1 (30 pts) Dominant Pole

Size: px
Start display at page:

Download "1 (30 pts) Dominant Pole"

Transcription

1 EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax + Bu, y = Cx). (s + )(s + ) = /9 s + /9 s + ẋ = y = /9 x + /9 x b) Draw the block diagram for the system in parallel form. u c) For a step input, determine which mode of the parallel system dominates. ( /9 Y (s) = s + /9 ) ( ) s + s y(t) = 9 ( e t )u(t) 9 ( e t )u(t) = ( 9 e t + 9 e t )u(t) Hence, we can see that the mode at s = is dominant. d) Consider approximating the system by keeping only the dominant mode. (That is, in the parallel form, keeping only one state variable.) Considering the dominant mode, determine the approximate dynamic system x = ã x + bu and ỹ = c x, where ã, b, c are scalar constants. Remove the pole at s = : Ỹ (s) U(s) = s + Note the DC gain has been adjusted so that the final value is the same. In state space form, x = x + u ỹ = x

2 e) In Matlab, compare the step response for the original system {A, B, C} and the approximate system {ã, b, c}. The original system does not rise as quickly as the approximation near t = this is from when the mode at s = has an effect. Since it is opposite sign as the dominant mode, it will cause the output to settle slower. > figure; hold on; > step(ss(- ; -,;,/9 -/9,)); > step(ss(-,,,)); > legend( Original System, Single-Pole approximation ); (35 pts) Controllability and Observability For the circuit below, input is voltage u(t). u(t) R C x y(t) u(t) R C x y(t) AGND a) Write state and output equations for the circuit. AGND Y (s) U(s) = C s R + C s = (R C ) s + (R C ) Y (s) U(s) = (R C ) s + (R C )

3 These are two systems running in parallel with no coupling besides the input. Writing the state space form: (R C ẋ = ) (R C ) x + (R C = ) y (R C ) x y b) Find conditions for R, R, C, C that make the system controllable. Using the controllability matrix: C = B AB (R C = ) (R C ) For the two columns to be linearly independent, (R C ) (R C ) R C R C Under these conditions, the system is controllable. c) For output y = x, is the system observable? u Using the observability matrix: O = = C CA (R C ) Rank is less than and O =. The system is not observable since only the first state and it s derivative can be observed and there is no coupling from the second state. d) For R C = sec and R C =. sec, find gains k k such that the closed-loop system using state feedback with u = k k (r x) has closed loop poles at, 5. (Suggestion, Matlab place). >> A = - ; -; >> B = ;; >> K = place(a,b,- -5) K = i.e. u = x e) Use Matlab to plot x(t) for initial condition x() =, and reference input r(t) = 5e 5t e t T for < t < 4 sec. (Suggestion Matlab lsimplot.) >> SYS = ss(a-b*k,b*k,eye(),); >> T = :.:4 ; >> R = 5*exp(-5*T) -exp(-*t); >> lsimplot(sys,r,t); 3

4 Note at time t = that the two systems have opposite signs. f) Explain how x and x could have opposite signs for some time t although both are driven by the same input u(t). A few arguments could be made:. Consider u(t) = step(t). At time t =, both capacitors will begin discharging from V to V, however Circuit will discharge faster that Circuit. Therefore, Circuit will cross the axis before Circuit and the two will have opposite signs for some period of time until Circuit also crosses the axis.. Because the system is controllable, we know that any state can be reached with an appropriate input, including those states where x and x have opposite sign. 3. The reference input in effect has two modal responses super-imposed, with opposite sign. The closedloop system has a transient response to the superposition of these modes, thus there can be an opposite sign on the outputs although both have the same inputs. 4. A very loose analogy would be dribbling a tennis ball and a ping-pong ball on a tennis raquet - both could be hit with the same velocity, but the tennis ball could go higher and take longer to recontact the raquet. In this analogy both balls get the same contact velocity input, but have different dynamic response. Here the different time constants of the RC networks provides a difference of output even with the same input. 4

5 3 (35 pts) State Feedback versus Observer Feedback 3. (35 pts) State Feedback versus Observer Feedback Given the following system (e.g. inverted pendulum with position sensor).3 ẋ = Ax + Bu = x + u(t), y = x, x() = 4 a) Design a state feedback controller u = k k x such that the closed loop system has ζ =.5 and ω n = 5. ζ =.5 means θ = 3. The poles should be at.5 ± 4.33j. We will find k, k so that the eigenvalues of A BK have these values. A BK = 4 k k s A BK si = 4 k k s A BK si = s(k + s) 4 + k k =.5 k ± 4(k 4) = ±4.33j k = 5 ± k = ±8.66j = s + k s + k 4 s = k ± k 4(k 4) 4 4k = 75 k = 9 K = 9 5 b) Use Matlab to plot the states x(t) for t > for the system with state feedback. Using lsimplot, and a C matrix of I, both x and x are plotted. Out refers to x and Out refers to x. 5

6 Linear Simulation Results.3.5. To: Out().5..5 Amplitude.5..5 To: Out() Time (seconds) c) Design a critically damped observer ẑ = Aẑ + Bu + L(y ŷ) with both observer poles at s = 6. With ŷ = Cẑ, we can rearrange the design: and so we need to design ẑ = (A LC)ẑ + Bu + Ly L = so that A LC has poles at 6, 6. l A LC = 4 l l s A LC si = 4 l s l l A LC si = s(l + s) 4 + l = s + sl + l 4 s = l ± l 4l + 6 l = 6 l 4l + 6 = l = l = l = 4 L = 4 d) Write the state space equations for the controller with u = Kẑ. (This should have 4 state variables.) From the separation principle, what are the eigenvalues of the combined system with observer and feedback control? 6

7 The system equations with combined state feedback and observer are given by: ẋ = Ax BK ẑ and ẑ = (A LC BK)ẑ + LCx where we note that we are looking for the zero input response (ZIR, r(t) = ). One standard approach is to augment the x system with e = ẑ x: ẋ A BK BK x = ė A LC e ẋ x ẋ ė = x e ė 36 e y = This form makes the separation principle easy to see, because the block in the lower left hand corner means that the eigenvalues of the total A matrix are just the eigenvalues of A BK and A LC; and we know that these eigenvalues are j, j, 6, 6 because that s how we designed them. The disadvantage of this formulation is that it s a little bit harder to get the ẑ signal (which we need for part (e) below). Another approach is to augment the x system with ẑ: ẋ A BK x = ẑ LC A LC BK ẑ ẋ x ẋ ẑ = x ẑ ẑ ẑ x x e e x y = x ẑ ẑ This formulation is just as good as the one above. We could calculate the eigenvalues with MATLAB to verify that they are j, j, 6, 6. However, we also know that by the separation principle, the eigenvalues of this matrix must be the eigenvalues of A BK and A LC. (Why is this true, even if the matrix doesn t have that nice form with the block of zeros in the lower left hand corner? The two formulations are related by a similarity transform; similarity transforms don t affect eigenvalues). e) Use Matlab to plot the states x(t) and ẑ(t) for t > for the closed loop system using u = k k ẑ. (Suggestion, use sys = ss(ao,bo,co,do) and lsimplot(sys), where AO, BO, CO, DO are the matrices for the system with observer). lsimplot again. Out and Out are x and x. Out 3 and Out 4 are ẑ and ẑ. 7

8 Linear Simulation Results.5 To: Out().5 To: Out() Amplitude.5 To: Out(3).5.5 To: Out(4) Time (seconds) f) Compare the responses in part b) and e). What differences are there? The effect of the observer s estimate locking on to the true state is most easily seen in the very first tenth of a second of x. In the case with no observer, the x signal just oscillates starting from. But in the case with the observer, the x signal takes a little time before it starts oscillating; this is the e 6t transient of the observer going away. Otherwise, the x signals are very similar. The observer estimate clearly differs from the true state x at the beginning, but matches it very closely after about.5 seconds. 8

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

1 Steady State Error (30 pts)

1 Steady State Error (30 pts) Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 81-11 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12

More information

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

More information

Professor Fearing EE C128 / ME C134 Problem Set 10 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 10 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C28 / ME C34 Problem Set Solution Fall 2 Jansen Sheng and Wenjie Chen, UC Berkeley. (5 pts) Final Value Given the following continuous time (CT) system ẋ = Ax+Bu = 5 9 7 x+ u(t), y

More information

University of Toronto Department of Electrical and Computer Engineering ECE410F Control Systems Problem Set #3 Solutions = Q o = CA.

University of Toronto Department of Electrical and Computer Engineering ECE410F Control Systems Problem Set #3 Solutions = Q o = CA. University of Toronto Department of Electrical and Computer Engineering ECE41F Control Systems Problem Set #3 Solutions 1. The observability matrix is Q o C CA 5 6 3 34. Since det(q o ), the matrix is

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 537 Homewors Friedland Text Updated: Wednesday November 8 Some homewor assignments refer to Friedland s text For full credit show all wor. Some problems require hand calculations. In those cases do

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Lab Experiment 2: Performance of First order and second order systems

Lab Experiment 2: Performance of First order and second order systems Lab Experiment 2: Performance of First order and second order systems Objective: The objective of this exercise will be to study the performance characteristics of first and second order systems using

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

Topic # Feedback Control

Topic # Feedback Control Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

More information

Lec 6: State Feedback, Controllability, Integral Action

Lec 6: State Feedback, Controllability, Integral Action Lec 6: State Feedback, Controllability, Integral Action November 22, 2017 Lund University, Department of Automatic Control Controllability and Observability Example of Kalman decomposition 1 s 1 x 10 x

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101 1. For each of the following linear systems, determine whether the origin is asymptotically stable and, if so, plot the step response and frequency response for the system. If there are multiple

More information

EE 16B Midterm 2, March 21, Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor:

EE 16B Midterm 2, March 21, Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor: EE 16B Midterm 2, March 21, 2017 Name: SID #: Discussion Section and TA: Lab Section and TA: Name of left neighbor: Name of right neighbor: Important Instructions: Show your work. An answer without explanation

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC426 SC426 Fall 2, dr A Abate, DCSC, TU Delft Lecture 5 Controllable Canonical and Observable Canonical Forms Stabilization by State Feedback State Estimation, Observer Design

More information

Full State Feedback for State Space Approach

Full State Feedback for State Space Approach Full State Feedback for State Space Approach State Space Equations Using Cramer s rule it can be shown that the characteristic equation of the system is : det[ si A] 0 Roots (for s) of the resulting polynomial

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS 7 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS Previous chapters, by introducing fundamental state-space concepts and analysis tools, have now set the stage for our initial foray into statespace methods

More information

CDS 101: Lecture 5-1 Reachability and State Space Feedback

CDS 101: Lecture 5-1 Reachability and State Space Feedback CDS 11: Lecture 5-1 Reachability and State Space Feedback Richard M. Murray 23 October 26 Goals: Define reachability of a control system Give tests for reachability of linear systems and apply to examples

More information

Topic # /31 Feedback Control Systems

Topic # /31 Feedback Control Systems Topic #16 16.30/31 Feedback Control Systems Add reference inputs for the DOFB case Reading: FPE 7.8, 7.9 Fall 2010 16.30/31 16 2 Reference Input - II On page 15-6, compensator implemented with reference

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2 ME 132, Fall 2017, UC Berkeley, A. Packard 317 Be sure to check that all of your matrix manipulations have the correct dimensions, and that the concatenations have compatible dimensions (horizontal concatenations

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016 ACM/CMS 17 Linear Analysis & Applications Fall 216 Assignment 4: Linear ODEs and Control Theory Due: 5th December 216 Introduction Systems of ordinary differential equations (ODEs) can be used to describe

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Topic # /31 Feedback Control Systems

Topic # /31 Feedback Control Systems Topic #7 16.30/31 Feedback Control Systems State-Space Systems What are the basic properties of a state-space model, and how do we analyze these? Time Domain Interpretations System Modes Fall 2010 16.30/31

More information

EC Control Engineering Quiz II IIT Madras

EC Control Engineering Quiz II IIT Madras EC34 - Control Engineering Quiz II IIT Madras Linear algebra Find the eigenvalues and eigenvectors of A, A, A and A + 4I Find the eigenvalues and eigenvectors of the following matrices: (a) cos θ sin θ

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Linear Systems. Chapter Basic Definitions

Linear Systems. Chapter Basic Definitions Chapter 5 Linear Systems Few physical elements display truly linear characteristics. For example the relation between force on a spring and displacement of the spring is always nonlinear to some degree.

More information

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

More information

Lecture 4 Continuous time linear quadratic regulator

Lecture 4 Continuous time linear quadratic regulator EE363 Winter 2008-09 Lecture 4 Continuous time linear quadratic regulator continuous-time LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

State Feedback MAE 433 Spring 2012 Lab 7

State Feedback MAE 433 Spring 2012 Lab 7 State Feedback MAE 433 Spring 1 Lab 7 Prof. C. Rowley and M. Littman AIs: Brandt Belson, onathan Tu Princeton University April 4-7, 1 1 Overview This lab addresses the control of an inverted pendulum balanced

More information

Digital Control Systems State Feedback Control

Digital Control Systems State Feedback Control Digital Control Systems State Feedback Control Illustrating the Effects of Closed-Loop Eigenvalue Location and Control Saturation for a Stable Open-Loop System Continuous-Time System Gs () Y() s 1 = =

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Decentralized control with input saturation

Decentralized control with input saturation Decentralized control with input saturation Ciprian Deliu Faculty of Mathematics and Computer Science Technical University Eindhoven Eindhoven, The Netherlands November 2006 Decentralized control with

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Automatic Control II Computer exercise 3. LQG Design

Automatic Control II Computer exercise 3. LQG Design Uppsala University Information Technology Systems and Control HN,FS,KN 2000-10 Last revised by HR August 16, 2017 Automatic Control II Computer exercise 3 LQG Design Preparations: Read Chapters 5 and 9

More information

TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

More information

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x.

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x. 1. Find the stationary points of the following functionals: (a) 1 (q (x) + 1xq(x)) dx, q() =, q(1) = Solution. The functional is 1 L(q, q, x) where L(q, q, x) = q + 1xq. We have q = q, q = 1x. The Euler-Lagrange

More information

Comparison of four state observer design algorithms for MIMO system

Comparison of four state observer design algorithms for MIMO system Archives of Control Sciences Volume 23(LIX), 2013 No. 2, pages 131 144 Comparison of four state observer design algorithms for MIMO system VINODH KUMAR. E, JOVITHA JEROME and S. AYYAPPAN A state observer

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

More information

ECEEN 5448 Fall 2011 Homework #4 Solutions

ECEEN 5448 Fall 2011 Homework #4 Solutions ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The state-space realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Homework 7

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Homework 7 EECS 6B Designing Information Devices and Systems II Spring 28 J. Roychowdhury and M. Maharbiz Homework 7 This homework is due on Thursday, March 22, 28, at :59AM (NOON). Self-grades are due on Monday,

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 110b R. M. Murray Kalman Filters 25 January 2006 Reading: This set of lectures provides a brief introduction to Kalman filtering, following

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Linear control of inverted pendulum

Linear control of inverted pendulum Linear control of inverted pendulum Deep Ray, Ritesh Kumar, Praveen. C, Mythily Ramaswamy, J.-P. Raymond IFCAM Summer School on Numerics and Control of PDE 22 July - 2 August 213 IISc, Bangalore http://praveen.cfdlab.net/teaching/control213

More information

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS

ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF SINGULAR SYSTEMS INTERNATIONAL JOURNAL OF INFORMATON AND SYSTEMS SCIENCES Volume 5 Number 3-4 Pages 480 487 c 2009 Institute for Scientific Computing and Information ROBUST PASSIVE OBSERVER-BASED CONTROL FOR A CLASS OF

More information

Separation Principle & Full-Order Observer Design

Separation Principle & Full-Order Observer Design Separation Principle & Full-Order Observer Design Suppose you want to design a feedback controller. Using full-state feedback you can place the poles of the closed-loop system at will. U Plant Kx If the

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Systems of Differential Equations Phase Plane Analysis Hanz Richter Mechanical Engineering Department Cleveland State University Systems of Nonlinear

More information

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy Digital Control: Part 2 ENGI 7825: Control Systems II Andrew Vardy Mapping the s-plane onto the z-plane We re almost ready to design a controller for a DT system, however we will have to consider where

More information

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

More information

Series RC and RL Time Domain Solutions

Series RC and RL Time Domain Solutions ECE2205: Circuits and Systems I 6 1 Series RC and RL Time Domain Solutions In the last chapter, we saw that capacitors and inductors had element relations that are differential equations: i c (t) = C d

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

Lecture 2 and 3: Controllability of DT-LTI systems

Lecture 2 and 3: Controllability of DT-LTI systems 1 Lecture 2 and 3: Controllability of DT-LTI systems Spring 2013 - EE 194, Advanced Control (Prof Khan) January 23 (Wed) and 28 (Mon), 2013 I LTI SYSTEMS Recall that continuous-time LTI systems can be

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Controllability and State Feedback Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage:

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 110b R. M. Murray Kalman Filters 14 January 2007 Reading: This set of lectures provides a brief introduction to Kalman filtering, following

More information

9. Introduction and Chapter Objectives

9. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 9: Introduction to State Variable Models 9. Introduction and Chapter Objectives In our analysis approach of dynamic systems so far, we have defined variables which describe

More information

Control Systems. Time response. L. Lanari

Control Systems. Time response. L. Lanari Control Systems Time response L. Lanari outline zero-state solution matrix exponential total response (sum of zero-state and zero-input responses) Dirac impulse impulse response change of coordinates (state)

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #16 16.31 Feedback Control Systems State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Fall 2007 16.31 16 1 Combined Estimators and Regulators

More information

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

More information