and the Existence of True Models

Size: px
Start display at page:

Download "and the Existence of True Models"

Transcription

1 Statistical Image Reconstruction and the Existence of True Models Joseph A. O Sullivan Samuel C. Sachs Professor Dean, UMSL/WU Joint Undergraduate Engineering Program Professor of Electrical and Systems Engineering, Biomedical Engineering, and Radiology jao@wustl.edu Supported by Washington University and NIH-NCI grant R01CA75371 (J. F. Williamson, VCU, PI),NIH-NCI (CA110011) (Y.-C. Tai, PI), Susan G. Komen for the Cure (BCTR ), Washington University Internal Fund

2 Collaborators Faculty Richard Laforest David G. Politte Chrysanthe Preza, U Memphis Donald L. Snyder Yuan-Chuan Tai Bruce R. Whiting Jeffrey F. Williamson, VCU Heyu Wu Chemical Engineers M. Al-Dahhan, Mo. U. S&T M. Dudukovic R. Varma Students Norbert Agbeko Alan Kaplan Po-Hsiang Lai Aswin John Mathews Ikenna Odinaka Jasenka Benac Josh Evans, VCU Daniel Keesing Giovanni Lasio, VCU Debashish Pal Liangjunn Xie Post-Docs Ju-Chieh Kevin Cheng (Laforest lab) Sergey Komarov (Tai s lab) Tae Yong Song (Tai s lab) 2

3 Selected Work Dual energy X-ray CT imaging with radiation oncology applications Positron emission tomography: virtual pinhole PET; novel radionuclides Dual energy gamma ray imaging of chemical columns Emerging interest in X-ray imaging for baggage scanning Differential interference contrast microscopy 3

4 Bottom Line Message of Talk Model-based imaging works well There are limits to what is achievable There exist tools to quantify limits For imaging, i there are two types of errors Approximation error Modeling errors, systematic errors (limits in data space) Function approximation errors (limits in image space) Estimation error Noise and quantization errors Total error = approximation error + estimation error 4

5 Existence of a True Model Jorma Rissanen: There is no true model Consider Given imaging scanner Phantom whose physics are known exactly Repeated measurements of that phantom The statistics of the measurements given this known phantom can be measured as accurately as desired Does this yield a true model? What is a true model? Sampling and quantization Function space models pd ( c) Rods are brass, iron, aluminum, and teflon Revisit later 5

6 Computational Imaging for Microscopy Physics of Specimens Light Propagation Physics Abstraction Barrier p( θ ) Specimen Model or simply Light Propagation Model p( s θ ) max log θ Θ θ Θ p( d θ ) + log p( θ ) max log p( d θ ) θ Θ Algorithm Development Raw data Physics of Microscopes Data Processor C. Preza, CI2008 Microscope Model p( d s) J (θ ), bias, variance, Processed data contrast, noise,... Performance Analysis

7 Computational Imaging Physics of Scenes Abstraction Barrier Scene Model Scene to Sensor Propagation Model Algorithm Development Sensors Sensor Model Raw data Processed data Data Processor C. Preza, CI2008 Performance Analysis

8 Computational Imaging Physics of Scenes Abstraction Barrier Scene Model Scene to Sensor Propagation Model Algorithm Development SOMATOM Definition CT Scanner ccir.wustl.edu Raw data Sensors Sensor Model Data Processor Processed data Performance Analysis Data from R. Laforest and M. Mintun, MIR.

9 Computational Imaging Physics of Scenes Abstraction Barrier Scene Model Scene to Sensor Propagation Model Algorithm Development This Sensor Sensors approach works well. Model SOMATOM Definition CT Scanner ccir.wustl.edu What is the limit? Raw data When is there enough physics? Data Processor Processed data Performance Analysis

10 X-Ray Transmission Physics for CT Source Spectrum, Energy E Beer s Law and Attenuation l SEe ( ) μ ( x, E) dx SE ( ) Mean Photons/Detector I 0 μ ( x, E) dx l ISEe 0 ( ) Beam-hardening Detector Sensitivity Spectrum Mean (Photon) Flux DE ( ), Φ ( E ) = SEDE ( ) ( ) ( xe, ) dx l I Φ( E) e μ 0 J. L. Prince and J. Links, Medical Imaging Signals and Systems. Pearson Education: Upper Saddle River, NJ, Φ Mean photon model kvp ( xe, ) dx l I0 ( E) e μ Φ de 0 10

11 Linear Image Reconstruction Normalize relative to an air scan Beam-hardening correction to target energy Negative log to estimate line integrals at target energy Linear inversion, normalize (e.g. water-equivalent) equivalent) l( y) μ( xedx, ) log kvp Φ μ ( xe, ) dx l( y) I ( E) e de BH kvp ( μ ) 0 I 0 Φ ( E ) de ˆ( μ xe, ) ˆ l( y) μ water ( E ) ˆ μ( xe, ) = FBP ( xedx, ), cx ( ) = dy () Normalize & correct Negative logarithm FBP normalize cx () 0 11

12 X-Ray Transmission Tomography Detector Sensitivity D(E) Back to Basics Probability yphoton of energy E is detected Mean response to a photon of energy E: photon counting response = 1 energy integrating response = E Detector Statistics: photon Poisson distribution Photon counting, Beer s Law as survival probability Poisson Energy integrating compound Poisson Poisson mean λ: k λ λ PN ( = k) = e, k 0 k! Log-likelihood function: l( λ) = kln λ λ I-divergence: k Ik ( λ ) = kln k+ λ λ Ik ( λ) = l( λ) + klnk k ML equivalent to min I-divergence ( ) 12

13 X-Ray Transmission Tomography Reconstruction Principles Deterministic Model Data equal a function of the desired image Approximately invert that function to reconstruct image (minimize a measure of error between the data and the model) 2 min d g( : μ) μ Random Model Find the log-likelihood function for the data Maximize the (possibly penalized) log-likelihood function over possible images max ld ( g( : μ)) μ 13

14 Statistical Image Reconstruction Source-detector pairs indexed by y; voxels indexed by x Data d j (y) Poisson, means g j (y:μ), log-likelihood likelihood function ld ( g( : μ)) = d( y)ln g( y: μ) g( y: μ) j j j j j y Y g j( y: μ) = I jφ j( y, E)exp h( y, x) μ( x, E) + β j( y) E x X Mean unattenuated counts I j, mean background β j Attenuation function μ(x,e),, E energies I μ( x, E) = ci ( x) μi ( i= 1 E) Maximize over μ or c i 15

15 Maximum Likelihood/Minimum I-Divergence Original Estimation Problem: ( ( i ) ) ( i ) ( ) max l d q, E min I d q, E μ E Convex Decomposition Lemma: π m ln qm = min π mln π m P m qm Lifted (Variational) Estimation Problem: μ pye (, ) minmin I( p q) = minmin p( y, E)ln p( ye, ) qye (, ) q E p L q E p L qy (, E ) + L E ( ) { p: p y, E d( y) } = = E y = q: q( y, E) = I jφ j( y, E)exp h( y, x) μ( x, E) x X E E 16

16 Aside: Connection Between Maximum Likelihood and Maximum Entropy ( θ) (, θ) p y = q y x dx ln p ( y θ ) = ln q( y, x θ ) dx π ( x y) = min π ( x y ) ln dx π ( xy ) P q( y, x θ ) Reformulated ML Estimation Problem: ( ) ( ) maxln p y θ = max max π( x y)ln q y, x θ dx π( x y)ln π( x y) dx θ θ π( xy ) P Maximum entropy problem arises naturally within the ML problem. Double maximization leads naturally to an alternating maximization (EM) alg. DLR 77, Snyder and Miller 89, O Sullivan 98 17

17 Statistical Iterative Reconstruction AM Algorithm Alternating Minimization Algorithm Several papers from our group (O S & Benac, TMI 2007) Monotonically increasing log-likelihood I g j( y: μ) I j j( y, E)exp = Φ h( y, x) μi( E) ci( x) + β j( y), E x X i= max ld ( j g j( : μ)) = d j( y)ln g j( y: μ) g j( y: μ) i j= 1 j= 1 y Y { c ( x) } g j( y) = qj( y, E) E Compare using backprojection of data, estimated means ( k ) bi, j( x) ( k+ 1) ( k+ 1) 1 j cˆ ˆ i = c i ( x ) ln ˆ ( k ) Zi ( x) bi, j( x) j ˆ ( k) ( k) b ( x) = h( y, x) μ ( E) q ( y, E) i, j i j ye, ( k ) d ( ) j( y) qj ( y, E) k b i, j( x) = h( y, x) μi( E) ( k ) ye, q (, ') E ' j y E d Compare g Forward Model Update c 18

18 Additional Approximation Error min min I( p q) q E p L L L A smaller linear family has more * 1 2, pi = argmin I( p q) p L I( p q ) = I( p p ) + I( p q ) i constraints. E E * 1 2, qi = argmin I( p q) q E I ( p q ) = I ( p q ) + I ( q q ) i A smaller exponential family has fewer parameters. Additional Approximation Error = Iq ( q )

19 Estimation Error min min I( p q) q E p L Given true p and random p, in L, define T q = arg min I( p q), q = arg min I( p q). * * T T q E q E * * * * Then I( pt q ) = I( pt qt) + I( qt q ). * * Estimation error = ET I( qt q ). Pythagorean-type equality within an exponential family if the minimum is achieved. 20

20 Model Refinement Criterion (Likelihood Term) Consider a hierarchical model Refine a model if the refined estimation error is lower than the original estimation error plus the additional approximation error * * * * * * E T Iq ( 2T q 2) Iq ( 2T q1 T) + E T Iq ( 1T q 1) Interpretation as description length: Change in the number of bits for the likelihood term Estimation error can be computed from Fisher information and is approximately one half the number of parameters The approximation error term must be computed Repeated experiments yield empirical statistics 21

21 The estimation error is orthogonal to the approximation i error q 2 * * q 1 2 * q 1T * q 2T E 2 E 1 22

22 Simulations: Post-reconstruction vs. Joint Statistical Image Reconstruction Large Phantom: 20cm in diameter; thin outer lucite shell; water; four rods in inner 60mm lucite cylinder. Calibration rods: calcium chloride, ethanol, teflon and polystyrene in the 12, 3, 6, and 10 o clock positions, resp. Test phantom rods: muscle, ethanol, teflon and substance X (a bonelike material) in the 12, 3, 6, and 10 o clock positions, resp. Small Phantom: 60mm diameter lucite cylinder with rods FBP-BVM (Basis Vector Method; JF Williamson, et al. 2006) Water-equivalent equivalent beam hardening correction Requires calibration data to estimate linear transformation that generates the component images FBP uses a ramp filter AM-DE (AM Dual Energy Algorithm) NO pre-correction of data NO calibration data NO regularization 23

23 Materials Used - Fractions Substance Styrene Ca. Chloride Fraction Fraction Styrene 1 0 Ca. Chloride 0 1 I μ( x, E) = c ( x) μ ( E) i= 1 i i Ethanol Lucite Teflon Water Muscle Substance X

24 Mini CT Small Phantom 360 Source positions 92 detectors Based on Siemens Somatom Plus 4 scanner 64 by 64 image 25

25 Small Phantom Component Images Styrene Calcium Chloride Truth FBP-BVM AM-DE 26

26 Small Phantom Synthesized Images 20 kev 65 kev Truth FBP-BVM AM-DE 27

27 Small Phantom: Relative Errors I 0 = 100, FBP-BVM AM-DE 28

28 Fisher Information: Within a Component Image Calcium chloride Maximum 1.2E5 Styrene Maximum 1.6E4 29

29 Fisher Information: Across Images Maximum 4.2E4 30

30 CRLB images for 20keV (above) and 65keV (below) images x CRLB FBP-BVM AM-DE 31 Var / CRLB

31 CRLB Images: Diagonals of Inverse of Fisher Information Ratio of variance images to CRLB. Different display windows. Styrene Calcium Chloride CRLB FBP-BVM AM-DE 32

32 CRLB Images: Diagonals of Inverse of Fisher Information Ratio of variance images to CRLB. SAME display windows. Styrene Calcium Chloride CRLB FBP-BVM AM-DE 33

33 Small Phantom Ensemble mean and variance (from 15 samples) I 0 = 100,000 20keV Image AM-DE FBP-BVM Truth Mean Variance 34

34 Small Phantom Ensemble mean and variance (from 15 samples) I 0 = 100,000 65keV Image AM-DE FBP-BVM Truth Mean Variance 35

35 Typical Computation * * * * * * ET Iq ( 2T q 2) Iq ( 2T q1 T) + ET Iq ( 1T q 1) Computed from 20 independent samples (normalized): * * E I T ( q2t q2) * * E T I( q1 T q 1) Iq * * ( 2T q1 T ) * * * * Iq ( 2T q1 T) + E T Iq ( 1T q 1) Choose the more complex model with two components. 36

36 Physics/Data Model Complexity Algorithm Complexity Regularization Energy integrating g detectors EdN ( y,, E ) Finite detector size, better source model Finite pixel, voxel size Average integral or average exponential (arithmetic vs. geometric average) Partial volume effects Motion Scattering Limited angle tomography Region of interest Scanner implementations: beam hardening correction, sampling, etc.

37 Enough Physics? Physical models are always approximate Real-world issues Detector variability Pixelization as function representation Energy dependence as function representation Forward data models as function representation Detector models: efficiency, uniformity, geometry, underlying physics Energy integrating detectors Quantization

38 Enough Physics? Physical models are always approximate Cost of model mismatch? Modeling error via log-likelihood function Estimation error through information geometry and Fisher information Is there a true model? There exists true mean data (repeated measurements) The important cost of increasing model complexity is estimation error Physical models are always approximate Tools exist for optimizing representation (model)

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction

Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction / 5 Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction Yong Long and Jeffrey A. Fessler EECS Department James M. Balter Radiation Oncology Department The University

More information

Information-Theoretic Imaging

Information-Theoretic Imaging with Applications in Hyperspectral Imaging and Transmission Tomography Joseph A. O SullivanO Electronic Systems and Signals Research Laboratory Department of Electrical Engineering Washington University

More information

Steven Tilley Fully 3D Recon 2015 May 31 -June 4

Steven Tilley Fully 3D Recon 2015 May 31 -June 4 Fully3D Advanced System Models for Reconstruction in Flat-Panel Detector Cone-Beam CT Steven Tilley, Jeffrey Siewerdsen, Web Stayman Johns Hopkins University Schools of Medicine and Engineering Acknowledgements

More information

Objective Functions for Tomographic Reconstruction from. Randoms-Precorrected PET Scans. gram separately, this process doubles the storage space for

Objective Functions for Tomographic Reconstruction from. Randoms-Precorrected PET Scans. gram separately, this process doubles the storage space for Objective Functions for Tomographic Reconstruction from Randoms-Precorrected PET Scans Mehmet Yavuz and Jerey A. Fessler Dept. of EECS, University of Michigan Abstract In PET, usually the data are precorrected

More information

Scan Time Optimization for Post-injection PET Scans

Scan Time Optimization for Post-injection PET Scans Presented at 998 IEEE Nuc. Sci. Symp. Med. Im. Conf. Scan Time Optimization for Post-injection PET Scans Hakan Erdoğan Jeffrey A. Fessler 445 EECS Bldg., University of Michigan, Ann Arbor, MI 4809-222

More information

6: Positron Emission Tomography

6: Positron Emission Tomography 6: Positron Emission Tomography. What is the principle of PET imaging? Positron annihilation Electronic collimation coincidence detection. What is really measured by the PET camera? True, scatter and random

More information

Multi-energy CT: Future Directions. Acknowledgements. Overview 7/23/2014. Taly Gilat Schmidt, PhD. Kevin Zimmerman Franco Rupcich Steven Haworth

Multi-energy CT: Future Directions. Acknowledgements. Overview 7/23/2014. Taly Gilat Schmidt, PhD. Kevin Zimmerman Franco Rupcich Steven Haworth Multi-energy CT: Future Directions Taly Gilat Schmidt, PhD Department of Biomedical Engineering Marquette University Acknowledgements Kevin Zimmerman Franco Rupcich Steven Haworth Results in this talk:

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

Noise Analysis of Regularized EM for SPECT Reconstruction 1

Noise Analysis of Regularized EM for SPECT Reconstruction 1 Noise Analysis of Regularized EM for SPECT Reconstruction Wenli Wang and Gene Gindi Departments of Electrical Engineering and Radiology SUNY at Stony Brook, Stony Brook, NY 794-846 Abstract The ability

More information

Chapter 2 PET Imaging Basics

Chapter 2 PET Imaging Basics Chapter 2 PET Imaging Basics Timothy G. Turkington PET Radiotracers Positron emission tomography (PET) imaging is the injection (or inhalation) of a substance containing a positron emitter, the subsequent

More information

Statistical Tomographic Image Reconstruction Methods for Randoms-Precorrected PET Measurements

Statistical Tomographic Image Reconstruction Methods for Randoms-Precorrected PET Measurements Statistical Tomographic Image Reconstruction Methods for Randoms-Precorrected PET Measurements by Mehmet Yavuz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

PHYS 3650L - Modern Physics Laboratory

PHYS 3650L - Modern Physics Laboratory PHYS 3650L - Modern Physics Laboratory Laboratory Advanced Sheet Photon Attenuation 1. Objectives. The objectives of this laboratory exercise are: a. To measure the mass attenuation coefficient at a gamma

More information

Lossless Compression of List-Mode 3D PET Data 1

Lossless Compression of List-Mode 3D PET Data 1 Lossless Compression of List-Mode 3D PET Data 1 Evren Asma, David W. Shattuck and Richard M. Leahy Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 989-56 Abstract

More information

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links NM - introduction Relies on EMISSION of photons from body (versus transmission of photons through

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

Radionuclide Imaging MII Positron Emission Tomography (PET)

Radionuclide Imaging MII Positron Emission Tomography (PET) Radionuclide Imaging MII 3073 Positron Emission Tomography (PET) Positron (β + ) emission Positron is an electron with positive charge. Positron-emitting radionuclides are most commonly produced in cyclotron

More information

Tomography and Reconstruction

Tomography and Reconstruction Tomography and Reconstruction Lecture Overview Applications Background/history of tomography Radon Transform Fourier Slice Theorem Filtered Back Projection Algebraic techniques Measurement of Projection

More information

Tomography is imaging by sections. 1

Tomography is imaging by sections. 1 Tomography is imaging by sections. 1 It is a technique used in clinical medicine and biomedical research to create images that show how certain tissues are performing their physiological functions. 1 Conversely,

More information

Development of Radioactivity Standards for Quantitative Positron Emission Tomography

Development of Radioactivity Standards for Quantitative Positron Emission Tomography Development of Radioactivity Standards for Quantitative Positron Emission Tomography Brian E. Zimmerman, PhD Radiation Physics Division National Institute of Standards and Technology Gaithersburg, MD 20899-8462

More information

Lossless Compression of Dynamic PET Data

Lossless Compression of Dynamic PET Data IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 1, FEBRUARY 2003 9 Lossless Compression of Dynamic PET Data Evren Asma, Student Member, IEEE, David W. Shattuck, Member, IEEE, and Richard M. Leahy, Senior

More information

Z. Hradil, J. Řeháček

Z. Hradil, J. Řeháček Likelihood and entropy for quantum tomography Z. Hradil, J. Řeháček Department of Optics Palacký University,Olomouc Czech Republic Work was supported by the Czech Ministry of Education. Collaboration SLO

More information

Some Optimization and Statistical Learning Problems in Structural Biology

Some Optimization and Statistical Learning Problems in Structural Biology Some Optimization and Statistical Learning Problems in Structural Biology Amit Singer Princeton University, Department of Mathematics and PACM January 8, 2013 Amit Singer (Princeton University) January

More information

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction

Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Neural Network Approach for Photon-counting Detection The First Step: PPE Correction Ruibin Feng, Ph.D. Biomedical Imaging Center, CBIS/BME, RPI fengr@rpi.edu David Rundle JairiNovus Technologies Ltd.

More information

Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications

Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications Potentials for Dual-energy kv/mv On-board Imaging and Therapeutic Applications Fang-Fang Yin Department of Radiation Oncology Duke University Medical Center Acknowledgement Dr Hao Li for his excellent

More information

Sample Spectroscopy System Hardware

Sample Spectroscopy System Hardware Semiconductor Detectors vs. Scintillator+PMT Detectors Semiconductors are emerging technology - Scint.PMT systems relatively unchanged in 50 years. NaI(Tl) excellent for single-photon, new scintillation

More information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 23, NO. 5, MAY 2004 591 Emission Image Reconstruction for Roms-Precorrected PET Allowing Negative Sinogram Values Sangtae Ahn*, Student Member, IEEE, Jeffrey

More information

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital.

CT-PET calibration : physical principles and operating procedures F.Bonutti. Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital. CT-PET calibration : physical principles and operating procedures Faustino Bonutti Ph.D. Medical Physics, Udine University Hospital Topics Introduction to PET physics F-18 production β + decay and annichilation

More information

Physics 307 Laboratory

Physics 307 Laboratory Revision 10/30/01 Physics 307 Laboratory Experiment 5: Attenuation of γ-rays in Matter Motivation: In this experiment we will make a precision measurement of the attenuation coefficient for 662 kev γ-rays

More information

A Study of Numerical Algorithms for Regularized Poisson ML Image Reconstruction

A Study of Numerical Algorithms for Regularized Poisson ML Image Reconstruction A Study of Numerical Algorithms for Regularized Poisson ML Image Reconstruction Yao Xie Project Report for EE 391 Stanford University, Summer 2006-07 September 1, 2007 Abstract In this report we solved

More information

Reconstruction for Proton Computed Tomography: A Monte Carlo Study

Reconstruction for Proton Computed Tomography: A Monte Carlo Study Reconstruction for Proton Computed Tomography: A Monte Carlo Study T Li, Z. Liang, K. Mueller, J. Heimann, L. Johnson, H. Sadrozinski, A. Seiden, D. Williams, L. Zhang, S. Peggs, T. Satogata, V. Bashkirov,

More information

The relationship between image noise and spatial resolution of CT scanners

The relationship between image noise and spatial resolution of CT scanners The relationship between image noise and spatial resolution of CT scanners Sue Edyvean, Nicholas Keat, Maria Lewis, Julia Barrett, Salem Sassi, David Platten ImPACT*, St George s Hospital, London *An MDA

More information

F3-A2/F3-A3: Tensor-based formulation for Spectral Computed Tomography (CT) with novel regularization techniques

F3-A2/F3-A3: Tensor-based formulation for Spectral Computed Tomography (CT) with novel regularization techniques F3-A2/F3-A3: Tensor-based formulation for Spectral Computed Tomography (CT) with novel regularization techniques Abstract Spectral computed tomography (CT) has become possible with the development of photon

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017 Marcus Ressner, PhD, Medical Radiation Physicist, Linköping University Hospital Content What is Nuclear medicine? Basic principles of Functional

More information

CHAPTER 4 RADIATION ATTENUATION

CHAPTER 4 RADIATION ATTENUATION HDR202 PHYSICS FOR RADIOGRAPHERS 2 CHAPTER 4 RADIATION ATTENUATION PREPARED BY: MR KAMARUL AMIN BIN ABDULLAH SCHOOL OF MEDICAL IMAGING FACULTY OF HEALTH SCIENCES Learning Objectives At the end of the lesson,

More information

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Wei Zhou, Dilbar Abdurakhimova, Kishore Rajendran, Cynthia McCollough, Shuai Leng

More information

Gamma ray coincidence and angular correlation

Gamma ray coincidence and angular correlation University of Cape Town Department of Physics Course III laboratory Gamma ray coincidence and angular correlation Introduction Medical imaging based on positron emission tomography (PET) continues to have

More information

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary

Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics. 1 Executive summary ECE 830 Spring 207 Instructor: R. Willett Lecture 5: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we saw that the likelihood

More information

Efficiency and Attenuation in CdTe Detectors

Efficiency and Attenuation in CdTe Detectors Efficiency and Attenuation in CdTe Detectors Amptek Inc. Bob Redus, May 5, 00 Amptek s XR-00T-CdTe is a high performance x-ray and gamma ray detector system. Like Amptek s other XR00 products, a detector

More information

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging Chapter 1: Introduction to Medical Imaging Overview of Modalities Properties of an Image: Limitations on Information Content Contrast (both object & image): Brightness difference Sharpness (blur): Smallest

More information

Superiorized Inversion of the Radon Transform

Superiorized Inversion of the Radon Transform Superiorized Inversion of the Radon Transform Gabor T. Herman Graduate Center, City University of New York March 28, 2017 The Radon Transform in 2D For a function f of two real variables, a real number

More information

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Review. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Review Yao Wang Polytechnic University, Brooklyn, NY 11201 Based on J. L. Prince and J. M. Links, Medical maging Signals and Systems, and lecture notes by Prince. Figures are from the textbook.

More information

Metal Artifact Reduction with DECT

Metal Artifact Reduction with DECT Metal Artifact Reduction with DECT Daniele Marin, MD Duke University Medical Center Metal artifacts Common clinical problem ( 20%) Boas EF et al. Radiology 2011 Beam Hardening Edge Effects Scatter Metal

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Counting Statistics and Error Propagation!

Counting Statistics and Error Propagation! Counting Statistics and Error Propagation Nuclear Medicine Physics Lectures 10/4/11 Lawrence MacDonald, PhD macdon@uw.edu Imaging Research Laboratory, Radiology Dept. 1 Statistics Type of analysis which

More information

PET. Technical aspects

PET. Technical aspects PET Technical aspects 15 N 15 O Detector 1 β+ Detector 2 e- Evolution of PET Detectors CTI/Siemens 15 N 15 O Detector block 1 β+ Detector block 2 x e- x y y location line of response Constant fraction

More information

Neutron and Gamma Ray Imaging for Nuclear Materials Identification

Neutron and Gamma Ray Imaging for Nuclear Materials Identification Neutron and Gamma Ray Imaging for Nuclear Materials Identification James A. Mullens John Mihalczo Philip Bingham Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6010 865-574-5564 Abstract This

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis

Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis 4/26/207 Linear Attenuation Coefficients and Gas Holdup Distributions in Bubble Column with Vertical Internal for Fischer-Tropsch (FT) Synthesis Abbas J. Sultan, Laith S. Sabri, and Muthanna H. Al-Dahhan

More information

Maximal Entropy for Reconstruction of Back Projection Images

Maximal Entropy for Reconstruction of Back Projection Images Maximal Entropy for Reconstruction of Back Projection Images Tryphon Georgiou Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 5545 Peter J Olver Department of

More information

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics

Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 X-Rays/CT Lecture 1. Topics Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Recognition Performance from SAR Imagery Subject to System Resource Constraints

Recognition Performance from SAR Imagery Subject to System Resource Constraints Recognition Performance from SAR Imagery Subject to System Resource Constraints Michael D. DeVore Advisor: Joseph A. O SullivanO Washington University in St. Louis Electronic Systems and Signals Research

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Chem 321 Lecture 18 - Spectrophotometry 10/31/13

Chem 321 Lecture 18 - Spectrophotometry 10/31/13 Student Learning Objectives Chem 321 Lecture 18 - Spectrophotometry 10/31/13 In the lab you will use spectrophotometric techniques to determine the amount of iron, calcium and magnesium in unknowns. Although

More information

Applications of Low KeV Imaging in Abdomen

Applications of Low KeV Imaging in Abdomen Applications of Low KeV Imaging in Abdomen Dushyant Sahani, M.D Director of CT Associate Professor of Radiology Massachusetts General Hospital Harvard Medical School Email-dsahani@partners.org Disclosure

More information

INTERACTIONS OF RADIATION WITH MATTER

INTERACTIONS OF RADIATION WITH MATTER INTERACTIONS OF RADIATION WITH MATTER Renée Dickinson, MS, DABR Medical Physicist University of Washington Medical Center Department of Radiology Diagnostic Physics Section Outline Describe the various

More information

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D., Chapter 18: Radioactivity And Nuclear Transformation Presented by Mingxiong Huang, Ph.D., mxhuang@ucsd.edu 18.1 Radionuclide Decay Terms and Relationships Activity Decay Constant Physical Half-Life Fundamental

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Chap. 15 Radiation Imaging

Chap. 15 Radiation Imaging Chap. 15 Radiation Imaging 15.1 INTRODUCTION Modern Medical Imaging Devices Incorporating fundamental concepts in physical science and innovations in computer technology Nobel prize (physics) : 1895 Wilhelm

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

A quantative comparison of two restoration methods as applied to confocal microscopy

A quantative comparison of two restoration methods as applied to confocal microscopy A quantative comparison of two restoration methods as applied to confocal microscopy Geert M.P. van Kempen 1, Hans T.M. van der Voort, Lucas J. van Vliet 1 1 Pattern Recognition Group, Delft University

More information

The mathematics behind Computertomography

The mathematics behind Computertomography Radon transforms The mathematics behind Computertomography PD Dr. Swanhild Bernstein, Institute of Applied Analysis, Freiberg University of Mining and Technology, International Summer academic course 2008,

More information

Rich Tomography. Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute. July 2014

Rich Tomography. Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute. July 2014 Rich Tomography Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute July 2014 What do we mean by Rich Tomography? Conventional tomography reconstructs one scalar image from

More information

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)?

2. What are the tradeoffs among different measures of error (e.g. probability of false alarm, probability of miss, etc.)? ECE 830 / CS 76 Spring 06 Instructors: R. Willett & R. Nowak Lecture 3: Likelihood ratio tests, Neyman-Pearson detectors, ROC curves, and sufficient statistics Executive summary In the last lecture we

More information

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Abstract An automated unsupervised technique, based upon a Bayesian framework, for the segmentation of low light level

More information

X. Allen Li. Disclosure. DECT: What, how and Why Why dual-energy CT (DECT)? 7/30/2018. Improving delineation and response assessment using DECT in RT

X. Allen Li. Disclosure. DECT: What, how and Why Why dual-energy CT (DECT)? 7/30/2018. Improving delineation and response assessment using DECT in RT Improving delineation and response assessment using DECT in RT X. Allen Li Medical College of Wisconsin MO-A-DBRA-1, AAPM, July 30 th, 2018 Disclosure Research funding support: Siemens Healthineers Elekta

More information

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30

22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 22.56J Noninvasive Imaging in Biology and Medicine Instructor: Prof. Alan Jasanoff Fall 2005, TTh 1-2:30 Sample problems HW1 1. Look up (e.g. in the CRC Manual of Chemistry and Physics www.hbcpnetbase.com)

More information

Multi-Energy CT: Principles, Processing

Multi-Energy CT: Principles, Processing Multi-Energy CT: Principles, Processing and Clinical Applications Shuai Leng, PhD Associate Professor Department of Radiology Mayo Clinic, Rochester, MN Clinical Motivation CT number depends on x-ray attenuation

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

1-D Fourier Transform Pairs

1-D Fourier Transform Pairs 1-D Fourier Transform Pairs The concept of the PSF is most easily explained by considering a very small point source being placed in the imaging field-of-view The relationship between the image, I, and

More information

Uniform Quadratic Penalties Cause Nonuniform Spatial Resolution

Uniform Quadratic Penalties Cause Nonuniform Spatial Resolution Uniform Quadratic Penalties Cause Nonuniform Spatial Resolution Jeffrey A. Fessler and W. Leslie Rogers 3480 Kresge 111, Box 0552, University of Michigan, Ann Arbor, MI 48109-0552 ABSTRACT This paper examines

More information

MAP Reconstruction From Spatially Correlated PET Data

MAP Reconstruction From Spatially Correlated PET Data IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 50, NO 5, OCTOBER 2003 1445 MAP Reconstruction From Spatially Correlated PET Data Adam Alessio, Student Member, IEEE, Ken Sauer, Member, IEEE, and Charles A Bouman,

More information

AQA Physics /7408

AQA Physics /7408 AQA Physics - 7407/7408 Module 10: Medical physics You should be able to demonstrate and show your understanding of: 10.1 Physics of the eye 10.1.1 Physics of vision The eye as an optical refracting system,

More information

Sparsity Regularization for Image Reconstruction with Poisson Data

Sparsity Regularization for Image Reconstruction with Poisson Data Sparsity Regularization for Image Reconstruction with Poisson Data Daniel J. Lingenfelter a, Jeffrey A. Fessler a,andzhonghe b a Electrical Engineering and Computer Science, University of Michigan, Ann

More information

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in.

A Monte Carlo Study of the Relationship between the Time. Structures of Prompt Gammas and in vivo Radiation Dose in. A Monte Carlo Study of the Relationship between the Time Structures of Prompt Gammas and in vivo Radiation Dose in Proton Therapy Wook-Geun Shin and Chul Hee Min* Department of Radiation Convergence Engineering,

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Structure of Biological Materials

Structure of Biological Materials ELEC ENG 3BA3: Structure of Biological Materials Notes for Lecture #19 Monday, November 22, 2010 6.5 Nuclear medicine imaging Nuclear imaging produces images of the distribution of radiopharmaceuticals

More information

Detector. * All clinical images are courtesy of. University, Jerusalem. Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU, PHILIPS Healthcare

Detector. * All clinical images are courtesy of. University, Jerusalem. Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU, PHILIPS Healthcare AD Dual-Energy alenerg CT Based on A Double Layer Detector * All clinical images are courtesy of Hadassah Medical Center, The Hebrew University, Jerusalem Ami Altman, Ph.D., and Raz Carmi Ph.D., CT BU,

More information

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372 Tomography Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372, SMU Department of Electrical Engineering 86 Tomography: Background 1-D Fourier Transform: F(

More information

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study

Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Electron density and effective atomic number images generated by dual energy imaging with a 320-detector CT system: A feasibility study Poster No.: C-0403 Congress: ECR 2014 Type: Scientific Exhibit Authors:

More information

Iterative Data Refinement for Soft X-ray Microscopy

Iterative Data Refinement for Soft X-ray Microscopy Iterative Data Refinement for Soft X-ray Microscopy Presented by Joanna Klukowska August 2, 2013 Outline Iterative Data Refinement Transmission X-ray Microscopy Numerical Tests Joanna Klukowska IDR for

More information

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography

Quantitative Assessment of Scattering Contributions in MeV-Industrial X-ray Computed Tomography 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16530 Quantitative Assessment of Scattering

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC A. Specification Whole body counting method is used to detect the gamma rays emitted by radio nuclides,

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Principles of Neutron Imaging

Principles of Neutron Imaging Wir schaffen Wissen heute für morgen Manuel Morgano Neutron Imaging & Activation Group, Paul Scherrer Institut, Switzerland Principles of Neutron Imaging PSI, 8. Oktober 2015 1. Absorption-based imaging

More information

R&D Status of KSTAR Soft X-ray Tomographic Array Diagnostic System

R&D Status of KSTAR Soft X-ray Tomographic Array Diagnostic System R&D Status of KSTAR Soft X-ray Tomographic Array Diagnostic System Seung Hun Lee, Junghee Kim, and W. Choe Department of Physics KAIST (Korea Advanced Institute of Science and Technology) JA-KO Joint Workshop

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

A Time-Averaged Projection Matrix Approach to Motion Compensation

A Time-Averaged Projection Matrix Approach to Motion Compensation A Time-Averaged Proection Matrix Approach to Motion Compensation Charles Byrne (Charles Byrne@uml.edu) Department of Mathematical Sciences University of Massachusetts at Lowell Lowell, MA 01854, USA March

More information

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics)

Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Brandon C. Kelly (Harvard Smithsonian Center for Astrophysics) Probability quantifies randomness and uncertainty How do I estimate the normalization and logarithmic slope of a X ray continuum, assuming

More information

Optimal mass transport as a distance measure between images

Optimal mass transport as a distance measure between images Optimal mass transport as a distance measure between images Axel Ringh 1 1 Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden. 21 st of June 2018 INRIA, Sophia-Antipolis, France

More information

Reconstruction from Digital Holograms by Statistical Methods

Reconstruction from Digital Holograms by Statistical Methods Reconstruction from Digital Holograms by Statistical Methods Saowapak Sotthivirat Jeffrey A. Fessler EECS Department The University of Michigan 2003 Asilomar Nov. 12, 2003 Acknowledgements: Brian Athey,

More information

ROI Reconstruction in CT

ROI Reconstruction in CT Reconstruction in CT From Tomo reconstruction in the 21st centery, IEEE Sig. Proc. Magazine (R.Clackdoyle M.Defrise) L. Desbat TIMC-IMAG September 10, 2013 L. Desbat Reconstruction in CT Outline 1 CT Radiology

More information

at Some sort of quantization is necessary to represent continuous signals in digital form

at Some sort of quantization is necessary to represent continuous signals in digital form Quantization at Some sort of quantization is necessary to represent continuous signals in digital form x(n 1,n ) x(t 1,tt ) D Sampler Quantizer x q (n 1,nn ) Digitizer (A/D) Quantization is also used for

More information

An experimental study of dual-energy CT imaging using synchrotron radiation

An experimental study of dual-energy CT imaging using synchrotron radiation Nuclear Science and Techniques 24 (2013) 020102 An experimental study of dual-energy CT imaging using synchrotron radiation HAO Jia 1,2 ZHANG Li 1,2 XING Yuxiang 1,2 KANG Kejun 1,2 1 Department of Engineering

More information

Information Geometric view of Belief Propagation

Information Geometric view of Belief Propagation Information Geometric view of Belief Propagation Yunshu Liu 2013-10-17 References: [1]. Shiro Ikeda, Toshiyuki Tanaka and Shun-ichi Amari, Stochastic reasoning, Free energy and Information Geometry, Neural

More information