Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback"

Transcription

1 Topic # Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1

2 Fall Combined Estimators and Regulators Can now evaluate the stability and/or performance of a controller when we design K assuming that u = Kx, but we implement u = K ˆx Assume that we have designed a closed-loop estimator with gain L ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) ŷ(t) = C ˆx(t) Then we have that the closed-loop system dynamics are given by: ẋ(t) = Ax(t)+Bu(t) ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) y(t) = Cx(t) ŷ(t) = C ˆx(t) u = K ˆx Which can be compactly written as: ẋ A BK x = ˆx LC A BK LC ˆx ẋ cl = A cl x cl This does not look too good at this point not even obvious that the closed-system is stable. λ i (A cl )=??

3 Fall Can fix this problem by introducing a new variable x = x ˆx and then converting the closed-loop system dynamics using the similarity transformation T x cl, x x Note that T = T 1 = I I I x ˆx = Tx cl Now rewrite the system dynamics in terms of the state x cl A cl TA cl T 1, Ācl Note that similarity transformations preserve the eigenvalues, so we are guaranteed that λ i (A cl ) λ i (Ā cl ) Work through the math: I A BK I Ā cl = I I LC A BK LC I I A BK I = A LC A + LC I I A BK BK = A LC Because Ā cl is block upper triangular, we know that the closed-loop poles of the system are given by det(si Ā cl ), det(si (A BK)) det(si (A LC)) =

4 Fall Observation: The closed-loop poles for this system consist of the union of the regulator poles and estimator poles. So we can just design the estimator/regulator separately and combine them at the end. Called the Separation Principle. Just keep in mind that the pole locations you are picking for these two sub-problems will also be the closed-loop pole locations. Note: the separation principle means that there will be no ambiguity or uncertainty about the stability and/or performance of the closed-loop system. The closed-loop poles will be exactly where you put them!! And we have not even said what compensator does this amazing accomplishment!!!

5 Fall The Compensator Dynamic Output Feedback Compensator is the combination of the regulator and estimator using u = K ˆx ˆx(t) = Aˆx(t)+Bu(t)+L(y ŷ) = Aˆx(t) BKˆx + L(y C ˆx) ˆx(t) = (A BK LC)ˆx(t)+Ly u = K ˆx Rewrite with new state x c ˆx ẋ c = A c x c + B c y u = C c x c where the compensator dynamics are given by: A c, A BK LC, B c, L, C c, K Note that the compensator maps sensor measurements to actuator commands, as expected. Closed-loop system stable if regulator/estimator poles placed in the LHP, but compensator dynamics do not need to be stable. λ i (A BK LC) =??

6 Fall For consistency in the implementation with the classical approaches, define the compensator transfer function so that u = G c (s)y From the state-space model of the compensator: U(s) Y (s), G c(s) = C c (si A c ) 1 B c = K(sI (A BK LC)) 1 L G c (s) =C c (si A c ) 1 B c Note that it is often very easy to provide classical interpretations (such as lead/lag) for the compensator G c (s). One way to implement this compensator with a reference command r(t) is to change the feedback to be on e(t) =r(t) y(t) rather than just y(t) r e u y G c (s) G(s) u = G c (s)e = G c (s)(r y) So we still have u = G c (s)y if r =. Intuitively appealing because it is the same approach used for the classical control, but it turns out not to be the best approach. More on this later.

7 Fall Mechanics Basics: e = r y, u = G c e, y = Gu G c (s) : ẋ c = A c x c + B c e, u = C c x c G(s) : ẋ = Ax + Bu, y = Cx Loop dynamics L = G c (s)g(s) y = L(s)e ẋ = Ax +BC c x c ẋ c = +A c x c +B c e L(s) ẋ ẋ c A BCc x = A c y = C x x c x c + B c e To close the loop, note that e = r y, then µ ẋ A BCc x = + r C x ẋ c A c x c B c x c A BC = c x + r B c C A c x c B c y = C x x c A cl is not exactly the same as on page 17-1 because we have rearranged where the negative sign enters into the problem. Same result though.

8 Fall Simple Example Let G(s) =1/s 2 with state-space model given by: 1 A =, B =, C = 1, D = 1 Design the regulator to place the poles at s = 4 ± 4j λ i (A BK) = 4 ± 4j K = 32 8 Time constant of regulator poles τ c =1/ζω n 1/4 =.25 sec Put estimator poles so that the time constant is faster τ e 1/1 Userealpoles,soΦ e (s) =(s + 1) 2 1 C L = Φ e (A) CA 1 Ã = = = 1 1 1!

9 Fall Compensator: A c = A BK LC 1 2 = = B c = L = 2 1 C c = K = Compensator transfer function: G c (s) = C c (si A c ) 1 B c, U E s = 144 s 2 +28s Note that the compensator has a low frequency real zero and two higher frequency poles. Thus it looks like a lead compensator.

10 Fall Compensator Gc Compensator Gc Phase (deg) Figure 1: Plant is pretty simple and the compensator looks like a lead 2 1 rads/sec. 1 2 Loop L Phase (deg) Figure 2: Loop transfer function L(s) shows the slope change near ω c = 5 rad/sec. Note that we have a large PM and GM.

11 Fall Imag Axis Real Axis Figure 3: Freeze the compensator poles and zeros and look at the root locus of closed-loop poles versus an additional loop gain α (nominally α =1.) 1 2 closed loop Gcl Figure 4: Closed-loop transfer function.

12 Fall Figure 5: Example #1: G(s) = (s+8)(s+14)(s+2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=1.978 db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

13 Fall Figure 6: Example #1: G(s) = (s+8)(s+14)(s+2) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

14 Fall Two compensator zeros at ±6.63j draw the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.

15 Fall Figure 7: Example #2: G(s) =.94 s Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

16 Fall Figure 8: Example #2: G(s) =.94 s Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

17 Fall Compensator zero at draws the two lower frequency plant poles further into the LHP. Compensator poles are at much higher frequency. Looks like a lead compensator.

18 Fall Figure 9: Example #3: G(s) = (s 8)(s 14)(s 2) Compensator Gc 1 2 closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm=.942 db (at rad/sec), Pm=6.674 deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

19 Fall Figure 1: Example #3: G(s) = (s 8)(s 14)(s 2) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

20 Fall Compensator zeros at 3.72±8.3j draw the two higher frequency plant poles further into the LHP. Lowest frequency one heads into the LHP on its own. Compensator poles are at much higher frequency. Note sure what this looks like.

21 Fall Figure 11: Example #4: G(s) = Compensator Gc 1 2 (s 1) (s+1)(s 3) closed loop Gcl Compensator Gc Phase (deg) Loop L 1 2 Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); nitude (db) Phase (deg) Frequency (rad/sec)

22 Fall Figure 12: Example #4: G(s) = (s 1) (s+1)(s 3) Imag Axis Real Axis Imag Axis Real Axis 3 closed-loop poles, 5 open-loop poles, 2 Compensator poles, Compensator zeros

23 Fall Compensator zero at -1 cancels the plant pole. Note the very unstable compensator pole at s =9!! Needed to get the RHP plant pole to branch off thereallineand head into the LHP. Other compensator pole is at much higher frequency. Note sure what this looks like. Separation principle gives a very powerful and simple way to develop a dynamic output feedback controller Note that the designer now focuses on selecting the appropriate regulator and estimator pole locations. Once those are set, the closed-loop response is specified. Canalmostconsiderthecompensatortobeaby-product. These examples show that the design process is extremely simple.

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

ECEEN 5448 Fall 2011 Homework #4 Solutions

ECEEN 5448 Fall 2011 Homework #4 Solutions ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The state-space realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CDS 101/110a: Lecture 10-2 Control Systems Implementation CDS 101/110a: Lecture 10-2 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory - Classical control -

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

FREQUENCY-RESPONSE DESIGN

FREQUENCY-RESPONSE DESIGN ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

Mechanical Systems Part A: State-Space Systems Lecture AL12

Mechanical Systems Part A: State-Space Systems Lecture AL12 AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate

More information

Lecture 1: Feedback Control Loop

Lecture 1: Feedback Control Loop Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are

More information

INTRODUCTION TO DIGITAL CONTROL

INTRODUCTION TO DIGITAL CONTROL ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

More information

An Internal Stability Example

An Internal Stability Example An Internal Stability Example Roy Smith 26 April 2015 To illustrate the concept of internal stability we will look at an example where there are several pole-zero cancellations between the controller and

More information

Topic # Feedback Control

Topic # Feedback Control Topic #11 16.31 Feedback Control State-Space Systems State-space model features Observability Controllability Minimal Realizations Copyright 21 by Jonathan How. 1 Fall 21 16.31 11 1 State-Space Model Features

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Observability and state estimation

Observability and state estimation EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 13: Stability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 13: Stability p.1/20 Outline Input-Output

More information

Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

Stochastic Optimal Control!

Stochastic Optimal Control! Stochastic Control! Robert Stengel! Robotics and Intelligent Systems, MAE 345, Princeton University, 2015 Learning Objectives Overview of the Linear-Quadratic-Gaussian (LQG) Regulator Introduction to Stochastic

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

Pole Placement Design

Pole Placement Design Department of Automatic Control LTH, Lund University 1 Introduction 2 Simple Examples 3 Polynomial Design 4 State Space Design 5 Robustness and Design Rules 6 Model Reduction 7 Oscillatory Systems 8 Summary

More information

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at ) .7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a

More information

16.30/31, Fall 2010 Recitation # 2

16.30/31, Fall 2010 Recitation # 2 16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #14 16.31 Feedback Control Systems State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations. Where do we

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

1 (20 pts) Nyquist Exercise

1 (20 pts) Nyquist Exercise EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

More information

Solutions to Skill-Assessment Exercises

Solutions to Skill-Assessment Exercises Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Observability. It was the property in Lyapunov stability which allowed us to resolve that

Observability. It was the property in Lyapunov stability which allowed us to resolve that Observability We have seen observability twice already It was the property which permitted us to retrieve the initial state from the initial data {u(0),y(0),u(1),y(1),...,u(n 1),y(n 1)} It was the property

More information

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying

More information

1 Steady State Error (30 pts)

1 Steady State Error (30 pts) Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)

More information

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

More information

Homework 7 - Solutions

Homework 7 - Solutions Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the

More information

Control Systems. State Estimation.

Control Systems. State Estimation. State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Power System Control

Power System Control Power System Control Basic Control Engineering Prof. Wonhee Kim School of Energy Systems Engineering, Chung-Ang University 2 Contents Why feedback? System Modeling in Frequency Domain System Modeling in

More information

Module 08 Observability and State Estimator Design of Dynamical LTI Systems

Module 08 Observability and State Estimator Design of Dynamical LTI Systems Module 08 Observability and State Estimator Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha November

More information

2.010 Fall 2000 Solution of Homework Assignment 8

2.010 Fall 2000 Solution of Homework Assignment 8 2.1 Fall 2 Solution of Homework Assignment 8 1. Root Locus Analysis of Hydraulic Servomechanism. The block diagram of the controlled hydraulic servomechanism is shown in Fig. 1 e r e error + i Σ C(s) P(s)

More information

x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!

x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =! 1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78].

There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78]. Chapter 7 Output Feedback There are none. Abstract for Gauranteed Margins for LQG Regulators, John Doyle, 1978 [Doy78]. In the last chapter we considered the use of state feedback to modify the dynamics

More information

LMIs for Observability and Observer Design

LMIs for Observability and Observer Design LMIs for Observability and Observer Design Matthew M. Peet Arizona State University Lecture 06: LMIs for Observability and Observer Design Observability Consider a system with no input: ẋ(t) = Ax(t), x(0)

More information

Frequency Response Analysis

Frequency Response Analysis Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions

More information

Classical Dual-Inverted-Pendulum Control

Classical Dual-Inverted-Pendulum Control PRESENTED AT THE 23 IEEE CONFERENCE ON DECISION AND CONTROL 4399 Classical Dual-Inverted-Pendulum Control Kent H. Lundberg James K. Roberge Department of Electrical Engineering and Computer Science Massachusetts

More information

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION

ME 375 Final Examination Thursday, May 7, 2015 SOLUTION ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous- and Discretetime Dynamic Models Frequency Response Transfer Functions

More information

EE3CL4: Introduction to Linear Control Systems

EE3CL4: Introduction to Linear Control Systems 1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop

More information

GATE 2017 ECE Session 3 Answer Key

GATE 2017 ECE Session 3 Answer Key 1. Three pair cubical dice are thrown simultaneously. What is the probability that all three dice have same number is... Ans. ( 1 36 ). The one of the eigen value is real, rest are imaginary the real value

More information

to have roots with negative real parts, the necessary and sufficient conditions are that:

to have roots with negative real parts, the necessary and sufficient conditions are that: THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 543 LINEAR SYSTEMS AND CONTROL H O M E W O R K # 7 Sebastian A. Nugroho November 6, 7 Due date of the homework is: Sunday, November 6th @ :59pm.. The following

More information

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]

ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1] ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative

More information

Comparison of four state observer design algorithms for MIMO system

Comparison of four state observer design algorithms for MIMO system Archives of Control Sciences Volume 23(LIX), 2013 No. 2, pages 131 144 Comparison of four state observer design algorithms for MIMO system VINODH KUMAR. E, JOVITHA JEROME and S. AYYAPPAN A state observer

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Topic # /31 Feedback Control Systems

Topic # /31 Feedback Control Systems Topic #12 16.30/31 Feedback Control Systems State-Space Systems Full-state Feedback Control How do we change location of state-space eigenvalues/poles? Or, if we can change the pole locations where do

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

PM diagram of the Transfer Function and its use in the Design of Controllers

PM diagram of the Transfer Function and its use in the Design of Controllers PM diagram of the Transfer Function and its use in the Design of Controllers Santiago Garrido, Luis Moreno Abstract This paper presents the graphical chromatic representation of the phase and the magnitude

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

More information

EE Control Systems

EE Control Systems Copyright FL Lewis 7 All rights reserved Updated: Moday, November 1, 7 EE 4314 - Cotrol Systems Bode Plot Performace Specificatios The Bode Plot was developed by Hedrik Wade Bode i 1938 while he worked

More information

Goals for today 2.004

Goals for today 2.004 Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation

More information

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of

More information

The norms can also be characterized in terms of Riccati inequalities.

The norms can also be characterized in terms of Riccati inequalities. 9 Analysis of stability and H norms Consider the causal, linear, time-invariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements

More information

Frequency (rad/s)

Frequency (rad/s) . The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer

More information

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

More information

Problem 1 (Analysis of a Feedback System - Bode, Root Locus, Nyquist) Consider the feedback system defined by the open loop transfer function 1.

Problem 1 (Analysis of a Feedback System - Bode, Root Locus, Nyquist) Consider the feedback system defined by the open loop transfer function 1. 1 EEE480 Final Exam, Spring 2016 A.A. Rodriguez Rules: Calculators permitted, One 8.5 11 sheet, closed notes/books, open minds GWC 352, 965-3712 Problem 1 (Analysis of a Feedback System - Bode, Root Locus,

More information

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate

More information

Exam. 135 minutes + 15 minutes reading time

Exam. 135 minutes + 15 minutes reading time Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

More information

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006 Multivariable Control Lecture 3 Description of Linear Time Invariant Systems John T. Wen September 7, 26 Outline Mathematical description of LTI Systems Ref: 3.1-3.4 of text September 7, 26Copyrighted

More information

12.7 Steady State Error

12.7 Steady State Error Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there

More information