Advanced Microscopy. Wintersemester 2012/13 Alexander Heisterkamp Nonlinear Microscopy

Size: px
Start display at page:

Download "Advanced Microscopy. Wintersemester 2012/13 Alexander Heisterkamp Nonlinear Microscopy"

Transcription

1 Advanced Microscopy Wintersemester 2012/13 Alexander Heisterkamp Nonlinear Microscopy

2 Contact Prof.&Dr.&Alexander&Heisterkamp& Friedrich9Schiller9Universität&Jena& D907743&Jena,&Germany& phone:&+49&3641&947&660& fax:&&&&&&&+49&3641&947&652& Internet:&hXp://

3 last lecture:

4 Fluorescence excitation by nonlinear absorption sample& fluorescence&

5 Fluorescence excitation by nonlinear absorption sample& two9photon& fluorescence&

6 Cross sections for 2-photon-fluorescence in dyes σ TPA 1 10 cm s = 1GM GM& & Goeppert9Mayer & & bright&sunlight:& & 19photon&every&second!& &29photon&absorp@on&every&10&million&years!!!& &

7 Cross sections for 2-photon-fluorescence in tissue Zipfel&2003&

8 Cross sections for 2-photon-fluorescence in dyes Maria&Göppert9Mayer&

9 Sources for nonlinear excitation average power = very low peak power = kw-mw!!! focused by high NA: GW/cm x sec. = 100 fs pulsed laser

10 Sources for nonlinear excitation Denk&et&al,&1990:&CPM&Laser,&colliding&pulse&modelocked&laser& & & & today:&ti:sa9laser,&tuneable&between& nm,&pulse&width&approx.&120fs.& & &several&w&output&power& & & problem:& & & & & & &

11 fs-oscillators Ti:sapphire& slit& Lyot&filter& fiber&coupler& diode& fiber& beam& splixer& isolator& output&pulse&

12 Propagation of short pulses & red &wavelength&are&faster&compared& & to& blue &wavelengths.& wavelength& t_in& t_out& GDD&[s²]& GDD&[fs²]& 720& 1,52E913& 2,08E913& 7,80071E927& 7800,71332& 760& 1,46E913& 2,21E913& 8,71501E927& 8715,010082& 800& 1,63E913& 2,44E913& 1,06502E926& 10650,2068& 840& 1,31E913& 2,09E913& 7,69799E927& 7697,991824& 880& 1,25E913& 2,03E913& 7,21462E927& 7214,622738& 920& 1,20E913& 1,61E913& 4,64778E927& 4647,781729&

13 dispersion of ultrashort laser pulses n! 0! (! w! )! w! because of normal dispersion, the red part of the spectrum will be faster, the blue parts are delayed (GVD group velocity dispersion) chirp blue& red& n! 2! (! I! )! Ι# the pulse broadens due to n self phase modulation (SPM) 2

14 Excitation of multiple dyes multicolor imaging 1.0 DAPI DAC FITC R110 Spctrm O.Texas Red Cy5 Cy Fluoreszenz λ(nm) 29photon9& 750!%!950!nm!

15 Multicolor-Imaging Wokosin,&Centonze,&CriXenden,&and&White&(1996),&Bioimaging&

16 Comparison linear/nonlinear excitation W.!Webb,!Nature!Biotechnology!2003!

17 Comparison linear/nonlinear excitation Olympusmicro!

18 Setup of a nonlinear microscope descanned!deteccon! detector& z! fs9laser& scan%mirror! UV9lampe& detector& whole!area!deteccon!!!!

19 fs-clsm descanned scattering signal at 800nm Epithelium&

20 fs-clsm descanned scattering signal at 800nm Epithelium&

21 fs-clsm descanned scattering signal at 800nm Nerve&plexus&

22 fs-clsm descanned scattering signal at 800nm Stroma&

23 fs-clsm descanned scattering signal at 800nm Stroma&

24 fs-clsm descanned scattering signal at 800nm Stroma&

25 Nonlinear absorption leads to confocal like imaging sample& two9photonen& fluorescence&

26 granulosa&cells& (staining:& MitoTracker&Orange,& exc.:&554&nm,&em.:& 576&nm)& 5&µm&

27 granulosa&cells& (staining:& MitoTracker&Orange,& exc.:&554&nm,&em.:& 576&nm)& 5&µm&

28 MPM of drosophila larves (fruit fly) dye:&gfp& SupaXo&et&al.,&2005,&PNAS&

29 Absorption 1 absorption [µm -1 ] hemo- globine proteins melanin water nm 1µm wavelength 10µm

30 Low penetration depth of visible light z = 100µm z Tibor Veres, Fraunhofer Institut für Toxikologie Hannover

31 High penetration depth due to long wavelength Olympus, Scale-View Objectives (optical clearing agent used to reduce scattering)

32

33 for&example:&

34 Gerthsen,&Wöhlecke&

35 Bradley,&Cracknell,&Oxford,&1972&

36

37

38 Second harmonic generation - SHG SHG&is&sensi@ve&for&local&anisotropies& NL9polarisa@on:& P( ω SHG ) χ (2) ( ω SHG ) E( ω L ) E( ω L ) scales&with&intensity:& P (2) 2 2 SHG χ I Laser

39 Cells under a MPM/SHG SHG& MPM& &symmetric&molecule&distribu@on&not&visible&within&the&shg&image& L.&Moreaux&et&al.,&Opt.&LeX.&25,&320&(2000)&

40 MPM- & SHG-microscopy L.!Moreaux!et!al.,!Opt.!LeH.!25,!320!(2000)!

41 Second-Harmonic-Generation (SHG) P (1) = ε 0 χ E + ε E (2) (3) 0 χ E E + ε 0χ E E +... non-isotropic media, for example uni-axial crystals, frequency doubling by P (2) IVA, Ulm,

42 Second-Harmonic-Generation (SHG) collagen:& & in&mammals)& molecule&is&1.5nm&width&and& 300nm&in&length& highly&organized& IVA, Ulm,

43 MPM image of collagen matrix

44 SHG signal depends on alignment of structure

45 example: heart muscle tissue light&microscopy/histology& MPM/SHG& University!of!Western!Australia & & W.W.!Webb!! HE&staining& intrinsic&nad(p)h&(red)&& &&SHG&(green)&&

46

47 Label free-imaging of corneal tissue f9shg& & & & b9shg& & & & NLO& & & & f9clsm&

48 Investigation of corneal cross-linking by nonlinear microscopy 3&days& 6&days& M.&Hovakimyan,&R.&Guthoff,&S.&Knappe,&A.&Zhivov,&A.&Wree,&A.&Krueger,&A.&Heisterkamo,&O.&Stachs& Short&Term*Corneal*Response*to*Cross&Linking*in*Rabbit*Eyes*Assessed*by*In*Vivo*Confocal*Laser*Scanning* Microscopy*and*Histology,&Cornea,&2011&

49 SHG9&and&THG9microscopy& P (1) (2) 2 (3) 3 = ε 0 ( χ E + χ E + χ E + ) SHG!microscopy! THG!microscopy! non9centro& symmetric&media& needed& & for&example&collagen& E& THG&is&generated&wll& at&interfaces,& between&water&and& absorbing&layers&like& fat& E&

50 Cell und a multiphoton microscope SHG& MPM& &symmetric&molecule&distribu@on&within&the&adhesion&site,&thus&no&signal&visible& L.&Moreaux&et&al.,&Opt.&LeX.&25,&320&(2000)&

51 MPM- & SHG-Mikroskopie L.!Moreaux!et!al.,!Opt.!LeH.!25,!320!(2000)!

52 Example&for&SHG9&and&THG&microscopy:&Cornea& z1& z2& z3& z4& Plamann,!Schanne%Klein,!Beaurepaire!2011!

53 MPM of a drosophila larvae SupaHo!et!al.,!2005,!PNAS!

54 MPM ex vivo, fluorescence + SHG + THG Aptel!et!al.,!IOVS,!2011!

55 Nonlinear imaging in the eye diagnosis of Diabetes Multimodal Nonlinear Imaging of the Human Cornea Florent Aptel et al, (group of Carsten Plamann, LAO, ENSTA Paris, France)

56 Nonlinear imaging in the eye diagnosis of Diabetes

57 MPM in vivo, Fluorescence + THG Schaffer!et!al.,!2011,!Biophys.!J.!

58 Label-free imaging autofluorescence & CLSM Cross&linked& control& 20 µm 20 µm 100 µm 100 µm nuclei& no&nuclei&

59

60

61

62

Multiphoton microscopy

Multiphoton microscopy Multiphoton microscopy Joonas Holmi ELEC October 6, 2016 Multiphoton microscopy 1. 2. 3. 4. Multiphoton microscopy 2/14 Intro: Multiphoton microscopy Nonlinear optical characterization method Pulsed laser

More information

Introduction to Nonlinear Optics

Introduction to Nonlinear Optics Introduction to Nonlinear Optics Prof. Cleber R. Mendonca http://www.fotonica.ifsc.usp.br Outline Linear optics Introduction to nonlinear optics Second order nonlinearities Third order nonlinearities Two-photon

More information

Towards Nonlinear Endoscopes

Towards Nonlinear Endoscopes Towards Nonlinear Endoscopes Hervé Rigneault Institut Fresnel Marseille Nonlinear optical contrast mechanisms: label free imaging ω S ω S ω P ω P TPEF SHG THG Raman CARS SRS ω P ω S = Ω R CARS SRS Molecular

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses I - Fundamentals Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Non-linear optical glasses

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

χ (3) Microscopic Techniques

χ (3) Microscopic Techniques χ (3) Microscopic Techniques Quan Wang Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 Microscopic techniques that utilize the third order non-linearality (χ (3) ) of the

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics J Moger and C P Winlove Relating Structure to Function Biochemistry Raman microspectrometry Surface enhanced Raman spectrometry (SERS)

More information

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca

Femtosecond laser applied to biophotonics. Prof. Cleber R. Mendonca Femtosecond laser applied to biophotonics Prof. Cleber R. Mendonca introduction short pulse duration ö high intensity (even at low energy) introduction how short is a femtosecond pulse? 1fs= 10-15 s introduction

More information

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Thomas Binhammer 1, Yuliya Khanukaeva 2, Alexander Pape 1, Oliver Prochnow 1, Jan Ahrens 1, Andreas

More information

Class 1. Introduction to Nonlinear Optics

Class 1. Introduction to Nonlinear Optics Class 1 Introduction to Nonlinear Optics Prof. Cleber R. Mendonca http://www.fotonica.ifsc.usp.br for a copy of this presentation www.fotonica.ifsc.usp.br ifsc presentations Outline Linear optics Introduction

More information

Advanced Microscopy. Wintersemester 2012/13 Alexander Heisterkamp Tissue Optics, Optical Clearing, Optical Tomography

Advanced Microscopy. Wintersemester 2012/13 Alexander Heisterkamp Tissue Optics, Optical Clearing, Optical Tomography Advanced Microscopy Wintersemester 2012/13 Alexander Heisterkamp Tissue Optics, Optical Clearing, Optical Tomography 21.01.2013 [Welch] Radiometric variables Goal: calculation of the distribution of the

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biomedical optics II Kung-Bin Sung 1 Outline Chapter 17: Biomedical optics and lasers Fundamentals of light Light-matter interaction Optical imaging Optical sensing:

More information

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques ENGLISH NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS Contact during exam: Magnus Borstad Lilledahl Telefon: 73591873 (office) 92851014 (mobile) Solution set for EXAM IN TFY4265/FY8906

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

(Introduction) Linear Optics and Nonlinear Optics

(Introduction) Linear Optics and Nonlinear Optics 18. Electro-optics (Introduction) Linear Optics and Nonlinear Optics Linear Optics The optical properties, such as the refractive index and the absorption coefficient are independent of light intensity.

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Winter College on Optics and Energy February Optical nonlinearities in organic materials

Winter College on Optics and Energy February Optical nonlinearities in organic materials 2132-41 Winter College on Optics and Energy 8-19 February 2010 Optical nonlinearities in organic materials C.R. Mendonca University of Sao Paulo Brazil Optical nonlinearities in organic materials Prof.

More information

4. The interaction of light with matter

4. The interaction of light with matter 4. The interaction of light with matter The propagation of light through chemical materials is described by a wave equation similar to the one that describes light travel in a vacuum (free space). Again,

More information

Quantum Optical Coherence Tomography

Quantum Optical Coherence Tomography Quantum Optical Coherence Tomography Bahaa Saleh Alexander Sergienko Malvin Teich Quantum Imaging Lab Department of Electrical & Computer Engineering & Photonics Center QuickTime and a TIFF (Uncompressed)

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele

Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele Lichtausbreitung in streuenden Medien: Prinzip und Anwendungsbeispiele Alwin Kienle 06.12.2013 Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm Overview 1) Theory of

More information

Sources supercontinuum visibles à base de fibres optiques microstructurées

Sources supercontinuum visibles à base de fibres optiques microstructurées Sources supercontinuum visibles à base de fibres optiques microstructurées P. Leproux XLIM - Université de Limoges Journées Thématiques CMDO+, Palaiseau, 24-25 nov. 2008 Palaiseau, 25/11/2008 - P. Leproux

More information

Coherent control of light matter interaction

Coherent control of light matter interaction UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Coherent control of light matter interaction Prof. Dr. Cleber Renato Mendonça Photonic Group University of São Paulo (USP), Institute of Physics

More information

Nonlinear Optics (NLO)

Nonlinear Optics (NLO) Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams

More information

Lecture cycle: Spectroscopy and Optics

Lecture cycle: Spectroscopy and Optics Lecture cycle: Spectroscopy and Optics Thu. 13:00-15:00 / Room 1.003 15.11.2017 (Staudinger) Mischa Bonn Light-matter interaction overview I 30.11.2017 Mischa Bonn Light-matter interaction overview II

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Microfabricação em materiais poliméricos usando laser de femtossegundos

Microfabricação em materiais poliméricos usando laser de femtossegundos Microfabricação em materiais poliméricos usando laser de femtossegundos Prof. Cleber R. Mendonça http://www.fotonica.ifsc.usp.br University of Sao Paulo - Brazil students 77.000 52.000 undergrad. 25.000

More information

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Dru Morrish, Xiaosong Gan and Min Gu Centre for Micro-Photonics, School of Biophysical

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 20: Nonlinear Optics in Glass-Fundamentals Denise Krol Department of Applied Science University of California,

More information

Combining High Resolution Optical and Scanning Probe Microscopy

Combining High Resolution Optical and Scanning Probe Microscopy Combining High Resolution Optical and Scanning Probe Microscopy Fernando Vargas WITec, Ulm, Germany www.witec.de Company Background Foundation 1997 by O. Hollricher, J. Koenen, K. Weishaupt WITec = Wissenschaftliche

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods

Diagnostics of Filamentation in Laser Materials with Fluorescent Methods Diagnostics of Filamentation in Laser Materials with Fluorescent Methods A.V. Kuznetsov, E.F. Martynovich Irkutsk Branch of Institute of Laser Physics SB RAS Lermontov st. 130a, Irkutsk, 664033, Russia

More information

Optical Absorption. Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau. Symposium OCLA Buchs,

Optical Absorption. Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau. Symposium OCLA Buchs, Optical Absorption Istvan Balasa, Peter Jürgens, Lars Jensen, Marco Jupé, Detlev Ristau Symposium OCLA 2017 Buchs, 12.04.2017 WHAT IS CRITICAL ABOUT ABSORPTION? Laser-induced Damage Thermal Lensing / Focal

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

Fiber-based Ultrafast sources for Nonlinear Spectroscopy

Fiber-based Ultrafast sources for Nonlinear Spectroscopy Fiber-based Ultrafast sources for Nonlinear Spectroscopy Preliminary Exam for Scott R Domingue, PhD candidate Department of Electrical and Computer Engineering Colorado State University Nonlinear Interactions

More information

(i.e. what you should be able to answer at end of lecture)

(i.e. what you should be able to answer at end of lecture) Today s Announcements 1. Test given back next Wednesday 2. HW assigned next Wednesday. 3. Next Monday 1 st discussion about Individual Projects. Today s take-home lessons (i.e. what you should be able

More information

Applications à la microscopie non-linéaire

Applications à la microscopie non-linéaire Applications à la microscopie non-linéaire Sophie Brasselet Institut Fresnel, Marseille sophie.brasselet@fresnel.fr Nonlinear Microscopy and Pulse Shaping 100µm In vivo mouse spinal cord: Myelin (CARS)

More information

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging TECHNICAL NOTE Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging Shih-Chu Liao, Yuansheng Sun, Ulas Coskun ISS, Inc. Introduction The advantages of multiphoton excitation

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Grading Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum Maximum total = 39 points Pass if total >= 20 points Fail if total

More information

Einführung in die Photonik II

Einführung in die Photonik II Einführung in die Photonik II ab 16.April 2012, Mo 11:00-12:30 Uhr SR 218 Lectures Monday, 11:00 Uhr, room 224 Frank Cichos Molecular Nanophotonics Room 322 Tel.: 97 32571 cichos@physik.uni-leipzig.de

More information

Multilayer Thin Films Dielectric Double Chirped Mirrors Design

Multilayer Thin Films Dielectric Double Chirped Mirrors Design International Journal of Physics and Applications. ISSN 974-313 Volume 5, Number 1 (13), pp. 19-3 International Research Publication House http://www.irphouse.com Multilayer Thin Films Dielectric Double

More information

Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy

Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy Spectral phase optimization of femtosecond laser pulses for narrow-band, low-background nonlinear spectroscopy Vadim V. Lozovoy, Janelle C. Shane, Bingwei Xu and Marcos Dantus Department of Chemistry and

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Ultrashort laser applications

Ultrashort laser applications Ultrashort laser applications Prof. Dr. Cleber R. Mendonça Instituto de Física de São Carlos Universidade de São Paulo University of Sao Paulo - Brazil students ~ 98.000 58.000 undergrad. 30.000 grad.

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Third-harmonic generation

Third-harmonic generation 2 Third-harmonic generation 2.1 Introduction Optical signals from single nano-objects open new windows for studies at nanometer scales in fields as diverse as material science and cell biology. Cleared

More information

Fluorescence Resonance Energy Transfer (FRET) Microscopy

Fluorescence Resonance Energy Transfer (FRET) Microscopy Fluorescence Resonance Energy Transfer () Microscopy Mike Lorenz Optical Technology Development mlorenz@mpi-cbg.de -FLM course, May 2009 What is fluorescence? Stoke s shift Fluorescence light is always

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Technique of the experiment

Technique of the experiment Chapter. Technique of the experiment Chapter. Technique of the experiment.1 Laser system used for photomodifications of Ag nanoparticles. The experiments presented in this work were curried out using a

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Kelsie Betsch University of Virginia Departmentt of Physics AMO/Fourth Year Seminar April 13, 2009 Overarching

More information

Lecturers for Week 1

Lecturers for Week 1 Lecturers for Week 1 Prof. Cid B. de Araújo, Recife, Brazil Prof. Sergey K. Turitsyn, Birmingham, UK Dr. Miguel C. Soriano, Palma de Mallorca, Spain Prof Marcel Clerc, Santiago, Chile Prof. Yuri S. Kivshar,

More information

INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI MICROSCOPY APPLIED TO BIOPHOTONICS Varenna (Lake Como) - July 12th to 22nd 2011

INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI MICROSCOPY APPLIED TO BIOPHOTONICS Varenna (Lake Como) - July 12th to 22nd 2011 INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI MICROSCOPY APPLIED TO BIOPHOTONICS Varenna (Lake Como) - July 12th to 22nd 2011 Basic multiphoton and SHG microscopy Peter T. C. So Department of Mechanical

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

Analysis of Thermal Diffusivity of Metals using Lock-in Thermography

Analysis of Thermal Diffusivity of Metals using Lock-in Thermography Analysis of Thermal Diffusivity of Metals using Lock-in Thermography by F. Wagner*, T. Malvisalo*, P. W. Nolte**, and S. Schweizer** * Department of Electrical Engineering, South Westphalia University

More information

LINC: an Interdepartmental Laboratory at ENEA for Femtosecond CARS Spectroscopy

LINC: an Interdepartmental Laboratory at ENEA for Femtosecond CARS Spectroscopy LINC: an Interdepartmental Laboratory at ENEA for Femtosecond CARS Spectroscopy Mauro Falconieri ENEA FSN-TECFIS C.R. Casaccia via Anguillarese 301, 00123 Rome (Italy) LIMS 2018 - Frascati May 17 th 2018

More information

Determining the Optimum Hardware for Generation of 260 nm Light. Physics 582 Bryce Gadway Prof. Tom Weinacht

Determining the Optimum Hardware for Generation of 260 nm Light. Physics 582 Bryce Gadway Prof. Tom Weinacht Determining the Optimum Hardware for Generation of 60 nm Light Physics 58 Bryce Gadway Prof. Tom Weinacht The general path to UV Second-Harmonic Generation (SHG) With a single input field at λ 1 = 780

More information

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University The Basic Setup for the KLS Photoionization Experiment V. Kumarappan Femtosecond Pump-Probe

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy

Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy Adam M. Hanninen a and Eric O. Potma b a Department of Astronomy and Physics, University of California, Irvine, CA 92697,

More information

Nonlinear Optics. Second Editio n. Robert W. Boyd

Nonlinear Optics. Second Editio n. Robert W. Boyd Nonlinear Optics Second Editio n Robert W. Boyd Preface to the Second Edition Preface to the First Edition xiii xv 1. The Nonlinear Optical Susceptibility 1 1.1. Introduction to Nonlinear Optics 1 1.2.

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm). R.J. Jones Optical Sciences OPTI 511L Fall 2017 Experiment 3: Second Harmonic Generation (SHG) (1 week lab) In this experiment we produce 0.53 µm (green) light by frequency doubling of a 1.06 µm (infrared)

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

Crystals NLO Crystals LBO

Crystals NLO Crystals LBO Crystals NLO Crystals LBO Introduction Lithium triborate (LiB 3 O 5 or LBO) has the following exceptional properties that make it a very important nonlinear crystal: LBO has following advance: absorption:

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Analysis of second-harmonic generation microscopy under refractive index mismatch

Analysis of second-harmonic generation microscopy under refractive index mismatch Vol 16 No 11, November 27 c 27 Chin. Phys. Soc. 19-1963/27/16(11/3285-5 Chinese Physics and IOP Publishing Ltd Analysis of second-harmonic generation microscopy under refractive index mismatch Wang Xiang-Hui(

More information

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation APPLICATION NOTE Supercontinuum Generation in SCG-800 Photonic Crystal Fiber 28 Technology and Applications Center Newport Corporation 1. Introduction Since the discovery of supercontinuum generation (white

More information

36. Nonlinear optics: χ(2) processes

36. Nonlinear optics: χ(2) processes 36. Nonlinear optics: χ() processes The wave equation with nonlinearity Second-harmonic generation: making blue light from red light approximations: SVEA, zero pump depletion phase matching quasi-phase

More information

12. Nonlinear optics I

12. Nonlinear optics I 1. Nonlinear optics I What are nonlinear-optical effects and why do they occur? Maxwell's equations in a medium Nonlinear-optical media Second-harmonic generation Conservation laws for photons ("Phasematching")

More information

Nano fabrication and optical characterization of nanostructures

Nano fabrication and optical characterization of nanostructures Introduction to nanooptics, Summer Term 2012, Abbe School of Photonics, FSU Jena, Prof. Thomas Pertsch Nano fabrication and optical characterization of nanostructures Lecture 12 1 Optical characterization

More information

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching

Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Laboratory 3&4: Confocal Microscopy Imaging of Single-Emitter Fluorescence and Hanbury Brown and Twiss setup for Photon Antibunching Jose Alejandro Graniel Institute of Optics University of Rochester,

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Nijil Lal C.K. Physical Research Laboratory, Ahmedabad YouQu-2017 27/02/2017 Outline Single Photon Sources (SPS) Heralded

More information