unfortuntely, the thermoeletri onversion effiieny of these devies is generlly low euse, like ny thermodynmi het engine, it is limited y the Crnot effiieny (tht is, the mximum thermodynmilly possile effiieny of het engine) nd lso y the effiieny of the thermoeletri mteril itself, hrterized y the figure of merit (termed zt). The sis of thermoeletri trnsport nd the different pprohes to improve zt re explined in BOX 1. Strtegies to develop more effiient thermoeletris inlude the investigtion of mterils suh s skutterudites 3,4, lthrthes 5 8, hlopyrites 9 11 nd other Zintl ompounds 12 16, or the engineering of existing thermoeletri mterils Mny of these mterils hve promising thermoeletri properties euse of their omplex rystl nd eletroni strutures. More speifilly, most of these mterils n e onsidered s Zintl ompounds, whih omprise eletropositive tions tht donte their vlene eletrons to form n nioni frmework nd losed vlene shell onfigurtion hieved y omining forml hrge trnsfer with ovlent onding (BOX 2). As onsequene of the omplex nion frmework tht ontriutes to low lttie therml ondutivity, Zintl ompounds n hve lrge unit ells 26. Zintl phses n e lloyed to ontrol their rrier onentrtion nd to influene the eletron nd phonon trnsport. In ddition, simple vlene rules n e used to find new ompositions 13 16, Hlf-Heusler ompounds with the omposition XNiSn nd XCoS (X = Ti, Zr or Hf) hve eome importnt thermoeletri mterils for use in wste het reovery pplitions. This is euse of their high thermoeletri performne, low toxiity, reltively inexpensive elementl omposition nd roust mehnil properties. As onsequene of their high lttie therml ondutivity, muh prior work hs foused on the redution of the therml ondutivity y vrying the hemistry, proessing nd mirostruture of the ompounds 31,32. There re mny ompounds nd lloys (tht is, solid solutions nd mixtures with other hlf-heusler phses or smll quntities of other struturl types) with the hlf-heusler struture displying rih hemistry tht re studied for vrious different physil properties (for exmple, mgnetism nd hlf-metlliity) 32 38, leding to greter interest in the understnding of the eletroni struture nd the predition of new phses NATURE REVIEWS MATERIALS ADVANCE ONLINE PUBLICATION 1

2 Hlf-Heusler ompounds re generlly onsidered to e simple intermetlli ompounds nd re therefore regrded s very different kind of thermoeletri (typilly semionduting) mteril. Although hlf-heusler ompounds re not often onsidered s Zintl ompounds 42, mny of the sme onding nd doping priniples developed for Zintl ompounds re helpful in explining nd understnding the struture nd onding in hlf-heusler ompounds, s well s improving nd prediting new mterils. This knowledge ould led to n improvement in the thermoeletri properties of these mterils. In this Review, we use pulished dt of n type XNiSn (X = Ti, Zr or Hf) hlf-heusler ompounds to expnd our understnding of their hemistry nd eletroni properties. We provide simplified model for the eletroni nd trnsport properties of hlf-heusler mterils, hopefully leding to etter understnding of possile strtegies nd limittions in optimizing the thermoeletri effiieny. Box 1 Strtegies for improving the thermoeletri effiieny The effiieny of thermoeletri mteril is governed y its figure of merit, termed zt. This depends on the Seeek oeffiient (thermopower), α, eletril ondutivity, σ, therml ondutivity, κ, nd the temperture of opertion, T. The therml ondutivity itself is sum of its therml nd eletroni ontriution, κ L nd κ el, respetively. Although mny of these prmeters re hevily interdependent 49 for exmple, lrge α usully results in low σ, or lrge σ inreses κ there re wys to optimize or deouple these different prmeters. For exmple, optimiztion n e hieved y ontrolling the rrier onentrtion of mteril (pnel ), euse eh of these prmeters is dependent on the mount of moile rriers 14,49. A low therml ondutivity (pnels, nd d) n e hieved y inhiiting the trnsport of het through lttie virtions lled phonons. A ommon pproh is to introdue oundries from nnometre-sle mirostrutures (pnel ) tht stter phonons t interfes 19, Low verge phonon veloity n e hieved with very omplex rystl strutures (pnel ) of different onding environments nd lrge unit ells 14,15,26. Superioni mterils exhiit high disorder sttering nd liquid-like phonon ehviour 120,121 (pnel d). Simultneously, high thermopower nd high eletril ondutivity n e otined y multiple degenerte vlleys in the nd struture (pnel e) tht is enhned y nd onvergene 17,18,122,123. Crrier onentrtion zt zt α σ α 2 σ κ el κ L e High vlley degenery Energy (ev) E F Crrier onentrtion (m 3 ) Density of sttes Optimize rrier onentrtion zt = α 2 σt κ Lower therml ondutivity Improve thermopower Sttering of phonons Complex strutures d Phonon liquids 2 ADVANCE ONLINE PUBLICATION

3 Box 2 Struturl motifs in Zintl ompounds Zintl phses or ompounds re solids omprising very eletropositive tions (suh s group 1 nd 2 elements) nd the more eletronegtive, non-metlli elements of group 13 to 16. In Zintl phses, suh s NTl, FeS 2 or CSi, the most eletropositive omponent dontes ll vlene eletrons to the nion. Aording to the Zintl Klemm onep3 25, the nion forms ovlently onded sustruture in whih the resulting Zintl frmework forms ording to its vlene eletron ount in similr mnner to simpler strutures 22. For exmple, the Zintl nion Tl in NTl exhiits four vlene eletrons nd forms (following the otet rule) dimond struture 23 with N + s the ounter ion. Other exmples re pyrite (FeS 2 ), in whih S 2 2 pirs form, nd CSi, in whih Si 2 form ontinuous silion hins ording to the vlene eletron ount of elementl sulfur. C 3 AlS 3 nd C 14 AlS 11 re prominent exmples for good thermoeletri Zintl phses with infinite tetrhedrl (AlS 4 ) n hins 15,28,29,124,125, nd AlS 4 9 tetrhedr nd S 3 7 dumells, respetively These ovlently onded Zintl frmeworks provide n idel sffold for thermoeletri optimiztion y mens of doping 12 14,16,26,49,129. NTI FeS 2 CSi C 3 AIS 3 C 14 AIS 11 Furthermore, onsistent piture for XNiSn is only rehed y inluding disordered, interstitil Ni with out 5% oupny on the full-heusler site, whih is nominlly vnt in the hlf-heusler struture. Also, in this se, Zintl hemistry n help to explin why Ni on this site does not led to eletroni doping, ut insted signifintly hnges the vlene nd struture. The vlene nd produed y the interstitil Ni is very nrrow, produing hevy, low moility holes. Zintl hemistry in hlf-heuslers Hlf-Heusler ompounds re often desried s intermetllis with 1:1:1 stoihiometry of three interpenetrting fe-entred ui (f) sultties 33. In this Review, we use the generl formul XYZ for thermoeletri hlf- Heusler ompounds in whih, unless designted otherwise, X (Ti, Zr or Hf), Y (Ni or Co) nd Z (Sn or S) re loted t the Wykoff positions: X oupies 4 (0, 0, 0), Y oupies 4 (1/4, 1/4, 1/4) nd Z oupies 4 (1/2, 1/2, 1/2). The Wykoff position 4d (3/4, 3/4, 3/4) mkes n unoupied fourth f sulttie, whih would result in the full-heusler XY 2 Z struture if filled with more Y toms. In the hlf-heusler struture, position 4 is unique, eing qurter of ell (tetrhedrlly oordinted, nlogous to ZnS) wy from oth other sultties, whih re hlf ell (othedrlly oordinted, nlogous to NCl) shifted from eh other. Swithing ll of the X nd Z elements on the 4 nd 4 positions results in the sme, ut inverted, struture, ut swithing X or Z with the Y element would mke different mteril. Thus, there ould, in priniple, e three distint vrints for the elements XYZ with hlf-heusler strutures depending on whih element is in the tetrhedrl (4) site 46. However, s result of the hemistry, only one vrint is stle. In some ses, different site is ssigned to e vnt, resulting in different lltetrhedrl site 46. For exmple, 4 n e vnt nd 4d n e filled, whih mkes 4 the ll-tetrhedrl site 47. A initio lultions onfirm tht the differenes re signifint 33, nd, s result, it is importnt to relize tht some dtses (for exmple, the Inorgni Crystl Struture Dtse (ICSD)) hve the positions of the elements ssigned inorretly. Hlf-Heusler ompounds hve sustruture similr to dimond-like ZnS lttie (FIG. 1). This sustruture is formed y the elements with the smllest differene in eletronegtivity, usully Y s Ni or Co nd Z s Sn or S. Typilly, the most eletronegtive element Z (Sn or S) NATURE REVIEWS MATERIALS ADVANCE ONLINE PUBLICATION 3

4 Figure 1 Shemti representtion of the hlf-heusler struture. Hlf-Heusler ompounds hve the omposition XYZ, onsisting of ovlent, dimond-like (or ZnS) sustruture of the (YZ) n Zintl hemistry frmework (purple tetrhedr) formed y the tetrhedrl oordintion of Y toms (purple) nd Z toms (lue). The eletropositive X n+ (red) fills the othedrl voids round the tetrhedrl frmework. nd the most eletropositive element X (often Ti, Zr or Hf), whih hve the most ioni intertion, form the NCl sulttie (4 nd 4) with othedrl oordintion, leving the ll-tetrhedrl site to the intermedite eletronegtive element Y (Ni or Co). This is not lwys the se; for exmple, MgAgAs is n exeption, whih is notle euse it is often onsidered to e the struturl prototype 33. In the MgAgAs struture, the most eletronegtive element, As, is on the ll-tetrhedrl site rther thn the intermedite eletronegtive element, Ag. If the nming of the ompound is to mth those of other hlf-heusler ompounds, the formul should e given s MgAsAg. Hlf-Heusler ompounds n exhiit semionduting trnsport ehviour even though they re desried s intermetlli ompounds. In this Review, however, we define true intermetlli ompounds s metls tht hve well-defined rystl strutures in whih the eletroni onfigurtion my not e desried y simple losed-shell pproh (tht is, using Zintl hemistry desription). Indeed, y pplying the onepts of Zintl ompounds to hlf-heusler ompounds, s proposed y Whngo nd o-workers 48, we n simplify the disussion nd understnding of these mterils, similr to how our understnding of other omplex semiondutors hs een ided y the sme pproh 14,49. The numer of eletrons in mny simple semiondutors n generlly e explined with simple vlene ounting rules tht ount for the numer of eletrons required to fill the vlene nd (often onding) oritls seprted y ndgp with the empty ondution nd (often ntionding) oritls. The semionduting hlf-heusler ompounds re frequently ssoited with n 18 eletron rule (or sometimes 8 eletron rule, s in LiAlSi (REF. 33)), whih suggests tht it my e helpful to desrie hlf-heusler ompounds in the sme wy tht we desrie omplex semiondutors 34,48,50. Zintl ompounds typilly ontin metlli elements tht form onds nd eletroni strutures reminisent of non-metls 23. In Zintl (s opposed to intermetlli) ompounds, the struture nd onding strongly orrelte to the vlene eletron ount (VEC) tht drives stility nd eletroni struture. A orreltion etween the struturl pttern nd the vlene eletron numer is therefore neessry for the desription of ompound s Zintl phse 24. The vlene eletron rule for XYZ hlf-heusler ompounds n e rtionlized in the Zintl Klemm onep5, in whih the most eletropositive element X dontes ll of its vlene eletrons to the more eletronegtive elements Y nd Z. As result, hlf-heusler ompounds n e desried s X n+ (YZ) n. Y nd Z form ovlent tetrhedrlly onded sulttie, ting s Zintl-nion frmework kone (purple tetrhedr in FIG. 1), with similr eletroni struture to the ovlently onded struture of ZnS or Si with the zin lende (or dimond) struture (see the NTl struture in BOX 2). In the se of LiAlSi, the (AlSi) nion hs the sme eletroni onfigurtion s Si with Li + in the othedrl holes to lne the hrge 33. As onsequene of the trnsfer of eletrons, eh of the elements rehes losed-shell onfigurtion, leding to n 8 eletron onfigurtion for LiAlSi nd n 18 eletron onfigurtion for XYZ, in whih Y is d 10 trnsition metl. The struture, onding nd stility reltionship in Zintl ompounds n e filitted y eletron ounting using Zintl vlene onept. In generl, Zintl ompounds re thought to omprise ovlently onded network of omplex nions in whih the hrge is lned y simple tions tht donte their vlene eletrons to reh nole gs onfigurtion. Trditionlly, the VEC nd otet rule ( = 8 VEC, where is the numer of onds) were used to predit onding in Zintl phses 51. Now, Zintl hemistry vlene onept is more useful euse the onds n e esily oserved from the struturl refinements, nd we need to understnd the eletroni struture in terms of doped or metlli Zintl ompounds 52. Here, we define the vlene of n tom (following the otet 8 N rule, where N is the numer of onds) 53 s the numer of exess eletrons n tom rings to the struture reltive to the numer of eletron oritls it is dding to the vlene nd: V = e (1) V = e + 8 (2) For eh tom (where denotes tions nd denotes nions), V is the vlene, e is the numer of vlene eletrons nd is the numer of onds 14. For exmple, in LiAlSi, Li is Li + euse it dontes one eletron to form (AlSi), ut Li does not ontriute to the numer of oritls in the vlene nd. Eh of the four-onded Al (with e = 3) nd Si (e = 4) sites require four ( = 4) eletrons per tom for the onding, giving Al 1 vlene of 1 nd Si 0 vlene of 0. The stoihiometri sum of the vlenes in LiAlSi is 0, nd, s result, Zintl semiondutor n e expeted from the eletroni struture. It should e noted tht the vlene of ovlent tom my not well 4 ADVANCE ONLINE PUBLICATION

5 d e Ni 0 Y Sn 4 Z p x p y p z s d xy d xz d yz d z 2 d x 2 y 2 (NiSn) 4 (YZ) n ZrNiSn XYZ Zr 4+ X n+ * * * 1 * 1 e g g e p x p y p z s d z 2 d x 2 y 2 d xy d xz d yz f Energy E g (YZ) n s p oritls (ntionding) X n+ d oritls Y d oritls Y nd X d oritls (non-onding) g Energy E F (ev) Ni Sn Zr p x p y p z s 1 e 1 X n+ d nd (YZ) n s p oritls (onding) Density of sttes Density of sttes Figure 2 Density of sttes evolution vi moleulr oritls. Colour-oded tomi oritls of tetrhedrlly oordinted Ni in zero vlene (d 10 ) onfigurtion (pnel ) nd the more eletronegtive (tht is, tomi oritls re lower in energy) Sn 4 (pnel ). The resulting moleulr oritls of (NiSn) 4 with the onding nd ntionding s or p oritls re shown in pnel ; the filled Ni d oritls re non-onding. Moleulr oritls of ZrNiSn nd the tomi oritls of Zr 4+ re depited in pnel d nd e. The intertion of the Ni nd Zr d oritls leds to ndgp nd forms the vlene nd ondution nds, nd results in vlene nd edge with Zr d hrter (pnel d). Pnel f is the shemti formtion of the density of sttes in X n+ (YZ) n. The s p onding oritls of the tetrhedrlly (sp 3 hyridized) oordinted Zintl-nion frmework form the lower energy vlene nd (lue) with the X n+ tion ontriution in the vlene nd edge (ornge), euse of the X n+ d oritl intertion with the YZ n frmework. The lolized, non-onding d oritls of Y form flt nd hevy vlene nd (purple). Pnel g depits the lulted prtil density of sttes of ZrNiSn, showing the different elementl ontriutions (Supplementry informtion S1 (ox)). E F, Fermi energy. represent its hrge, s demonstrted y Al 1 ; it would e more urte to lulte the hrge from the eletron density 50. Alterntively, ll of the (AlSi) onding oritls n e ssigned to Si rther thn eqully shred with Al, mking Al tion nd resulting in vlenes Al 3+ nd Si 4 tht mth the expeted isolted ioni hrge. Regrdless of the proedure used to ssign vlene (for exmple, Al 1 or Al 3+ ove), (AlSi) hs the orret numer of vlene oritls to e semiondutor. Zintl ompounds tht ontin trnsition metls n e derived from inry ompounds in the sme wy tht other Zintl ompounds n, s long s the d eletrons re ounted for in the vlene ount 51. Hlf-Heusler ompounds ontining trnsition metls n e understood y nlogy. To this end, the onding environment in hlf-heusler ompounds nd the evolution of the moleulr oritls 33 re given in FIG. 2 e. The tomi oritls nd moleulr oritls hve een olour oded to depit different elementl ontriutions. In the se of ZrNiSn, the nion network of (NiSn) 4 is four-onded dimond-like sustruture tht forms onding nd ntionding moleulr oritls of the forml nion sttes (YZ) n. Beuse this is tetrhedrl onding environment, these onding nd ntionding moleulr oritls normlly omprise Ni nd Sn s nd p tomi oritls 33. There will, however, e some intertion etween the Ni d oritls of the sme symmetry nd the Sn 4 s nd p oritls, leding to slight inrese in the 1 * nd * moleulr oritl energies nd derese in the e nd moleulr oritl energies 45. The intertion of the Ni d tomi oritls in the (NiSn) 4 moleulr oritl (FIG. 2) with the more eletropositive Zr 4+ d tomi oritls in its othedrl rystl field environment results in splitting (onding intertion) of the Ni nd Zr 4+ d oritls. This intertion leds to the ndgp in hlf-heusler ompounds omprising two trnsition metls 33,45. Furthermore, mixing or intertion of the p-onding oritls of (NiSn) 4 n e expeted with Zr 4+ d oritls tht hve pproprite symmetry in the othedrl Sn oordintion environment (indited in FIG. 2d,e ut omitting full othedrl moleulr oritl digrm). The intertion of Zr 4+ d oritls with the onding p oritls of the nioni frmework introdues vlene nd edge with Zr 4+ d oritl hrter. The moleulr oritl pproh n e trnslted into density of sttes 54, enling simplified shemti of the density of sttes of ZrNiSn (FIG. 2f). The tomi oritls of Zr 4+ re higher in energy euse of the higher eletropositive hrter, nd therefore the oritl ontriutions to the ondution nd re from the intertion etween Zr 4+ d oritls nd Ni d oritls. The filled d oritls will hve mostly Ni like hrter. However, it should not e forgotten tht there is mixing of the Zr 4+ nd Ni d oritls, whih n e seen in the lulted prtil density of sttes (FIG. 2g), in whih there is some Zr 4+ ontriution, lthough less thn Ni, to the flt d nd. The flt Ni d oritls re not t the vlene nd edge euse of lrger overlp of the onding s nd p oritls. This leds to wider nd dispersion, s well s the intertion etween Ni d nd Sn s p oritls, whih move the Ni d oritls further downwrds in energy. Density funtionl theory (DFT) NATURE REVIEWS MATERIALS ADVANCE ONLINE PUBLICATION 5

6 lultions onfirm this generl piture for the eletroni struture in FIG. 2g, in whih mostly X element d-oritl hrter n e found t the vlene nd edge s onsequene of the intertion with the (YZ) n onding oritls 43,55. The lulted oritl projeted prtil density of sttes nd full nd struture n e found in Supplementry informtion S2 S4 (figures). These energeti onfigurtions n hnge depending on the omposition of the mteril. A stronger Y nd Z onding intertion will inrese the energy seprtion of the onding nd ntionding moleulr oritls ( 1, nd 1 *, *), resulting in n s or p vlene nd t lower energies nd Y d oritls t the vlene nd edge. By ontrst, the sustitution of X (for exmple, Zr) with n element of higher eletronegtivity (lower in energy) will ultimtely inrese the influene of X on the hevy Y d oritls, leding to hnges in eletroni trnsport. Ni hs full d 10 eletron onfigurtion tht overlps with the s p onding oritls of (NiSn) 4 (FIG. 2). This hs een onfirmed y DFT lultions, whih show tht ll of the flt nd hevy d nds re well elow the Fermi level 48. These lolized non-onding d oritls require ten eletrons for eh Ni tom or ll ten vlene eletrons tht Ni tom ontriutes. Vlene nd sttes for holes, hving some influene from the Ni d nd, re hevy nd therefore exhiit low rrier moility. This is in ontrst to the reltively light ondution nd, whih leds to the etter n type performne ompred with the p type performne in ZrNiSn (REFS 56,57). The size of the ndgp tht is formed depends on the hyridiztion etween the d oritls of X nd Y, s well s the ond strength etween Y nd Z, in this se Ni nd Sn, nd more speifilly their s p-oritl intertion 33. For X = Ti, Zr or Hf, the ndgp is essentilly the sme for the different tions 43, euse their eletronegtivity is similr. Therefore, solid solutions or even omposites with these tions should hve reltively little effet on the ndgp nd other eletroni properties, whih is indeed the se 43. However, hemilly different tions, suh s N, hve lredy een shown to inrese the ndgp nd the density-of sttes effetive mss in the ondution nd 58. The ndgp of XCoS is found to e lrger thn the ndgp in XNiSn (REF. 59), euse the ovlent (YZ) n network hnges signifintly etween the lloys (Co oritls re higher in energy thn Ni oritls) 60, nd the energeti seprtion of the onding nd ntionding oritls is lso lrger. This lrge ndgp suppresses the onset of ipolr ondution ompred with the XNiSn system, llowing good thermoeletri performne in p type XCoS t tempertures higher thn 1,000 K (REF. 61). Chnges or sustitutions of the Y or Z elements n e expeted to engineer the ndgp nd effetive mss, m*, depending on eletronegtivity nd ond strength. A similr eletroni struture to XNiSn is oserved in ternry ompounds desried with vlene (X 4+ ) 3 (Y 0 ) 3 (S 3 ) 4 with X = Zr or Hf nd Y = Ni or Pt (REF. 42). Desriing the onding nd eletroni intertions using Zintl onept is vlid nd provides good understnding of how the different onding intertions in hlf-heusler ompounds influene the eletroni density of sttes. Using qulittive sheme of moleulr oritls leves us with good explntion for the lulted prtil density of sttes (FIG. 2). Hlf-Heusler defet hemistry The Zintl Klemm onept for onding nd vlene n lso e used to understnd defets in hlf-heusler mterils. Point defets, suh s tomi vnies, tomi impurities nd interstitil toms, pper to ontrol the therml nd eletril trnsport properties in hlf-heusler mterils in even more wys thn in typil semiondutor. For exmple, in Zr 4+ NiSn 4, the vlene eletrons of the X n+, in this se Zr 4+, re needed to fill the (NiSn) 4 onding oritls tht mke up the vlene nd, similr to LiAlSi. Aliovlent sustitution of Zr 4+ with n element of different vlene (for exmple, S 3+ ) should lter the eletron ount in n esily preditle wy (resulting in p type mteril with S sustitution) ; however, isovlent sustitution of Zr (for exmple, with Ti or Hf) should hve little effet. For n type mterils, the sustitution of elements with elementl neighours in the periodi tle ontining dditionl eletrons, suh s S on Sn sites, is effetive nd esily explined within Zintl hemistry vlene onept. Similrly, tion doping for p type mterils nd nion doping for n type mt erils is expeted to e most effetive nd lest disruptive to eletron trnsport 65,66. Vnies n lso e understood within the Zintl onding onept. Ctions, suh s Zr 4+, donte eletrons, dding oritls to the ondution nd, ut not to the vlene nd; euse the numer of vlene nd oritls is unltered, tion vnies led to eletron defiieny or p type eletroni trnsport 12,16. Anion vnies led to exess eletrons in ioni mterils euse of the removl of vlene oritls, ut in ovlent strutures the vlene oritls re still needed for onding (or n e interpreted s dditionl lone pir oritls in, for exmple, BGe 5 nd B 8 Ge 43 ) For Ni vnies in Zr 4+ NiSn 4, this mens tht the lolized d oritls re removed from the system, ut the four dditionl eletrons needed per (NiSn) 4 re required for sp 3 tetrhedrl onding. Ultimtely, Ni vnies or exess Ni (with d 10 onfigurtion) should e lrgely eletron neutrl (effetively Ni 0 y ssigning onding (NiSn) 4 oritls to Sn s Sn 4 ) suh tht non-stoihiometry in the form of ZrNi 1+ x Sn n e expeted to not move the Fermi level outside the ndgp (tht is, not t s n effiient dopnt). However, nti-site defets (for exmple, Ni on Sn sites) re expeted to e muh higher in energy euse the Zintl desription gives eh element very different funtion nd vlene. Indeed, no nti-site defets ut signifint nonstoihiometry in ZrNi 1± x Sn with x = ~0.05 hve een oserved 47,70 72 in nominlly stoihiometri ZrNiSn, in whih t lest 5% of the Ni is on the interstitil 4d site, whih is fully oupied in the full-heusler struture 70, Suh lrge mount of exess Ni in undoped ZrNiSn (typilly displying intrinsi ut slightly n type ehviour) implies tht the extr Ni is primrily unhrged, requiring liovlent sustitution (for exmple, S on Sn sites) for extrinsi semionduting properties. 6 ADVANCE ONLINE PUBLICATION

7 Energy Oservle ndgp E g Interstitil Ni in-gp sttes E F Density of sttes Although interstitil Ni should not e strong dopnt, signifint effets on the eletroni nd struture re expeted if x is lrge in ZrNi 1+ x Sn y dding filled d oritls to the eletroni struture. The experimentl ndgp, E g (round 0.15eV) 64,76, of ZrNiSn is muh smller thn expeted y DFT (0.5 ev) 42,43,77. This is highly unexpeted euse DFT usully underestimtes, not overestimtes, the ndgp 78. Exess Ni on interstitil sites re expeted to produe filled (eh Ni interstitil site ontriutes ten eletrons with its d oritls) in gp sttes 79 81, shown shemtilly in FIG. 3. The interstitil Ni d oritls re filled nd, hene, the Fermi level is not expeted to e pinned in the impurity sttes. Interstitil d oritls hve poorer onding with Z toms thn with the norml Y toms nd re therefore higher in energy. Considering the moleulr oritls (FIG. 2d), it is esily understndle tht non-interting d oritls will led to dditionl sttes in the ndgp. These interstitil sttes hve een lulted 72,79 to e ner the ondution nd edge in ZrNi 1+ x Sn (FIG. 3). The presene of these sttes nd of disordered toms re needed to explin the therml nd eletroni trnsport properties of ZrNiSn, suh s the predominne of disorder sttering similr to n lloy for oth eletrons nd phonons even in unlloyed ZrNiSn 64,76,81,82, nd hve een oserved diretly y X ry photoeletron spetrosopy 71,83. Despite drstilly redued ndgp s result of the Ni interstitil nd, n type XNiSn is not overwhelmed y ipolr ondution euse the holes hve very low moility 84. Normlly, when the ndgp is smll reltive to the therml energy, k B T, minority rriers of the opposite sign will e thermlly exited. These minority rriers will redue the thermopower, α, ut only if they hve ppreile moility, μ (REF. 85). This is euse the totl thermopower, α totl, for multiple rriers is given y the sum of individul α, weighted y the individul eletril ondutivity, σ (REF. 86): α totl = (α n σ n + α p σ p )/(σ n + σ p ) (3) Energy (ev) Figure 3 In gp sttes formtion vi d oritls from interstitil Ni. Shemti digrm of the density of sttes in Xn+(YZ)n showing the in gp Ni sttes (purple) resulting from intrinsi defets. These extr sttes in the ndgp led to smller oserved optil ndgp, Eg (REF. 64). Clulted nd struture showing the nd within the energy gp ner the ondution nd edge 79. EF, Fermi energy. R Γ X M Γ The flt Ni interstitil nds hve high m* nd therefore low μ nd low σ (σ = neμ). This impurity vlene nd hs suh low moility tht its ility to redue the thermo power is suppressed until higher tempertures re rehed. The effetive ndgp in n type XNiSn is 0.3 ev insted of the tul 0.15 ev gp 64. The soluility of exess Ni my lso e relted to mirostruture nd therefore to strtegies tht redue therml ondutivity y forming omposites 87. For exmple, the disorder of Ni defets in XNi 1+ x Sn dds entropy tht enhnes the temperture dependene of the Ni soluility. This should led to solid-stte nnoprtile preipittion mehnisms 88, whih my explin full-heusler endotxil nnoprtile formtion in hlf-heusler ompositions 89,90. Suh nnoprtile omposites hve not only een studied for their ility to redue lttie therml ondutivity ut lso for their possile effets on the eletroni struture 32, In the se of XCoS, X dontes four vlene eletrons forming CoS 4 suunit, in whih Co exhiits nominl vlene of 1 to form the d 10 onfigurtion. A Co vny will not e eletron neutrl unless it forms lolized d 9 onfigurtion, whih is unlikely. Thus, XCoS is expeted to remin stoihiometri, s hs een oserved experimentlly 91, in ontrst to XNi 1+ x Sn. Empiril trnsport model in hlf-heuslers The predition of the semionduting trnsport properties of Zintl phses using m* hs proved to e powerful tool to understnd nd optimize these mterils 10,15,16,28,29,92. Models using m* impliitly fit trnsport dt to proli nd model, in whih devitions from the model n e used to identify multi-nd or nonproli nd effets 93,94. In this Review, we ttempt to understnd hlf-heusler ompounds using m* to onfirm the piture of Zintl ompound semi ondutor. Reders re referred to My et l. 92 for detiled informtion on the methods used. Even though it would e of interest to understnd the properties of hlf-heusler ompounds t high tempertures, t whih the zt is highest, the model used is most urte t low tempertures in the region of single rrier type. Furthermore, there is signifint lk of Hll-effet dt t higher tempertures. As result, we nlyse the pulished Seeek oeffiient, α, s funtion of Hll rrier onentrtion, n H, for vrious n type XNiSn lloys 82, t 300 K (FIG. 4). A tle of the hemil ompositions of these hlf-heulser ompounds nd their orresponding trnsport dt (Seeek oeffiient nd rrier onentrtion) n e found in Supplementry informtion S5 (tle). FIGURE 4 ompres trnsport dt with modelled Pisrenko reltion (α s funtion of n H ) using the prmeters for m*, nd drift moility, μ 0, otined y Zhu nd ollegues 82. Unfortuntely, similr nlysis for p type XNiSn is not possile euse of lk of good Hll dt, possily s result of the low moility of the holes. The dt in FIG. 4 generlly follow the trend of semiondutor, orroorting the Zintl hemistry formlism nd the onlusion of semiondutor-type nd ehviour in the hlf-heusler ompound, XNiSn. However, there is sustntil stter in the dt, whih my e NATURE REVIEWS MATERIALS ADVANCE ONLINE PUBLICATION 7

8 α (μv K 1 ) XNiSn XCoS 1 x Sn x n H (m 3 ) Figure 4 A Pisrenko plot of hlf-heusler ompounds. The Seeek oeffiient, α, s funtion of the Hll rrier onentrtion, n H, for vrious n type XNiSn (REFS 82,95 105) nd p-type XCoS (REF. 114) hlf-heusler ompounds t 300 K. For n type XNiSn, the dt otined using the prmeters of Xie et l. 82 revel n effetive mss, m*, of 2.9 m e nd drift moility, μ 0, of 30 m 2 Vs 1, nd show tht semionduting nd model desries the trend for XNiSn hlf-heusler ompounds. There is sustntil stter in the m* of literture dt tht my e onsequene of impurities nd ompositionl vritions. For p type XCoS, lrger m* (10 m e ) nd smller μ 0 (3.6 m 2 Vs 1 ) 114 is shown. relted to impurity phses nd multiple omponents in lloys. Multiphse ehviour n led to signifint devitions from the single m* model euse of in homogeneous rrier onentrtions or nd struture 106. It is well known tht hlf-heusler ompounds re prone to the formtion of impurities, influened y the omposition nd synthesis proedure 38. For exmple, the XNiSn phse ppers to require syntheti Ni exess 73,82 with the exess Ni in the empty fourth sulttie, resulting in the forementioned in gp sttes. At lrge vlues of x metlli full-heusler inlusions n nulete 31, , strongly influening the eletril ondutivity nd pprent rrier onentrtion even efore suh prtiles form peroltion pth 106. Furthermore, it hs een shown tht even smples tht seem to e phse pure n e omposed of multiple hlf-heusler phses with only slight vritions in lttie prmeters nd therefore smll differenes in stoihiometry nd rrier onentrtion 112. The stter in the reported vlues nd the possile inrese of m* with n H ould e onsequenes of the omplex nd ehviour. This influene of hnging m* my our s result of light-to-hevy nd trnsition t inresing rrier onentrtion, s seen in L 3 x Te 4, possily euse of the hnge to more Zr oritls or the (NiSn) 4 oritls t higher energies 113. In this se, redued onding intertion etween Y nd Z in n type mterils is expeted to led to n inresed ontriution of the (YZ) n ntionding nds to the trnsport t lower rrier onentrtions s these shift to lower energies. This would imply the possiility of hieving nd onvergene in hlf-heusler mterils, potentilly leding to etter thermoeletri performnes. As onsequene of this strong tendeny of im purity formtion, it ws not possile to nlyse the Pisrenko reltion of mny pulished XCoS ompounds. Mgneti seondry phses tht n e formed (for exmple, in full-heusler ompounds or elementl Co) 111 my use the unrelile Hll dt in the literture. Nevertheless, it hs een shown tht systems with p type XCoS 1 x Sn x n e desried with single m*, when there re no mgneti impurities present 114 (results re shown in FIG. 4). For referene purposes only (s the true mss will depend on the sttering), m* = 10 m e (ousti phonon sttering) nd μ 0 = 3.6 m 2 Vs 1 show good greement with pulished dt, gin orroorting semionduting ehviour in hlf-heusler ompounds 81. This higher density-of-sttes effetive mss t higher rrier onentrtions my indite Fermi-level lotion deeper in the vlene nd, in whih the Co d oritls re minly ontriuting to the high density of sttes. In nother p type system (N/V)FeS, the vlidity nd utility of n m* model hve een shown. More speifilly, inresing the rtio of V results in n inrese in the m* of the vlene nd 115,116. In the Zintl formlism, tht n e understood euse of the lower eletronegtivity differene etween V nd the Fe S frmework, V will ontriute more to the ovlent onding, nd more V oritls will mix with the vlene nd edge, explining the inrese in m*. Conlusions Hlf-Heusler ompounds n e understood using Zintl hemistry, in whih the different onding intertions of ovlently onded sulttie nd the more ioni intertion to the most eletronegtive tion explin the existing eletroni strutures. Rther thn thinking of these mterils s intermetlli ompounds, we insted use Zintl hemistry to explin the preise vlene eletron ount nd the resulting lrge ndgp tht n e used to predit new Hlf-Heusler ompounds. In ddition, the growing evidene for exess interstitil Ni in XNiSn n explin the unexpetedly smll ndgp nd unusully low hole moility tht llow good thermoeletri performne of the n type mteril. Ultimtely, understnding the onding intertions nd their influene on the eletroni struture my led to strtegies tht n optimize the hemistry of hlf-heusler ompounds nd possily engineer defets for improving their eletroni properties. An evlution of the literture dt suggests tht to first order it my e possile to desrie the n type XNiSn nd some p type XCoS hlf-heuslers s rigidnd semiondutors with n effetive mss. The tendeny of hlf-heuslers with mixed X toms to form impurity phses ppers to led to omposites with devitions in trnsport properties. Nevertheless, suh model n e used to dedue the effet of nd engineering the moility, μ, nd effetive mss, m*, using hemil doping strtegies within Zintl hemistry onept. Although multiphse mterils my ultimtely e superior for thermoeletri pplitions, there is still muh to lern out the omplex eletroni struture in these mterils from theoretil nd experimentl investigtions of model, single-phse ompositions. 8 ADVANCE ONLINE PUBLICATION

9 1. Rowe, D. M. Hndook of Thermoeletris Ch (CRC Press, 1995). 2. Bell, L. E. Cooling, heting, generting power, nd reovering wste het with thermoeletri systems. Siene 321, (2008). 3. Bj, S. et l. Enhned thermoeletri performne of dul-element-filled skutterudites B x Ce y Co 4 S 12. At Mter. 57, (2009). 4. Sles, B., Mndrus, D. & Willims, R. Filled skutterudite ntimonides: new lss of thermoeletri mterils. Siene 272, (1996). 5. Shi, B. X. et l. On the design of high-effiieny thermoeletri lthrtes through systemti rosssustitution of frmework elements. Adv. Funt. Mter. 30, (2010). 6. Zhng, H. et l. Atomi intertions in the p type lthrte I B 8 Au 5.3 Ge Inorg. Chem. 50, (2011). 7. Sig, Y., Du, B., Deng, S. K., Kjis, K. & Tktke, T. Thermoeletri properties of type-viii lthrte B 8 G 16 Sn 30 doped with Cu. J. Alloy. Comp. 537, (2012). 8. Christensen, M., Johnsen, S. & Iversen, B. B. Thermoeletri lthrtes of type I. Dlt. Trns. 39, (2010). 9. Zeier, W. G. et l. Phonon sttering through lol nisotropi struturl disorder in the thermoeletri solid solution Cu 2 Zn 1 x Fe x GeSe 4. J. Am. Chem. So. 135, (2013). 10. Zeier, W. G. et l. Influene of nno phse segregtion on the thermoeletri properties of the p type doped stnnite ompound Cu 2+x Zn 1 x GeSe 4. J. Am. Chem. So. 134, (2012). 11. Plirdpring, T. et l. Chlopyrite CuGTe 2 : higheffiieny ulk thermoeletri mteril. Adv. Mter. 24, (2012). 12. Pomrehn, G. S., Zevlkink, A., Zeier, W. G., vn de Wlle, A. & Snyder, G. J. Defet-ontrolled eletroni properties in AZn 2 S 2 Zintl phses. Angew. Chem. Int. Ed. Engl. 53, (2014). 13. Kuzlrih, S. M., Brown, S. R. & Snyder, G. J. Zintl phses for thermoeletri devies. Dlt. Trns. 21, (2007). 14. Toerer, E. S., My, A. F. & Snyder, G. J. Zintl hemistry for designing high effiieny thermoeletri mterils. Chem. Mter. 22, (2010). 15. Zevlkink, A. et l. Thermoeletri properties of Sr 3 GS 3 hin-forming Zintl ompound. Energy Environ. Si. 5, (2012). 16. Zevlkink, A. et l. Nonstoihiometry in the Zintl phse Y 1 d Zn 2 S 2 s route to thermoeletri optimiztion. Chem. Mter. 26, (2014). 17. Pei, Y., Wng, H. & Snyder, G. J. Bnd engineering of thermoeleti mterils. Adv. Mter. 24, (2012). 18. Pei, Y. et l. Convergene of eletroni nds for high performne ulk thermoeletris. Nture 473, (2011). A nie demonstrtion of the enefit of multiple vlley Fermi surfe nd the onept of onverging nds for optimizing thermoeletri properties. 19. Pei, Y., Heinz, N. A., LLonde, A. & Snyder, G. J. Comintion of lrge nnostrutures nd omplex nd struture for high performne thermoeletri led telluride. Energy Environ. Si. 4, (2011). 20. Zeier, W. G. et l. Bnd onvergene in the non-ui hlopyrite ompounds Cu 2 MGeSe 4. J. Mter. Chem. C 2, (2014). 21. Shrfe, S., Krus, F., Stegmier, S., Shier, A. & Fässler, T. F. Zintl ions, ge ompounds, nd intermetlloid lusters of group 14 nd group 15 elements ngewndte. Angew. Chem. Int. Ed. Engl. 50, (2011). 22. Shäfer, H., Eisenmnn, B. & Müller, W. Zintl phses: trnsitions etween metlli nd ioni onding. Angew. Chem. Int. Ed. Engl. 12, (1973). 23. Zintl, E. Intermetllishe Verindungen. Angew. Chem. 52, 1 6 (1939). 24. Nesper, R. The Zintl-Klemm onept historil survey. Z. Anorg. Allg. Chem. 640, (2014). This work provides good overview over the Zintl Klemm onding onept. 25. Klemm, W. Unusul oxidtion sttes. Angew. Chem. 63, (1951). 26. Toerer, E. S., Zevlkink, A. & Snyder, G. J. Phonon engineering through rystl hemistry. J. Mter. Chem. 21, (2011). 27. Aydemir, U. et l. Thermoeletri enhnement in BG 2 S 2 y Zn doping. Chem. Mter. 27, (2015). 28. Zeier, W. G., Zevlkink, A., Shehtel, E., Tremel, W. & Snyder, G. J. Thermoeletri properties of Zn doped C 3 AlS 3. J. Mter. Chem. 22, (2012). 29. Zevlkink, A., Toerer, E. S., Zeier, W. G., Flge-Lrsen, E. & Snyder, G. J. C 3 AlS 3 : n inexpensive, non-toxi thermoeletri mteril for wste het reovery. Energy Environ. Si. 4, (2011). 30. Luo, H. et l. A lrge fmily of filled skutterudites stilized y eletron ount. Nt. Commun. 6, 6489 (2015). 31. Liu, Y. et l. Lrge enhnements of thermopower nd rrier moility in quntum dot engineered ulk semiondutors. J. Am. Chem. So. 135, (2013). 32. Xie, W. et l. Reent dvnes in nnostrutured thermoeletri hlf-heusler ompounds. Nnomterils 2, (2012). 33. Grf, T., Felser, C. & Prkin, S. S. P. Simple rules for the understnding of Heusler ompounds. Prog. Solid Stte Chem. 39, 1 50 (2011). This review provides omplete overview of hllenges nd pplitions of hlf-heusler ompounds. 34. Kndpl, H., Felser, C. & Seshdri, R. Covlent onding nd the nture of nd gps in some hlf-heusler ompounds. J. Phys. D Appl. Phys. 39, (2006). This pulition introdues the onding sitution in hlf-heusler semiondutors. 35. Bos, J. W. & Downie, R. A. Hlf-Heusler thermoeletris: omplex lss of mterils. J. Phys. Condens. Mtter 26, (2014). 36. Kimur, Y. & Chi, Y. W. Ordered strutures nd thermoeletri properties of MNiSn (M = Ti, Zr, Hf)- sed hlf-heusler ompounds ffeted y lose reltionship with Heusler ompounds. JOM 67, (2015). 37. Mrtín-González, M., Cllero-Clero, O. & Díz-Cho, P. Nnoengineering thermoeletris for 21st entury: energy hrvesting nd other trends in the field. Renewle Sustinle Energy Rev. 24, (2013). 38. Chen, S. & Ren, Z. Reent progress in hlf-heusler for moderte temperture thermoeletri pplitions. Mter. Tody 16, (2013). 39. Crrete, J., Li, W., Mingo, N., Wng, S. & Curtrolo, S. Finding unpreedentedly low-therml-ondutivity hlf-heusler semiondutors vi high-throughput mterils modeling. Phys. Rev. X 4, (2014). 40. Crrete, J., Mingo, N., Wng, S. & Curtrolo, S. Nnogrined hlf-heusler semiondutors s dvned thermoeletris: n initio highthroughput sttistil study. Adv. Funt. Mter. 24, (2014). 41. Chput, L., Tol, J., Peheur, P. & Sherrer, H. Eletroni struture nd thermopower of Ni(Ti 0.5 Hf 0.5 ) Sn nd relted hlf-heusler phses. Phys. Rev. B 73, (2006). 42. Lrson, P., Mhnti, S. & Kntzidis, M. G. Struture stility of Ni ontining hlf-heusler ompounds. Phys. Rev. B 62, (2000). 43. Ögüt, S. & Re, K. Bnd gp nd stility in the ternry intermetlli ompounds NiSnM (M= Ti, Zr, Hf) first prinile study. Phys. Rev. B 51, (1995). 44. Yng, J. et l. Evlution of hlf-heulser ompounds s thermoeletri mterils sed on the lulted eletril trnsport properties. Adv. Funt. Mter. 18, (2008). 45. Gutier, R. et l. Predition nd elerted lortory disovery of previously unknown 18 eletron ABX ompounds. Nt. Chem. 7, (2015). 46. Bende, D., Grin, Y. & Wgner, F. R. Covlene nd ioniity in MgAgAs-type ompounds. Chem. Eur. J. 20, (2014). 47. Xie, H. H. et l. Interreltion etween tomi swithing disorder nd thermoeletri properties of ZrNiSn hlf- Heusler ompounds. CrystEngComm 14, 4467 (2012). 48. Köhler, J., Deng, S., Lee, C. & Whngo, M. H. On the origin of nd gp in ompounds of dimond-like strutures. Inorg. Chem. 46, (2007). This pulition introdues the possile view of hlf-heusler mterils s Zintl phses. 49. Snyder, G. J. & Toerer, E. S. Complex thermoeletri mterils. Nt. Mter. 7, (2008). This review illustrtes the hllenges nd possile guidelines in omplex thermoeletris. 50. Bende, D., Wgner, F. R. & Grin, Y. 8 N rule nd hemil onding in min-group MgAgAs-type ompounds. Inorg. Chem. 54, (2015). 51. Kuzlrih, S. M. Chemistry, Struture, nd Bonding of Zintl Phses nd Ions (Wiley VCH, 1996). 52. Mooser, E. & Person, W. B. The hemil ond in semiondutors. J. Eletron. 1, 629 (1956). 53. Person, W. B. The rystl strutures of semiondutors nd generl vlene rule. At Cryst. 17, 1 15 (1964). 54. Hoffmnn, R. How hemistry nd physis meet in the solid stte. Angew. Chem. Int. Ed. Engl. 26, (1987). This seminl review explins nd strutures from hemil perspetive. 55. Ourdi, S. et l. Eletroni struture nd optil, mehnil, nd trnsport properties of the pure, eletron-doped, nd hole-doped Heusler ompound CoTiS. Phys. Rev. B 86, (2012). 56. Xie, H., Yu, C., He, B., Zhu, T. & Zho, X. Thermoeletri properties nd n- to p type onversion of Co- doped ZrNiSn-sed hlf- Heusler lloys. J. Eletron. Mter. 4, (2012). 57. Joshi, G. et l. Enhnement in thermoeletri figureof -merit of n n- type hlf-heusler ompound y the nnoomposite pproh. Adv. Energy Mter. 1, (2011). 58. Mut, H., Knemitsu, T., Kuroski, K. & Ymnk, S. High-temperture thermoeletri properties of N doped MNiSn (M = Ti, Zr) hlf-heusler ompound. J. Alloys Compd. 469, (2009). 59. Ourdi, S. et l. Eletroni struture nd optil, mehnil, nd trnsport properties of the pure, eletron- doped, nd hole- doped Heusler ompound CoTiS. Phys. Rev. B 86, (2012). 60. Cox, P. A. The Eletroni Struture nd Chemistry of Solids Ch (Oxford Univ. Press, 1987). 61. Culp, S. et l. (Zr,Hf)Co(S,Sn) hlf-heusler phses s high temperture (>700 C) p -type thermoeletri mterils. Appl. Phys. Lett. 93, (2008). 62. Romk, L. et l. Eletroni struture of the Ti 1 x S x NiSn nd Zr 1 x S x NiSn solid solutions. J. Alloys Compd. 396, (2005). 63. Horyn, A. et l. Crystl struture nd physil properties of (Ti,S)NiSn nd (Zr,S)NiSn solid solutions. J. Alloys Compd. 363, (2004). 64. Shmitt, J., Gis, Z. M., Snyder, J. & Felser, C. Resolving the true nd gp of ZrNiSn hlf-heusler thermoeletri mterils. Mter. Horiz. 2, (2015). 65. Wng, H., Co, X., Tkgiw, Y. & Snyder, G. J. Higher moility in ulk semiondutors y seprting the dopnts from the hrge-onduting nd se study of thermoeletri PSe. Mter. Horiz. 2, (2015). 66. Zunger, A. Prtil doping priniples. Appl. Phys. Lett. 83, (2003). This work is guideline for understnding defet hemistry nd the influenes of defets in semiondutors. 67. Aydemir, U. et l. BGe 5 : new type of intermetlli lthrte. J. Am. Chem. So. 132, (2010). 68. Cndolfi, C. et l. Trnsport properties of the lthrte BGe 5. J. Appl. Phys. 110, (2011). 69. Aydemir, U. et l. Crystl struture nd trnsport properties of B 8 Ge 43. Dlt. Trns. 39, (2010). 70. Downie, R. A., Smith, R. I., MLren, D. A. & Bos, J. W. G. Metl distriutions, effiient n type doping, nd evidene for in gp sttes in TiNiM y Sn (M = Co, Ni, Cu) hlf-heusler nnoomposites. Chem. Mter. 27, (2015). 71. Miymoto, K. et l. In gp eletroni sttes responsile for the exellent thermoeletri properties of Ni sed hlf-heusler lloys. Appl. Phys. Express 1, (2008). 72. Miyzki, H. et l. Eletroni nd lol rystl strutures of the ZrNiSn hlf-heusler thermoeletri mteril. Mter. Trns. 55, (2014). 73. Dougls, J. E., Chter, P.., Brown, C. M., Pollok, T. M. & Seshdri, R. Nnosle struturl heterogeneity in Ni rih hlf-heusler TiNiSn. J. Appl. Phys. 116, (2014). 74. Downie, R. A., Brzk, S. A., Smith, R. I. & Bos, J. W. G. Compositions nd thermoeletri properties of XNiSn (X = Ti, Zr, Hf) hlf-heusler lloys. J. Mter. Chem. C 3, (2015). 75. Zhu, T., Fu, C., Xie, H., Liu, Y. & Zho, X. High effiieny hlf-heusler thermoeletri mterils for energy hrvesting. Adv. Energy Mter. 5, (2015). 76. Aliev, F. G., Kozyrkov, V. V., Moshhlko, V. V., Solozdr, R. V. & Durzewski, K. Nrrow nd in the intermetlli ompounds MNiSn (M=Ti, Zr, Hf). Z. Phys. B. Condens. Mtter 80, (1988). NATURE REVIEWS MATERIALS ADVANCE ONLINE PUBLICATION 9

10 77. Slerski, A., Jezierski, A., Lütkehoff, S. & Neumnn, M. Eletroni struture of X 2 ZrSn nd XZrSn-type Heusler lloys with X = Co or Ni. Phys. Rev. B 57, (1998). 78. Seidl, A., Görling, A., Vogl, P., Mjewski, J. A. & Levy, M. Generlized Kohn Shm shemes nd the nd-gp prolem. Phys. Rev. B 53, (1996). 79. Do, D. T., Mhnti, S. S. & Pulikkoti, J. J. Eletroni struture of Zr Ni Sn systems: role of lustering nd nnostrutures in hlf-heusler nd Heusler limits. J. Phys. Condens. Mtter 26, (2014). 80. Xie, H. et l. Interreltion etween tomi switshing disorder nd thermoeletri properties of ZrNiSn hlf- Heusler ompounds. Cryst. Eng. Comm. 14, 4467 (2012). 81. Xie, H. et l. The intrinsi disorder relted lloy sttering in ZrNiSn hlf-heusler thermoeletri mterils. Si. Rep. 4, 6888 (2014). 82. Xie, H. et l. Benefiil ontriution of lloy disorder to eletron nd phonon trnsport in hlf-heusler thermoeletri mterils. Adv. Funt. Mter. 23, (2013). 83. Httori, K., Miyzki, H., Yoshid, K., Inuki, M. & Nishino, Y. Diret oservtion of the eletroni struture in thermoeletri hlf-heusler lloys Zr 1 x M x NiSn (M = Y nd N). J. Appl. Phys. 117, (2015). 84. Wng, S. et l. Condutivity-limiting ipolr therml ondutivity in semiondutors. Si. Rep. 5, (2015). 85. Gis, Z. M., Kim, H. S., Wng, H. & Snyder, G. J. Bnd gp estimtion from temperture dependent Seeek mesurement devitions from the 2e S mx T mx reltion. Appl. Phys. Lett. 106, (2015). 86. Wood, C. Mterils for thermoeletri energy onversion. Rep. Prog. Phys. 51, (1988). 87. Heinz, N. A., Iked, T., Snyder, G. J. & Medlin, D. L. Interfil disonnetions t S 2 Te 3 preipittes in PTe: mehnisms of strin ommodtion nd phse trnsformtion t tetrdymite/rokslt telluride interfe. At Mter. 59, (2011). 88. Heinz, N. A., Iked, T., Pei, Y. & Snyder, G. J. Applying quntittive mirostruture ontrol in dvned funtionl omposites. Adv. Funt. Mter. 24, (2014). 89. Mji, P. et l. Thermoeletri performne of nnostrutured p type Zr 0.5 Hf 0.5 Co 0.4 Rh 0.6 S 1 x Sn x hlf- Heusler lloys. J. Solid Stte Chem. 202, (2013). 90. Mkongo, J. P. et l. Simultneous lrge enhnements in thermopower nd eletril ondutivity of ulk nnostrutured hlf-heusler lloys. J. Am. Chem. So. 133, (2011). 91. Skovsen, I. et l. Multi-temperture synhrotron PXRD nd physil properties study of hlf-heusler TiCoS. Dlt. Trns. 39, (2010). 92. My, A. F., Toerer, E. S., Srmt, A. & Snyder, G. J. Chrteriztion nd nlysis of thermoeletri trnsport in n type B 8 G 16 x Ge 30+x. Phys. Rev. B 80, (2009). 93. Rvih, Y. I., Efimov, B. A. & Smirnov, I. A. Semionduting Led Chlogenides (Plenum Press, 1970). 94. Singh, D. & Mzin, I. Clulted thermoeletri properties of L filled skutterudites. Phys. Rev. B 56, R1650(R) (1997). 95. Chen, S. et l. Effet of Hf onentrtion on thermoeletri properties of nnostrutured n type hlf-heusler mterils Hf x Zr 1 x NiSn 0.99 S Adv. Energy Mter. 3, (2013). 96. Głzk, K. et l. Improved thermoeletri performne of (Zr 0.3 Hf 0.7 )NiSn hlf-heusler ompounds y T sustitution. J. Appl. Phys. 115, (2014). 97. Kim, S. W., Kimur, Y. & Mishim, Y. High temperture thermoeletri properties of TiNiSn-sed hlf-heusler ompounds. Intermetllis 15, (2007). 98. Lee, P. J., Tseng, S. C. & Cho, L. S. High-temperture thermoeletri properties of Ti x (ZrHf) 0.99 x V 0.01 Ni 0.9 Pd 0.1 Sn 0.99 S 0.01 hlf-heusler lloys. J. Alloys Compd. 496, (2010). 99. Simonson, J. W. & Poon, S. J. Eletroni struture of trnsition metl-doped XNiSn nd XCoS (X = Hf, Zr) phses in the viinity of the nd gp. J. Phys. Condens. Mtter 20, (2008) Simonson, J. W., Wu, D., Xie, W. J., Tritt, T. M. & Poon, S. J. Introdution of resonnt sttes nd enhnement of thermoeletri properties in hlf- Heusler lloys. Phys. Rev. B 83, (2011) Uher, C., Yng, J., Hu, S., Morelli, D. T. & Meisner, G. P. Trnsport properties of pure nd doped MNiSn (M=Zr, Hf). Phys. Rev. B 59, (1999) Xio, K., Zhu, T. J., Yu, C., Yng, S. H. & Zho, X. B. P type doping of Hf 0.6 Zr 0.4 NiSn hlf-heusler thermoeletri mterils prepred y levittion melting nd sprk plsm sintering. J. Mter. Res. 26, (2011) Yu, C. et l. High-performne hlf-heusler thermoeletri mterils Hf 1 x Zr x NiSn 1 y S y prepred y levittion melting nd sprk plsm sintering. At Mter. 57, (2009) Yu, C. et l. Redued grin size nd improved thermoeletri properties of melt spun (Hf,Zr)NiSn hlf- Heusler lloys. J. Eletron. Mter. 39, (2010) Zhu, T. J. et l. Effets of yttrium doping on the thermoeletri properties of Hf 0.6 Zr 0.4 NiSn 0.98 S 0.02 hlf-heusler lloys. J. Appl. Phys. 108, (2010) Dy, T. W., Zeier, W. G., Brown, D. R., Melot, B. C. & Snyder, G. J. Determining ondutivity nd moility vlues of individul omponents in multiphse omposite Cu 1.97 Ag 0.03 Se. Appl. Phys. Lett. 105, (2014) Shwll, M. et l. Thermomgneti properties improved y self-orgnized flower-like phse seprtion of ferromgneti Co 2 Dy 0.5 Mn 0.5 Sn. Adv. Funt. Mter. 22, (2012) Hzm, H., Mtsur, M., Ashi, R. & Tkeuhi, T. Improvement of thermoeletri properties for hlf- Heusler TiNiSn y interstitil Ni defets. J. Appl. Phys. 110, (2011) Romnk, V. et l. Peulirities of struturl disorder in Zr- nd Hf ontining Heusler nd hlf-heusler stnnides. Intermetllis 35, (2013) Birkel, C. S. et l. Improving the thermoeletri properties of hlf-heusler TiNiSn through inlusion of seond full-heusler phse: mirowve preprtion nd sprk plsm sintering of TiNi (1+x) Sn. Phys. Chem. Chem. Phys. 15, (2013) Birkel, C. S. et l. Rpid mirowve preprtion of thermoeletri TiNiSn nd TiCoS hlf-heusler ompounds. Chem. Mter. 24, (2012) Shwll, M. & Blke, B. Enhned thermoeletri performne in the p type hlf-heusler (Ti/Zr/Hf) CoS 0.8 Sn 0.2 system vi phse seprtion. Phys. Chem. Chem. Phys. 16, (2014) My, A. F., Singh, D. J. & Snyder, G. J. Influene of nd struture on the lrge thermoeletri performne of lnthnum telluride. Phys. Rev. B 79, (2009) Rush, E., Blke, B., Deshuer, T., Ourdi, S. & Felser, C. Chrge rrier onentrtion optimiztion of thermoeletri p type Hlf-Heulser ompounds. APL Mter. 2, (2015) Fu, C. et l. Relizing high figure of merit in hevynd p type hlf-heusler thermoeletri mterils. Nt. Commun. 6, 8144 (2015) Fu, C., Zhu, T., Liu, Y., Xie, H. & Zho, X. Bnd engineering of high performne p type FeNS sed hlf-heusler thermoeletri mterils for figure of merit zt>1. Energy Environ. Si. 8, (2015) Nols, G. S., Poon, J. & Kntzidis, M. G. Reent developments thermoeletri mterils. MRS Bull. 31, (2006) Johnsen, S. et l. Nnostrutures oost the thermoeletri performne of PS. J. Am. Chem. So. 133, (2011) Sootsmn, J. R., Chung, D. Y. & Kntzidis, M. G. New nd old onepts in thermoeletri mterils. Angew. Chem. Int. Ed. Engl. 48, (2009) Liu, H. et l. Copper ion-phonon liquid thermoeletri mterils. Nt. Mter. 11, (2012) Weldert, K. S. et l. Thermoeletri trnsport in Cu 7 PSe 6 with high opper ioni moility. J. Am. Chem. So. 136, (2014) Bisws, K. et l. High-performne ulk thermoeletris with ll-sle hierrhil rhitetures. Nture 489, (2012) Zho, L. D. et l. All-sle hierrhil thermoeletris: MgTe in PTe filittes vlene nd onvergene nd suppresses ipolr therml trnsport for high performne. Energy Environ. Si. 6, (2013) Cordier, G., Shäfer, H. & Stelter, M. C 3 AlS 3 und C 5 Al 2 Bi 6, zwei neue Zintlphsen mit kettenförmigen Anionen. Z. Nturforsh. 39, (1984) Cordier, G. & Shäfer, H. C 3 AlAs 3 -ein intermetllishes nlogon zu den kettensiliten. Angew. Chem. 93, 474 (1981) Brown, S. R., Kuzlrih, S. M., Gsoin, F. & Snyder, G. J. Y 14 MnS 11 : new high effiieny thermoeletri mteril for power genertion. Chem. Mter. 18, (2006) Toerer, E. S. et l. Trversing the metl insultor trnsition in Zintl phse: rtionl enhnement of thermoeletri effiieny in Y 14 Mn 1 x Al x S 11. Adv. Funt. Mter. 18, (2008) Toerer, E. S., Brown, S. R., Iked, T., Kuzlrih, S. M. & Snyder, G. J. High thermoeletri effiieny in lnthnum doped Y 14 MnS 11. Appl. Phys. Lett. 93, (2008) Gsoin, F., Ottensmnn, S., Strk, D., Hile, S. M. & Snyder, G. J. Zintl phses s thermoeletri mterils: tuned trnsport properties of the ompounds C x Y 1 x Zn 2 S 2. Adv. Funt. Mter. 15, (2005). Aknowledgements The uthors thnk A. Zunger nd Y. Yu for helpful disussions. W.G.Z. nd G.J.S. knowledge the EFRC Solid-Stte Solr- Therml Energy Conversion Center (S3TEC) wrd numer DE SC nd funding from the Bosh-BERN progrm. J.S. nd C.F. knowledge the Germn BMBF joint projet TEG The nd struture nd prtil density of sttes lultions for this projet were performed under the Mterils Projet work, supported y the Deprtment of Energy Bsi Energy Sienes progrm under Grnt No. EDCBEE, DOE Contrt DE AC02 05CH Competing interests sttement The uthors delre no ompeting interests. SUPPLEMENTARY INFORMATION See online rtile: S1 (ox) S2 (figure) S3 (figure) S4 (figure) S5 (tle) ALL LINKS ARE ACTIVE IN THE ONLINE PDF 10 ADVANCE ONLINE PUBLICATION

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS IN-SITU PROBING OF DOMAIN POLING IN Bi 4 Ti 3 O 12 THIN FILMS BY OPTICAL SECOND HARMONIC GENERATION YANIV BARAD, VENKATRAMAN GOPALAN Mterils Reserh Lortory

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and Leture 7: iffusion of Ions: Prt : oupled diffusion of tions nd nions s desried y Nernst-Plnk Eqution Tody s topis Continue to understnd the fundmentl kinetis prmeters of diffusion of ions within n eletrilly

More information

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE V.S. Gordeev, G.A. Myskov Russin Federl Nuler Center All-Russi Sientifi Reserh Institute of Experimentl Physis (RFNC-VNIIEF)

More information

A Study on the Properties of Rational Triangles

A Study on the Properties of Rational Triangles Interntionl Journl of Mthemtis Reserh. ISSN 0976-5840 Volume 6, Numer (04), pp. 8-9 Interntionl Reserh Pulition House http://www.irphouse.om Study on the Properties of Rtionl Tringles M. Q. lm, M.R. Hssn

More information

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3. . Spetrosopy Mss spetrosopy igh resolution mss spetrometry n e used to determine the moleulr formul of ompound from the urte mss of the moleulr ion For exmple, the following moleulr formuls ll hve rough

More information

Review Topic 14: Relationships between two numerical variables

Review Topic 14: Relationships between two numerical variables Review Topi 14: Reltionships etween two numeril vriles Multiple hoie 1. Whih of the following stterplots est demonstrtes line of est fit? A B C D E 2. The regression line eqution for the following grph

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM Chem 44 - Homework due ondy, pr. 8, 4, P.. . Put this in eq 8.4 terms: E m = m h /m e L for L=d The degenery in the ring system nd the inresed sping per level (4x bigger) mkes the sping between the HOO

More information

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. 1 This igrm represents the energy hnge tht ours when eletron in trnsition metl ion is exite y visile light. Give the eqution tht reltes the energy hnge ΔE to the Plnk onstnt, h, n the frequeny, v, of the

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R /10/010 Question 1 1 mole of idel gs is rought to finl stte F y one of three proesses tht hve different initil sttes s shown in the figure. Wht is true for the temperture hnge etween initil nd finl sttes?

More information

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL P3.1 Kot Iwmur*, Hiroto Kitgw Jpn Meteorologil Ageny 1. INTRODUCTION Jpn Meteorologil Ageny

More information

ANALYSIS AND MODELLING OF RAINFALL EVENTS

ANALYSIS AND MODELLING OF RAINFALL EVENTS Proeedings of the 14 th Interntionl Conferene on Environmentl Siene nd Tehnology Athens, Greee, 3-5 Septemer 215 ANALYSIS AND MODELLING OF RAINFALL EVENTS IOANNIDIS K., KARAGRIGORIOU A. nd LEKKAS D.F.

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Spacetime and the Quantum World Questions Fall 2010

Spacetime and the Quantum World Questions Fall 2010 Spetime nd the Quntum World Questions Fll 2010 1. Cliker Questions from Clss: (1) In toss of two die, wht is the proility tht the sum of the outomes is 6? () P (x 1 + x 2 = 6) = 1 36 - out 3% () P (x 1

More information

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 orf, R.C., Wn,. T- Equivlent Networks The Eletril Engineering Hndook Ed. Rihrd C. orf Bo Rton: CRC Press LLC, 000 9 T P Equivlent Networks hen Wn University of Cliforni, vis Rihrd C. orf University of

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behvior Composition in the Presene of Filure Sestin Srdin RMIT University, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Univ. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Table of Content. c 1 / 5

Table of Content. c 1 / 5 Tehnil Informtion - t nd t Temperture for Controlger 03-2018 en Tble of Content Introdution....................................................................... 2 Definitions for t nd t..............................................................

More information

On the Scale factor of the Universe and Redshift.

On the Scale factor of the Universe and Redshift. On the Sle ftor of the Universe nd Redshift. J. M. unter. john@grvity.uk.om ABSTRACT It is proposed tht there hs been longstnding misunderstnding of the reltionship between sle ftor of the universe nd

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Exercise 3 Logic Control

Exercise 3 Logic Control Exerise 3 Logi Control OBJECTIVE The ojetive of this exerise is giving n introdution to pplition of Logi Control System (LCS). Tody, LCS is implemented through Progrmmle Logi Controller (PLC) whih is lled

More information

ENERGY AND PACKING. Outline: MATERIALS AND PACKING. Crystal Structure

ENERGY AND PACKING. Outline: MATERIALS AND PACKING. Crystal Structure EERGY AD PACKIG Outline: Crstlline versus morphous strutures Crstl struture - Unit ell - Coordintion numer - Atomi pking ftor Crstl sstems on dense, rndom pking Dense, regulr pking tpil neighor ond energ

More information

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes. 1 This question is out men ond enthlpies nd their use in the lultion of enthlpy hnges. Define men ond enthlpy s pplied to hlorine. Explin why the enthlpy of tomistion of hlorine is extly hlf the men ond

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most well-known nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

Chapter 4rth LIQUIDS AND SOLIDS MCQs

Chapter 4rth LIQUIDS AND SOLIDS MCQs Chpter 4rth LIQUIDS AND SOLIDS MCQs Q.1 Ioni solis re hrterize y () low melting points () goo onutivity in soli stte () high vpour pressure () soluility in polr solvents Q.2 Amorphous solis. () hve shrp

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Supporting Information

Supporting Information tom-thik Interlyer Mde of VD-Grown Grphene Film on Seprtor for dvned thium-sulfur tteries Zhenzhen Du 1, hengkun Guo 2, njun Wng 3, jun Hu 1, Song Jin 1, Timing Zhng 1, Honghng Jin 1, Zhiki Qi 1, Sen Xin

More information

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR .5 NMR spetrosopy Different types of NMR There re two min types of NMR. NMR. (proton) NMR There is only round % in orgni moleules ut modern NMR mhines re sensitive enough to give full spetr for The spetr

More information

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35.

First compression (0-6.3 GPa) First decompression ( GPa) Second compression ( GPa) Second decompression (35. 0.9 First ompression (0-6.3 GP) First deompression (6.3-2.7 GP) Seond ompression (2.7-35.5 GP) Seond deompression (35.5-0 GP) V/V 0 0.7 0.5 0 5 10 15 20 25 30 35 P (GP) Supplementry Figure 1 Compression

More information

Outline. Theory-based Bayesian framework for property induction Causal structure induction

Outline. Theory-based Bayesian framework for property induction Causal structure induction Outline Theory-sed Byesin frmework for property indution Cusl struture indution Constrint-sed (ottom-up) lerning Theory-sed Byesin lerning The origins of usl knowledge Question: how do people relily ome

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: Digitl Logi Ciruits Chpter 4: Logi Optimiztion Curtis Nelson Logi Optimiztion In hpter 4 you will lern out: Synthesis of logi funtions; Anlysis of logi iruits; Tehniques for deriving minimum-ost

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

Probability. b a b. a b 32.

Probability. b a b. a b 32. Proility If n event n hppen in '' wys nd fil in '' wys, nd eh of these wys is eqully likely, then proility or the hne, or its hppening is, nd tht of its filing is eg, If in lottery there re prizes nd lnks,

More information

CHENG Chun Chor Litwin The Hong Kong Institute of Education

CHENG Chun Chor Litwin The Hong Kong Institute of Education PE-hing Mi terntionl onferene IV: novtion of Mthemtis Tehing nd Lerning through Lesson Study- onnetion etween ssessment nd Sujet Mtter HENG hun hor Litwin The Hong Kong stitute of Edution Report on using

More information

Chemical Equilibrium

Chemical Equilibrium Chpter 16 Questions 5, 7, 31, 33, 35, 43, 71 Chemil Equilibrium Exmples of Equilibrium Wter n exist simultneously in the gs nd liquid phse. The vpor pressure of H O t given temperture is property ssoited

More information

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities Appendi Prtil dishrges. Reltionship Between Mesured nd Atul Dishrge Quntities A dishrging smple my e simply represented y the euilent iruit in Figure. The pplied lternting oltge V is inresed until the

More information

912 o C 1400 o C 1539 o C α iron γ iron δ iron. liquid iron BCC FCC BCC

912 o C 1400 o C 1539 o C α iron γ iron δ iron. liquid iron BCC FCC BCC Polymorphism or Allotropy Mny elements or ompounds exist in more thn one rystlline form under different onditions of temperture nd pressure. This phenomenon is termed polymorphism nd if the mteril is n

More information

Iowa Training Systems Trial Snus Hill Winery Madrid, IA

Iowa Training Systems Trial Snus Hill Winery Madrid, IA Iow Trining Systems Tril Snus Hill Winery Mdrid, IA Din R. Cohrn nd Gil R. Nonneke Deprtment of Hortiulture, Iow Stte University Bkground nd Rtionle: Over the lst severl yers, five sttes hve een evluting

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information

THE ASYMMETRY OF COASTAL WATER LEVEL RESPONSE TO LANDFALLING HURRICANES SIMULATED BY A THREE-DIMENSIONAL STORM SURGE MODEL

THE ASYMMETRY OF COASTAL WATER LEVEL RESPONSE TO LANDFALLING HURRICANES SIMULATED BY A THREE-DIMENSIONAL STORM SURGE MODEL THE ASYMMETRY OF COASTAL WATER LEVEL RESPONSE TO LANDFALLING HURRICANES SIMULATED BY A THREE-DIMENSIONAL STORM SURGE MODEL Mhun Peng *, Lin Xie nd Leonrd J. Pietrfes Deprtment of Mrine, Erth nd Atmospheri

More information

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version A Lower Bound for the Length of Prtil Trnsversl in Ltin Squre, Revised Version Pooy Htmi nd Peter W. Shor Deprtment of Mthemtil Sienes, Shrif University of Tehnology, P.O.Bo 11365-9415, Tehrn, Irn Deprtment

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Computer Modeling of Lithium Phosphate and Thiophosphate Electrolyte Materials

Computer Modeling of Lithium Phosphate and Thiophosphate Electrolyte Materials Computer Modeling of thium hosphte nd Thiophosphte Eletrolyte Mterils N. A. W. Holzwrth, Nihols Lepley nd Yojun A. Du Deprtment of hysis, Wke Forest University, Winston-lem, NC, UA Current ddress: ICAM,

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

(h+ ) = 0, (3.1) s = s 0, (3.2)

(h+ ) = 0, (3.1) s = s 0, (3.2) Chpter 3 Nozzle Flow Qusistedy idel gs flow in pipes For the lrge vlues of the Reynolds number typilly found in nozzles, the flow is idel. For stedy opertion with negligible body fores the energy nd momentum

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

arxiv: v1 [cond-mat.mtrl-sci] 10 Aug 2017

arxiv: v1 [cond-mat.mtrl-sci] 10 Aug 2017 rxiv:178.313v1 [ond-mt.mtrl-si] 1 Aug 217 Knowledge-Trnsfer sed Cost-effetive Serh for Interfe Strutures: A Cse Study on f-al [11] Tilt Grin Boundry Tomohiro Yonezu 1, Tomoyuki Tmur 2,3, Ihiro Tkeuhi 1,3,

More information

Electronic Supplementary Information (ESI) for:

Electronic Supplementary Information (ESI) for: Eletroni Supplementry Mteril (ESI) for RSC Advnes. This journl is The Royl Soiety of Chemistry 2015 Eletroni Supplementry Informtion (ESI) for: Novel physio-hemil mehnism of the mutgeni tutomeristion of

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Novel Fiber-Optical Refractometric Sensor Employing Hemispherically-Shaped Detection Element

Novel Fiber-Optical Refractometric Sensor Employing Hemispherically-Shaped Detection Element Novel Fier-Optil Refrtometri Sensor Employing Hemispherilly-Shped Detetion Element SERGEI KHOTIAINTSEV, VLADIMIR SVIRID Deprtment of Eletril Engineering, Fulty of Engineering Ntionl Autonomous University

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

1B40 Practical Skills

1B40 Practical Skills B40 Prcticl Skills Comining uncertinties from severl quntities error propgtion We usully encounter situtions where the result of n experiment is given in terms of two (or more) quntities. We then need

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

The Stirling Engine: The Heat Engine

The Stirling Engine: The Heat Engine Memoril University of Newfounln Deprtment of Physis n Physil Oenogrphy Physis 2053 Lortory he Stirling Engine: he Het Engine Do not ttempt to operte the engine without supervision. Introution Het engines

More information

Lossless Compression Lossy Compression

Lossless Compression Lossy Compression Administrivi CSE 39 Introdution to Dt Compression Spring 23 Leture : Introdution to Dt Compression Entropy Prefix Codes Instrutor Prof. Alexnder Mohr mohr@s.sunys.edu offie hours: TBA We http://mnl.s.sunys.edu/lss/se39/24-fll/

More information

Chapter 8 Roots and Radicals

Chapter 8 Roots and Radicals Chpter 8 Roots nd Rdils 7 ROOTS AND RADICALS 8 Figure 8. Grphene is n inredily strong nd flexile mteril mde from ron. It n lso ondut eletriity. Notie the hexgonl grid pttern. (redit: AlexnderAIUS / Wikimedi

More information

Translation symmetry, Space groups, Bloch functions, Fermi energy

Translation symmetry, Space groups, Bloch functions, Fermi energy 9/7/4 Trnsltion symmetry, Spe groups, Bloh funtions, Fermi energy Roerto Orlndo Diprtimento di Chimi Università di Torino Vi ietro Giuri 5, 6 Torino, Itly roerto.orlndo@unito.it Outline The rystllogrphi

More information

A Non-parametric Approach in Testing Higher Order Interactions

A Non-parametric Approach in Testing Higher Order Interactions A Non-prmetri Approh in Testing igher Order Intertions G. Bkeerthn Deprtment of Mthemtis, Fulty of Siene Estern University, Chenkldy, Sri Lnk nd S. Smit Deprtment of Crop Siene, Fulty of Agriulture University

More information

Behavior Composition in the Presence of Failure

Behavior Composition in the Presence of Failure Behior Composition in the Presene of Filure Sestin Srdin RMIT Uniersity, Melourne, Austrli Fio Ptrizi & Giuseppe De Giomo Spienz Uni. Rom, Itly KR 08, Sept. 2008, Sydney Austrli Introdution There re t

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Logarithms LOGARITHMS.

Logarithms LOGARITHMS. Logrithms LOGARITHMS www.mthletis.om.u Logrithms LOGARITHMS Logrithms re nother method to lulte nd work with eponents. Answer these questions, efore working through this unit. I used to think: In the

More information

Geometrically Realizing Nested Torus Links

Geometrically Realizing Nested Torus Links Geometrilly Relizing Nested Torus Links mie ry ugust 18, 2017 strt In this pper, we define nested torus links. We then go on to introdue ell deomposition of nested torus links. Using the ell deomposition

More information

Learning Partially Observable Markov Models from First Passage Times

Learning Partially Observable Markov Models from First Passage Times Lerning Prtilly Oservle Mrkov s from First Pssge s Jérôme Cllut nd Pierre Dupont Europen Conferene on Mhine Lerning (ECML) 8 Septemer 7 Outline. FPT in models nd sequenes. Prtilly Oservle Mrkov s (POMMs).

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Unit 4. Combinational Circuits

Unit 4. Combinational Circuits Unit 4. Comintionl Ciruits Digitl Eletroni Ciruits (Ciruitos Eletrónios Digitles) E.T.S.I. Informáti Universidd de Sevill 5/10/2012 Jorge Jun 2010, 2011, 2012 You re free to opy, distriute

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Alpha Algorithm: A Process Discovery Algorithm

Alpha Algorithm: A Process Discovery Algorithm Proess Mining: Dt Siene in Ation Alph Algorithm: A Proess Disovery Algorithm prof.dr.ir. Wil vn der Alst www.proessmining.org Proess disovery = Ply-In Ply-In event log proess model Ply-Out Reply proess

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations

Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations At Meh. Sin. (6) ():6 6 DOI.7/s9-5-5-6 RESEARCH PAPER Energy orrugtion in tomi-sle frition on grphite revisited y moleulr dynmis simultions Xio-Yu Sun, Yi-Zhou Qi Wengen Ouyng Xi-Qio Feng, Qunyng Li, Reeived:

More information

Ab-initio investigation on the stability of H-6 Carbon

Ab-initio investigation on the stability of H-6 Carbon A-initio investigtion on the stility of H-6 Cron Zhris G. Fthenkis A few yers go H-6 Cron hd een proposed s n ll sp 2 three-dimensionl Cron llotrope, with mehnil properties omprle to grphene. However,

More information

Automatic Synthesis of New Behaviors from a Library of Available Behaviors

Automatic Synthesis of New Behaviors from a Library of Available Behaviors Automti Synthesis of New Behviors from Lirry of Aville Behviors Giuseppe De Giomo Università di Rom L Spienz, Rom, Itly degiomo@dis.unirom1.it Sestin Srdin RMIT University, Melourne, Austrli ssrdin@s.rmit.edu.u

More information

Modeling of Catastrophic Failures in Power Systems

Modeling of Catastrophic Failures in Power Systems Modeling of tstrophi Filures in Power Systems hnn Singh nd lex Sprintson Deprtment of Eletril nd omputer Engineering Texs &M hnn Singh nd lex Sprintson Modeling of tstrophi Filures Motivtion Reent events

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article Avilble online www.jopr.om Journl of Chemil nd Phrmeutil Reserh, 2013, 5(12):1283-1288 Reserh Artile ISSN : 0975-7384 CODEN(USA) : JCPRC5 Study on osion resistne of zin lloy oting of mehnil plting by eletrohemil

More information