A Non-parametric Approach in Testing Higher Order Interactions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Non-parametric Approach in Testing Higher Order Interactions"

Transcription

1 A Non-prmetri Approh in Testing igher Order Intertions G. Bkeerthn Deprtment of Mthemtis, Fulty of Siene Estern University, Chenkldy, Sri Lnk nd S. Smit Deprtment of Crop Siene, Fulty of Agriulture University of Perdeniy, Perdeniy, Sri Lnk. ABSTRT A ommon prolem fed in dt nlysis is testing intertion effets when the sle of mesurement is ordinl. Akritl et.l. (997) introdued methodology to study the intertion effets for ordinl dt. owever, their methodology is limited to testing two-wy intertion with fixed levels of ftors. This study suggests the extension of Akrits et l method for three-wy intertion. The test sttistis used hve lose reltion with some reent developments in the symptoti theory for F -test nd -test when the oservtions re independent nd the levels of the ftor re fixed. Also we hve shown how this proedure n get implemented using sttistil softwre pkge (SAS). As n illustrtion, rel dt set is nlyzed nd the results re ompred with the prmetri test, Anlysis of Vrine (ANOVA). The suggested method n e onsidered s nonprmetri lterntive for ANOVA. Key words: Ftoril design, Non-prmetri hypotheses, Rnk, Intertion INTRODUCTION The most importnt reson for onduting ftoril experiment insted of seprte single-ftor experiments is the ility to hek for the presene of intertions mong the ftors. Determining intertion effets in prmetri pproh is well estlished. owever, nonprmetri equivlent is not ville espeilly for higher order intertions. In prmetri pproh, the effets re typilly modeled y deomposing the ell mens into min effets nd intertion effets. Thus for two-ftor design with fixed levels & for two ftors

2 respetively, the k th oservtion from ( i, j) is modeled s ) ; i,..., j,..., Where Y i i j (,, ( ), ( ) nd the error term re i i j j j independently normlly distriuted with zero men nd ommon vrine. The extension of prmetri pproh to testing higher order intertions is well estlished. owever, the nonprmetri lterntives re unommon for testing intertions, espeilly three-wy nd higher orders. The im of this pper is to propose rnk test sttistis for the non-prmetri hypotheses of three-ftor ftoril designs with independent oservtions, fixed numer of levels nd severl independent oservtions (replites) per ell (ftoril omintions) METODOLOGY Model nd Nonprmetri ypothesis th Let A, B, C denote ftors with levels, nd, respetively. The l oservtions in ell ( i, j, k) will e denoted yy l. It is ssumed tht Y l re independent with P( Y x) F ( x) P( Y x) F ( x) l i,..., j,..., k,..., l. ere F is the right ontinuous version nd F is the left ontinuous version of the distriution ofy l. In prtiulr, we do not ssume ontinuous distriutions. For this reson we introdue the nottion F ( x) F ( x) F ( x) (.) This definition of the distriution funtion inludes the se of ties nd moreover, disrete ordinl dt is inluded in this setup. Thus F will e onsidered s the distriution funtion ofy l, nd will e denoted y Y l ~ F (.) Aordingly the generl model does not require tht the distriutions in different ells re relted in ny prmetri wy. Consider the deomposing of F s follows:

3 F x M x Ai x B j x Ck x AB x ik x jk x x Where i i i j i k i A, ( AB ) ( ) ( ) ik jk j B,,, j j k, k k ( AB) ( ) ( ) C ik k, jk,,, ( ), ( ), nd ( ). j (.3) Thus, M F..., Ai Fi M, B j F j M, Ck F k M AB F F F M i j,, Fi k Fi F k M, F F F M F j ik F F k M F F ik F jk jk F i jk j k, will e lled respetively, the men, the non-prmetri min effet of ftor A, min effet of ftor B, min effet of ftor C, intertion effet of A nd B, intertion effet of A nd C, intertion effet of B nd C nd intertion effet of A,B nd C. Therefore, the null hypotheses for intertions n e formulted s follows. AB : AB i..., j... (.4) : ik i..., k... (.5)

4 : jk j..., k... (.6) : i..., j..., k... (.7) The hypotheses ( AB ), ( ), ( ), respetively re the hypothesis of no intertion (AB), () () nd () effet. Test sttistis Let F F, F,...., F, denote the x olumn vetor onsisting of the F, nd set CAB M M distriution funtion C C C M M M M M M M (.8) M is defined s M I d d Where for ny integer d, d d, where d denotes d olumn vetor of s, nd I d is the d-dimensionl identity mtrix. The nonprmetri hypotheses (.4), (.5), (.6) nd (.7) re equivlently written s AB : ( M M ) F CABF : ( M M ) F C F :( M M ) F C F :( M M M ) F C F (.9) Rnk sttistis for these hypotheses re derived y onsidering estimtes for the quntities (Bkeerthn, 3), Tˆ ˆ AB AB d ˆ Fˆ Tˆ ˆ d ˆ Fˆ Tˆ ˆ d ˆ Fˆ Tˆ ˆ d ˆ Fˆ Where ˆ df ˆ is the x vetor Whose omponents re ˆ df ˆ nd x i j k F x n, where lim N nd N

5 N n i j k. Define Fˆ x Fˆ x Fˆ x (.) to e the empiril distriution funtion from the oservtion in ell ( i, j, k) n Where Fˆ x n IY l x l n distriution is funtion nd F x n IY l x of the empiril distriution funtion. Set ˆ x ˆ Fˆ x i j k n Where ˆ. N Then, the rnk of oservtion the right ontinuous version of the empiril ˆ is the left ontinuous version l Y l mong ll N oservtions is given y Rl Nˆ Y l (.) If there re no ties, then this redues to the usul rnk ofy l. In the presene of ties, R l gives the verge rnk ofy l. Let e n ritrry full-rnk ontrst mtrix. The proposed sttistis for testing non-prmetri hypothesis of the form F re sed on the symptoti distriutions of ˆ d ˆ Fˆ (.) T Fˆ ˆ ˆ ˆ. Where F, F,..., F Note tht euse of eqution (.), ˆ T N R,..., R. (.3) Thus Tˆ d ˆ Fˆ is vetor of liner rnk sttistis. Let V dig with Vr,....., nd Vˆ denote the mtrix V with Y l for ll l,,...,n repled y

6 ˆ n n Rl R N nd l Akrits et l (997), the following results n e estlished. (i) Are onsistent estimtor of. ˆ (ii) Under the hypothesis F, the test sttisti Q NTˆ Vˆ Tˆ repled y ˆ. Thus, ording to (.4) hs, s N, r distriution, where r denotes hi-squred distriution with r degrees of freedom nd r =rnk ( ). In prtiulr for testing ( AB ), ( ), nd ( ), the following test sttistis respetively n e used. Q AB NTˆ AB ABV ˆ AB Tˆ AB (.5) hs, s N, hi-squred distriution with ( )( ) degrees of freedom. Q NTˆ V ˆ Tˆ hs, s N, hi-squred distriution with ( )( ) degree of freedom. NTˆ V ˆ Tˆ Q (.7) s N, hi-squred distriution with ( )( ) degrees of freedom. NTˆ V ˆ Tˆ Q (.8) hs s N, hi-squred distriution with ( )( )( ) degrees of freedom. owever the omputtion will e esier if null hypotheses re defined using projetion mtries (Akrits et l, 997, Brunner et l, 997) s desried elow. Let d denote the d olumn vetor, J d d d nd I d dig,...,. The projetion mtries re defined s P I J, P I J, nd P I J.

7 Using the projetion mtries the nonprmetri hypotheses ( AB ), ( ), nd ( ) my e written respetively of the form F s P P J with the degrees of freedom ( )( ) h ( )( ) P J P with the degrees of freedom h ( )( ) J P P with the degrees of freedom h nd ( )( )( ) P P P with the degrees of freedom h. The qudrti form Q ( ) n get omputed y using PROC MIXED of SAS (SAS, 99) with option CISQ, pplied to the rnked dt. In ft, PROC MIXED utilizes hypotheses defined using projetion mtries in omputtion. The following SAS sttements n e used to ompute to Q ( ) sttistis. DATA TRE_WAY; INPUT A B C Y; CARDS; ; PROC RANK DATA= TRE_WAY OUT=NEW; VAR Y; RANKS RY; PROC PRINT; RUN; PROC MIXED DATA =NEW; CLASS A B C; MODEL RY=A B C / CISQ; REPEATED/TYPE=UN() GROUP=A*B*C; RUN; Smll-smple pproximtions Consider the null hypothesis : F. Let denotes orthogonl projetion ( ) tht is e n ritrry projetion mtrix. Then F if nd only if F. Thus under : F, the sttisti N P ˆ symptotilly hs

8 multivrite norml distriution with men nd ovrine mtrix V (Akrits et l., 997), where ˆ ˆ ˆ V dig ˆ... ˆ This suggests the pplition of the pproximtion proedure to the qudrti form Q N NPˆ Pˆ, where Pˆ d ˆ Fˆ. Then under : F, it is resonle to pproximte the distriution of F N. ( V) Q( ) ( ) N h tr (.9) To follow entrl F distriution with degrees of freedom ˆf nd ˆf, where ˆ h tr( Vˆ) f, ˆ tr( Vˆ) f, tr( VV ˆ ˆ) ( ˆ tr V D) ( D dig n )...( n ), tr () = tre of the squre mtrix nd h= identil digonl element of projetion mtrix (Akrits et l. 997, Brunner et l,997). With the null hypotheses defined using projetion mtries the qudrti form F n e omputed y using pkge PROC MIXED or PROC GLM of SAS pplied to the rnked dt. owever, for unequl smple sizes F nnot e otined using PROC GLM. Lrge smple se EXAMPLE To show the ppliility of the proedures derived, we give n exmple where the dt onsists of humidity reords (dy nd night) t Anurdhpur, Colomo, mntot nd Nuwr Eliy of Septemer to Deemer for the period The dt re ville on monthly sis. owever, for the nlysis the dt from months August to Deemer were used. Aordingly, three ftors were defined s Sttion with 4 levels (Anurdhpur, Colomo, mntot nd Nuwr Eliy), Month with 5 levels (August to Deemer) nd Time with levels, (dy nd night). The yers 99 to 995 were tken s replites. The outputs of using PROC MIXED of SAS with the option CISQ re given in Tle.. In the output, NDF refers to degrees of freedom for eh ftor; DDF refers to error degrees of freedom. In the Tle. P-vlues orresponding to ll the min effets nd intertions re smll. Thus it ould e onluded tht ll effets inluding 3- wy intertion to e present. Vlidtion of the suggested method s vlidtion of the suggested method prmetri ANOVA ws performed using the sme dt

9 nd ompred the results. The output from ANOVA using PROC ANOVA of SAS is given in Tle.. In terms of power of the test, for most of the effets, s expeted, ANOVA hs provided higher power of the test. Tle.: SAS output from testing Fixed Effets (Lrge smple se) Soure NDF DDF Pr >ChiSq Pr > F STATION 3.. MONT 4.. STATION*MONT.. TIME.. STATION*TIME 3.. MONT*TIME STATION*MONT*TIME.5. Tle.: ANOVA tle (Lrge smple se) Soure DF F Vlue Pr>F STATION MONT STATION*MONT 5.8. TIME STATION*TIME MONT*TIME STATION*MONT*TIME Smll Smple Cse The dt used here is n extrt from ove exmple nd onsidered ftors nd levels similrly. The extrted dt set onsidered from Sttions for Months

10 August nd Septemer nd for the yers 99 nd 99. Sine the numer of replites were the sme (equl smple size) the F sttisti using PROC MIXED is sme s F from PROC GLM. The results of the tests using PROC MIXED of SAS re given in Tle.3. In the output, P-vlues orresponding to ll the min effets nd intertions re smll exept the min effet Month nd intertion effet Sttion nd Time. Thus it ould e onluded tht 3-wy intertion is not present. Similrly, other effets lso n e evluted. Vlidtion of the suggested method As vlidtion of the suggested method prmetri ANOVA ws performed using sme dt nd the results were ompred. The output from ANOVA using PROC ANOVA of SAS is given in Tle.4. Both tles led to the sme onlusions nd thus the suggested method n e onsidered vlid method. With respet to power of the test, results re onsistent s in the lrge smple se. DISCUSSION In this study, we hve suggested sttistil proedure for testing intertion in thee-ftor ftoril design with independent oservtions nd fixed effet to e useful nonprmetri lterntive for ANOVA. This method n get implemented using sttistil softwre pkge SAS for lrge smple se s well smll smple se. For smll smple se with equl smple sizes, F n e omputed y using PROC MIXED s well s PROC GLM pplied to the rnked dt. owever, the sttistis F nnot e otined from PROC GLM of SAS under unequl smple sizes. Nevertheless, Q n e omputed y SAS proedure PROC MIXED with option CISQ pplied to the rnked dt in oth ses. Tle.3: SAS output from testing Fixed Effets (Smll smple se) Soure NDF DDF Pr > ChiSq Pr > F STATION MONT STATION*MONT 8.. TIME STATION*TIME MONT*TIME STATION*MONT*TIME

11 Tle.4: ANOVA tle (Smll smple se) Soure DF F Vlue Pr>F STATION 68.. MONT 59.. STATION*MONT TIME.8.7 STATION*TIME.8.65 MONT*TIME.8.7 STATION*MONT*TIME REFERENCES Akrits, M.G., Arnold S.F. nd Brunner E. (997). Nonprmetri ypothesis nd Rnk Sttistis for Unlned Ftoril Designs, Journl of the Amerin Sttistil Assoition, 9, Bkeerthn G. (3). A onept of nonprmetri proedure for testing homogeneity of vrine nd non-prmetri pproh in testing higher order intertions. Brunner, E., Dette. nd Munk A. (997). Box-type pproximtions in nonprmetri ftoril design, Journl of the Amerin Sttistil Assoition,9, Brunner E. nd Puri M.L. (996). ndook of Sttistis 3.

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1) Green s Theorem Mth 3B isussion Session Week 8 Notes Februry 8 nd Mrh, 7 Very shortly fter you lerned how to integrte single-vrible funtions, you lerned the Fundmentl Theorem of lulus the wy most integrtion

More information

DETERMINING SIGNIFICANT FACTORS AND THEIR EFFECTS ON SOFTWARE ENGINEERING PROCESS QUALITY

DETERMINING SIGNIFICANT FACTORS AND THEIR EFFECTS ON SOFTWARE ENGINEERING PROCESS QUALITY DETERMINING SIGNIFINT FTORS ND THEIR EFFETS ON SOFTWRE ENGINEERING PROESS QULITY R. Rdhrmnn Jeng-Nn Jung Mil to: rdhrmn_r@merer.edu jung_jn@merer.edu Shool of Engineering, Merer Universit, Mon, G 37 US

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 H 3 CH3 C. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

If only one fertilizer x is used, the dependence of yield z(x) on x first was given by Mitscherlich (1909) in form of the differential equation

If only one fertilizer x is used, the dependence of yield z(x) on x first was given by Mitscherlich (1909) in form of the differential equation Mitsherlih s Lw: Generliztion with severl Fertilizers Hns Shneeerger Institute of Sttistis, University of Erlngen-Nürnerg, Germny 00, 5 th August Astrt: It is shown, tht the rop-yield z in dependene on

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WITH VARIOUS TYPES OF COLUMN BASES

SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WITH VARIOUS TYPES OF COLUMN BASES Advned Steel Constrution Vol., No., pp. 7-88 () 7 SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WIT VARIOUS TYPES OF COLUMN BASES J. ent sio Assoite Professor, Deprtment of Civil nd Environmentl

More information

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums Green s Theorem If f is funtion of one vrible x with derivtive f x) or df dx to the Fundmentl Theorem of lulus, nd [, b] is given intervl then, ording This is not trivil result, onsidering tht b b f x)dx

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION XX IMEKO World Congress Metrology for Green Growth September 9,, Busn, Republic of Kore THERMAL EXPANSION COEFFICIENT OF WATER FOR OLUMETRIC CALIBRATION Nieves Medin Hed of Mss Division, CEM, Spin, mnmedin@mityc.es

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Linear Systems with Constant Coefficients

Linear Systems with Constant Coefficients Liner Systems with Constnt Coefficients 4-3-05 Here is system of n differentil equtions in n unknowns: x x + + n x n, x x + + n x n, x n n x + + nn x n This is constnt coefficient liner homogeneous system

More information

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5 The Dirichlet Prolem in Two Dimensionl Rectngle Section 13.5 1 Dirichlet Prolem in Rectngle In these notes we will pply the method of seprtion of vriles to otin solutions to elliptic prolems in rectngle

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

The Riemann-Stieltjes Integral

The Riemann-Stieltjes Integral Chpter 6 The Riemnn-Stieltjes Integrl 6.1. Definition nd Eistene of the Integrl Definition 6.1. Let, b R nd < b. ( A prtition P of intervl [, b] is finite set of points P = { 0, 1,..., n } suh tht = 0

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

Orthogonal Polynomials and Least-Squares Approximations to Functions

Orthogonal Polynomials and Least-Squares Approximations to Functions Chpter Orthogonl Polynomils nd Lest-Squres Approximtions to Functions **4/5/3 ET. Discrete Lest-Squres Approximtions Given set of dt points (x,y ), (x,y ),..., (x m,y m ), norml nd useful prctice in mny

More information

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature

Harmonic Mean Derivative - Based Closed Newton Cotes Quadrature IOSR Journl of Mthemtics (IOSR-JM) e-issn: - p-issn: 9-X. Volume Issue Ver. IV (My. - Jun. 0) PP - www.iosrjournls.org Hrmonic Men Derivtive - Bsed Closed Newton Cotes Qudrture T. Rmchndrn D.Udykumr nd

More information

Discrete Least-squares Approximations

Discrete Least-squares Approximations Discrete Lest-squres Approximtions Given set of dt points (x, y ), (x, y ),, (x m, y m ), norml nd useful prctice in mny pplictions in sttistics, engineering nd other pplied sciences is to construct curve

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

ECON 331 Lecture Notes: Ch 4 and Ch 5

ECON 331 Lecture Notes: Ch 4 and Ch 5 Mtrix Algebr ECON 33 Lecture Notes: Ch 4 nd Ch 5. Gives us shorthnd wy of writing lrge system of equtions.. Allows us to test for the existnce of solutions to simultneous systems. 3. Allows us to solve

More information

METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS

METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS Journl of Young Scientist Volume III 5 ISSN 44-8; ISSN CD-ROM 44-9; ISSN Online 44-5; ISSN-L 44 8 METHODS OF APPROXIMATING THE RIEMANN INTEGRALS AND APPLICATIONS An ALEXANDRU Scientific Coordintor: Assist

More information

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

1 Error Analysis of Simple Rules for Numerical Integration

1 Error Analysis of Simple Rules for Numerical Integration cs41: introduction to numericl nlysis 11/16/10 Lecture 19: Numericl Integrtion II Instructor: Professor Amos Ron Scries: Mrk Cowlishw, Nthnel Fillmore 1 Error Anlysis of Simple Rules for Numericl Integrtion

More information

A Mathematical Model for Unemployment-Taking an Action without Delay

A Mathematical Model for Unemployment-Taking an Action without Delay Advnes in Dynmil Systems nd Applitions. ISSN 973-53 Volume Number (7) pp. -8 Reserh Indi Publitions http://www.ripublition.om A Mthemtil Model for Unemployment-Tking n Ation without Dely Gulbnu Pthn Diretorte

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

Testing categorized bivariate normality with two-stage. polychoric correlation estimates

Testing categorized bivariate normality with two-stage. polychoric correlation estimates Testing ctegorized bivrite normlity with two-stge polychoric correltion estimtes Albert Mydeu-Olivres Dept. of Psychology University of Brcelon Address correspondence to: Albert Mydeu-Olivres. Fculty of

More information

6.1 Definition of the Riemann Integral

6.1 Definition of the Riemann Integral 6 The Riemnn Integrl 6. Deinition o the Riemnn Integrl Deinition 6.. Given n intervl [, b] with < b, prtition P o [, b] is inite set o points {x, x,..., x n } [, b], lled grid points, suh tht x =, x n

More information

Effects of Drought on the Performance of Two Hybrid Bluegrasses, Kentucky Bluegrass and Tall Fescue

Effects of Drought on the Performance of Two Hybrid Bluegrasses, Kentucky Bluegrass and Tall Fescue TITLE: OBJECTIVE: AUTHOR: SPONSORS: Effets of Drought on the Performne of Two Hyrid Bluegrsses, Kentuky Bluegrss nd Tll Fesue Evlute the effets of drought on the visul qulity nd photosynthesis in two hyrid

More information

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA

A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA A CLASS OF GENERAL SUPERTREE METHODS FOR NESTED TAXA PHILIP DANIEL AND CHARLES SEMPLE Astrt. Amlgmting smller evolutionry trees into single prent tree is n importnt tsk in evolutionry iology. Trditionlly,

More information

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee Kngweon-Kyungki Mth. Jour. 10 (2002), No. 2, pp. 117 122 ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups Sng Keun Lee Astrt. In this pper, we give some properties of left(right) semi-regulr nd g-regulr

More information

Non Right Angled Triangles

Non Right Angled Triangles Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministi Finite utomt The Power of Guessing Tuesdy, Otoer 4, 2 Reding: Sipser.2 (first prt); Stoughton 3.3 3.5 S235 Lnguges nd utomt eprtment of omputer Siene Wellesley ollege Finite utomton (F)

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3.

H 4 H 8 N 2. Example 1 A compound is found to have an accurate relative formula mass of It is thought to be either CH 3. . Spetrosopy Mss spetrosopy igh resolution mss spetrometry n e used to determine the moleulr formul of ompound from the urte mss of the moleulr ion For exmple, the following moleulr formuls ll hve rough

More information

Håkan Lennerstad, Lars Lundberg

Håkan Lennerstad, Lars Lundberg GENERALIZATIONS OF THE FLOOR AND CEILING FUNCTIONS USING THE STERN-BROCOT TREE Håkn Lennerstd, Lrs Lunderg Blekinge Institute of Tehnology Reserh report No. 2006:02 Generliztions of the floor nd eiling

More information

Wave Equation on a Two Dimensional Rectangle

Wave Equation on a Two Dimensional Rectangle Wve Eqution on Two Dimensionl Rectngle In these notes we re concerned with ppliction of the method of seprtion of vriles pplied to the wve eqution in two dimensionl rectngle. Thus we consider u tt = c

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon

LIP. Laboratoire de l Informatique du Parallélisme. Ecole Normale Supérieure de Lyon LIP Lortoire de l Informtique du Prllélisme Eole Normle Supérieure de Lyon Institut IMAG Unité de reherhe ssoiée u CNRS n 1398 One-wy Cellulr Automt on Cyley Grphs Zsuzsnn Rok Mrs 1993 Reserh Report N

More information

Pythagoras theorem and surds

Pythagoras theorem and surds HPTER Mesurement nd Geometry Pythgors theorem nd surds In IE-EM Mthemtis Yer 8, you lernt out the remrkle reltionship etween the lengths of the sides of right-ngled tringle. This result is known s Pythgors

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

#A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z

#A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z #A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z Kurt Girstmir Institut für Mthemtik, Universität Innsruck, Innsruck, Austri kurt.girstmir@uik.c.t Received: 10/4/16, Accepted: 7/3/17, Pulished:

More information

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers. 8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

More information

Modeling of Catastrophic Failures in Power Systems

Modeling of Catastrophic Failures in Power Systems Modeling of tstrophi Filures in Power Systems hnn Singh nd lex Sprintson Deprtment of Eletril nd omputer Engineering Texs &M hnn Singh nd lex Sprintson Modeling of tstrophi Filures Motivtion Reent events

More information

Matrix Eigenvalues and Eigenvectors September 13, 2017

Matrix Eigenvalues and Eigenvectors September 13, 2017 Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 8 The Force Method of Anlysis: Bems Version CE IIT, Khrgpur Instructionl Objectives After reding

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

Some basic concepts of fluid dynamics derived from ECE theory

Some basic concepts of fluid dynamics derived from ECE theory Some sic concepts of fluid dynmics 363 Journl of Foundtions of Physics nd Chemistry, 2, vol. (4) 363 374 Some sic concepts of fluid dynmics derived from ECE theory M.W. Evns Alph Institute for Advnced

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Convex Sets and Functions

Convex Sets and Functions B Convex Sets nd Functions Definition B1 Let L, +, ) be rel liner spce nd let C be subset of L The set C is convex if, for ll x,y C nd ll [, 1], we hve 1 )x+y C In other words, every point on the line

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

Acceptance Sampling by Attributes

Acceptance Sampling by Attributes Introduction Acceptnce Smpling by Attributes Acceptnce smpling is concerned with inspection nd decision mking regrding products. Three spects of smpling re importnt: o Involves rndom smpling of n entire

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

Line and Surface Integrals: An Intuitive Understanding

Line and Surface Integrals: An Intuitive Understanding Line nd Surfce Integrls: An Intuitive Understnding Joseph Breen Introduction Multivrible clculus is ll bout bstrcting the ides of differentition nd integrtion from the fmilir single vrible cse to tht of

More information

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume

Problem. Statement. variable Y. Method: Step 1: Step 2: y d dy. Find F ( Step 3: Find f = Y. Solution: Assume Functions of Rndom Vrible Problem Sttement We know the pdf ( or cdf ) of rndom r vrible. Define new rndom vrible Y = g. Find the pdf of Y. Method: Step : Step : Step 3: Plot Y = g( ). Find F ( y) by mpping

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Polarimetric Target Detector by the use of the Polarisation Fork

Polarimetric Target Detector by the use of the Polarisation Fork Polrimetri rget Detetor y the use of the Polristion For Armndo Mrino¹ hne R Cloude² Iin H Woodhouse¹ ¹he University of Edinurgh, Edinurgh Erth Oservtory (EEO), UK ²AEL Consultnts, Edinurgh, UK POLinAR009

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM Chem 44 - Homework due ondy, pr. 8, 4, P.. . Put this in eq 8.4 terms: E m = m h /m e L for L=d The degenery in the ring system nd the inresed sping per level (4x bigger) mkes the sping between the HOO

More information

Lesson Notes: Week 40-Vectors

Lesson Notes: Week 40-Vectors Lesson Notes: Week 40-Vectors Vectors nd Sclrs vector is quntity tht hs size (mgnitude) nd direction. Exmples of vectors re displcement nd velocity. sclr is quntity tht hs size but no direction. Exmples

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus

Unit #10 De+inite Integration & The Fundamental Theorem Of Calculus Unit # De+inite Integrtion & The Fundmentl Theorem Of Clculus. Find the re of the shded region ove nd explin the mening of your nswer. (squres re y units) ) The grph to the right is f(x) = -x + 8x )Use

More information

Solutions to Problem Set #1

Solutions to Problem Set #1 CSE 233 Spring, 2016 Solutions to Prolem Set #1 1. The movie tse onsists of the following two reltions movie: title, iretor, tor sheule: theter, title The first reltion provies titles, iretors, n tors

More information

A Functorial Query Language

A Functorial Query Language A Funtoril Query Lnguge Ryn Wisnesky, Dvid Spivk Deprtment of Mthemtis Msshusetts Institute of Tehnology {wisnesky, dspivk}@mth.mit.edu Presented t Boston Hskell April 16, 2014 Outline Introdution to FQL.

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Analysis of Variance for Multiple Factors

Analysis of Variance for Multiple Factors Multiple Fto ANOVA Notes Pge wo Fto Anlsis Anlsis of Vine fo Multiple Ftos Conside two ftos (tetments) A nd B with A done t levels nd B done t levels. Within given tetment omintion of A nd B levels, leled

More information

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature COSC 336 Numericl Anlysis I Numericl Integrtion nd Dierentition III - Guss Qudrture nd Adptive Qudrture Edgr Griel Fll 5 COSC 336 Numericl Anlysis I Edgr Griel Summry o the lst lecture I For pproximting

More information

Numerical integration

Numerical integration 2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

This enables us to also express rational numbers other than natural numbers, for example:

This enables us to also express rational numbers other than natural numbers, for example: Overview Study Mteril Business Mthemtis 05-06 Alger The Rel Numers The si numers re,,3,4, these numers re nturl numers nd lso lled positive integers. The positive integers, together with the negtive integers

More information

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and Leture 7: iffusion of Ions: Prt : oupled diffusion of tions nd nions s desried y Nernst-Plnk Eqution Tody s topis Continue to understnd the fundmentl kinetis prmeters of diffusion of ions within n eletrilly

More information