Used to extract image components that are useful in the representation and description of region shape, such as

Size: px
Start display at page:

Download "Used to extract image components that are useful in the representation and description of region shape, such as"

Transcription

1 Used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction skeletons convex hull morphological filtering thinning pruning

2 Sets in mathematic morphology represent objects in an image: binary image (0 = white, 1 = black) : the element of the set is the coordinates (x,y) of pixel belong to the object Z 2 gray-scaled image : the element of the set is the coordinates (x,y) of pixel belong to the object and the gray levels Z 3

3 Preliminary: A: A set in Z 2 with elements of a=(a 1,a 2 ) a A a A A B C = A B D= A B A B= { } c A w w A = {, } A B= w w A w B = A B c

4 Operators by examples:

5 Preliminary: A: A set in Z 2 with elements of a=(a 1,a 2 ) ˆ =, for, Reflection B { w w b b B} ( A) { c c a z a A} = +, for, Translation z

6 Reflection and Translation by examples: Need for a reference point. Reference point

7 Basic Logic Operations:

8 Examples

9 Two Fundamental Morphological Operators: Dilation: Set B: A structural elements. Relation to Convolution mask: Flipping Overlapping { ( ˆ) } ( ˆ) Other names: Grow, Expand z { } A B= z B A = z B A A z

10 Dilation by example:

11 Dilation by example: B: a 3 3 mask.

12 Application: Gap filling

13 Two Fundamental Morphological Operators: Erosion: ( ) { } A B= z B A Set B: A structural elements. Other banes: Shrink, Reduce z

14 { ( ) } A B= z B A z

15 Erosion by example: B: a 3 3 mask.

16 Erosion by example: 11 pixels (Diameter)

17 Dilation-Erosion Duality: c ( ) ( ) z ( ) Remember: { } c { c ( ) } A B = z B A = z B A = c = z B A = A Bˆ { c } z { ( ˆ ) } A B= z B A z z c

18 Erosion Application: Remove details 1,3,5,7,9, and 15 Erode with 13 Dilate with 13

19 Opening and Closing: Dilation expands and Erosion shrinks. Opening: Smooth contour (تنگه (Means: Break narrow isthmuses Remove thin protrusion Closing: Smooth contour Fuse narrow breaks, and long thin gulfs. Remove small holes, and fill gaps.

20 Opening and Closing: Dilation expands and Erosion shrinks. Opening: A erosion followed by a dilation using the same structuring element for both operations. Closing: ( ) ( ) ( ) { } z z A B = AΘB B= B B A A Dilation followed by a erosion using the same structuring element for both operations. ( ) A B= A B ΘB

21 Opening Illustration:

22 Opening Illustration:

23 Closing Illustration:

24 Closing Illustration:

25 Opening and Closing

26 Medical Application: Closing 5 5 Opening 5 5 Original Segmentation

27 Opening and Closing Duality: c ( ) ( c A B = A Bˆ ) Opening Properties: A B is a subset (subimage) of A If C is a subset of D, then C B is a subset of D B (A B) B = A B Multiple apply has no effect. Closing Properties: A is a subset (subimage) of A B If C is a subset of D, then C B is a subset of D B (A B) B = A B Multiple apply has no effect.

28 Noise Reduction Opening Dilation of Opening Closing of Opening

29 Hit-or-Miss Shape Detection X-Y-X shape X enclosed by W c ( ) ( ) c ( ) A* B= AΘX A Θ W X A* B= AΘB A ΘB 1 2 ( ) ( ˆ ) 1 2 A* B= AΘB A B B 1 : Object related B 2 : Background related

30 Hit-or-Miss: Another application: Corners

31 Morphological Operator Applications: Boundary Extraction: β ( A) = A ( AΘB) Eroded Difference

32 Boundary Extraction:

33 Region Filling: Start form p inside boundary. X 0 k = Until: p ( ) X = X B A X k k+ 1 = X k c

34 Region Filling Example: Semi-automated to cancel reflection effect

35 Connected components Extraction: Start from p belong to desired region. X 0 k = Until: p ( ) X = X B A X k k+ 1 = X k

36 Original Thr Connected Components with size Erosion (5 5)

37 Convex Hull of S: Smallest Convex set H, containing S Define Four basic structural elements, B i, i=1,2,3,4 X = i 0 ( ) ( ) k i i i X = X B A i = 1, 2,3, 4 and k = 1, 2,3, k A 4 C A = D, D = X i= 1 i i i converged

38 C C Converged: C C C C

39 Shortcoming of previous algorithm: Grow more than minimum required convex size. Limit to vertical-horizontal expansion.

40 Thinning: Another approach: { } { 1 2 n B = B, B,, B } ( * ) ( * ) A B= A A B = A A B (( ( ) ) ) 1 2 n { B} ( ) A = A B B B Repeat until convergence c

41 Convert to m- connection

42 Thickening: A B= A ( A* B) (( ( 1 2 ) ) ) n { B} = ( ) A A B B B Structural elements are as before.

43 Skeletonization A with notation S(A): For z belong to S(A) and (D) z, the largest disk centered at z and contained in A, one can not find a larger disk containing (D) z and included in A. Disk(D) z touches the boundary of A at two or more different points.

44 Skeleton by example:

45 Formulation: K S( A) = S ( A) k = 0 k ( ) = ( Θ ) ( Θ ) ( ) ( ) S A A kb A kb B, :Opening K (( ( ) ) ) AΘ kb = AΘB ΘB ΘB : k times K=max k ( AΘkB) { } Reconstruction: A= ( ) ( S ) k A kb k=0 k (( ( ) ) ) ( ) ( ) A kb = A B B B : k times

46

47

48

49

50

51

52

53 Extension to Gray-Level images: f(x,y): the input image b(x,y): a structuring element (a subimage function) (x,y) are integers. f and b are functions that assign a gray-level value (real number or real integer) to each distinct pair of coordinate (x,y)

54 Extension to Gray-Level images: Dilation: D f and D b are the domains of f and b, respectively. ( f b)( st, ) = max{ f( s xy, t) + bxy (, ) ( s x),( t y) D ;( x, y) D } condition (s-x) and (t-y) have to be in the domain of f and (x,y) have to be in the domain of b is similar to the condition in binary morphological dilation where the two sets have to overlap by at least one element f b

55 Dilation Similarity with Convolution: f(s-x) : f(-x) is simply f(x) mirrored with respect to the original of the x axis. the function f(s-x) moves to the right for positive s, and to the left for negative s. Maxoperation replaces the sums of convolution Addition operation replaces with the products of convolution. General effect Ifall the values of the structuring element are positive, the output image tends to be brighter than the input Dark details either are reduced or eliminated, depending on how their values and shapes relate to the structuring element used for dilation.

56 1D example: ( f b)( s) = max{ f( s x) + b( x) ( s x) D ; x D } f b

57 Erosion: ( fθ b)( st, ) = min{ f( s+ xy, + t) bxy (, ) ( s+ x),( t+ y) D ;( x, y) D } Condition (s+x) and (t+y) have to be in the domain of f and (x,y) have to be in the domain of b is similar to the condition in binary morphological erosion where the structuring element has to be completely contained by the set being eroded. f b

58 Similarity to 2D correlation f(s+x) moves to the left for positive s and to the right for negative s. General effect If all the elements of the structuring element are positive, the output image tends to be darker than the input The effect of bright details in the input image that are smaller in area than the structuring element is reduced, with the degree of reduction being determined by the gray-level values surrounding the bright detail and by the shape and amplitude values of the structuring element itself.

59 1D case: ( fθ b)( s) = min{ f( s+ x) b( x) ( s+ x) D ; x D } f b

60 Erosion-Dilation Duality: c c ( f Θ b) ( s, t) = ( f bˆ )( s, t) where c f = f( x, y) and bˆ = b( x, y)

61 Dilation-Erosion Dilation Original Erosion

62 Opening-Closing: Same (binary) relation with Dilation-Erosion: f b= ( f b) b f b= ( f b) b ( f b) c = f c bˆ

63 1D Example: One scan line Rolling ball for opening Opening results Rolling ball for Closing Closing Results

64 Opening-Closing Properties: Opening: () i ( f b) f ( ii) if f f, then ( f b) ( f b), Closing: ( iii) ( f b) b = ( f b) () i f ( f b) ( ii) if f f, then ( f b) ( f b) ( iii) ( f b) b = ( f b) e r indicates that the domain of e is a subset of the domain of r, and also that e(x,y) r(x,y) for any (x,y) in the domain of e

65 Opening The structuring element is rolled underside the surface of f All the peaks that are narrow with respect to the diameter of the structuring element will be reduced in amplitude and sharpness So, opening is used to remove small light details, while leaving the overall gray levels and larger bright features relatively undisturbed. The initial erosion removes the details, but it also darkens the image. The subsequent dilation again increases the overall intensity of the image without reintroducing the details totally removed by erosion.

66 Closing The structuring element is rolled on top of the surface of f Peaks essentially are left in their original form (assume that their separation at the narrowest points exceeds the diameter of the structuring element) So, closing is used to remove small dark details, while leaving bright features relatively undisturbed. The initial dilation removes the dark details and brightens the image The subsequent erosion darkens the image without reintroducing the details totally removed by dilation

67 Opening Closing Example Opening: Decreased size of small bright details. No changes to dark region Closing: Decreased size of small dark details. No changes to bright region

68 Smoothing: Gradient: Laplacian: Gray Level Morphological Examples: g = (( f b) b) g = ( f b) ( f Θb) g = ( f b) + ( f Θb) 2 f Dilation Erosion Smoothing Gradient Laplacian

69 Smoothing

70 Gradient:

71 Top-hat: h= f ( f b) Enhancing details in presence of shades

72

73

Morphological image processing

Morphological image processing INF 4300 Digital Image Analysis Morphological image processing Fritz Albregtsen 09.11.2017 1 Today Gonzalez and Woods, Chapter 9 Except sections 9.5.7 (skeletons), 9.5.8 (pruning), 9.5.9 (reconstruction)

More information

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing 09.11.2011 Anne Solberg Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, 9.5.9 and 9.6.4 Repetition of binary dilatation, erosion, opening, closing Binary region processing: connected

More information

CS 4495 Computer Vision Binary images and Morphology

CS 4495 Computer Vision Binary images and Morphology CS 4495 Computer Vision Binary images and Aaron Bobick School of Interactive Computing Administrivia PS6 should be working on it! Due Sunday Nov 24 th. Some issues with reading frames. Resolved? Exam:

More information

(9) Morphological Image Processing (a) Basic set operations

(9) Morphological Image Processing (a) Basic set operations (9) Morphological Image Processing - Morphology A branch of biology that deals with the form and structure of animals and plants - Mathematical morphology A tool to extract image components for representing

More information

Mathematical Morphology and Distance Transforms

Mathematical Morphology and Distance Transforms Mathematical Morphology and Distance Transforms Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University About the teacher PhD student at CBA Background in

More information

The Frequency Domain. Many slides borrowed from Steve Seitz

The Frequency Domain. Many slides borrowed from Steve Seitz The Frequency Domain Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Salvador Dali Gala Contemplating the Mediterranean

More information

Mathematical Morphology

Mathematical Morphology Mathematical Morphology Erosions and Dilations Luc Brun (d après le cours de M. Coster) 25 janvier 2018 1 / 61 Plan (1/2) Structuring element Definition, Example, Transpose Set erosion and dilatation Hit

More information

Morphological Operations. GV12/3072 Image Processing.

Morphological Operations. GV12/3072 Image Processing. Morphological Operations 1 Outline Basic concepts: Erode and dilate Open and close. Granulometry Hit and miss transform Thinning and thickening Skeletonization and the medial axis transform Introduction

More information

Chapter I : Basic Notions

Chapter I : Basic Notions Chapter I : Basic Notions - Image Processing - Lattices - Residues - Measurements J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology I. 1 Image Processing (I) => Image processing may

More information

Part I : Bases. Part I : Bases

Part I : Bases. Part I : Bases Indian Statistical Institute System Science and Informatics Unit Bengalore, India Bengalore, 19-22 October 2010 ESIEE University of Paris-Est France Part I : Bases - ordering and lattices - erosion and

More information

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis Previous Lecture Multimedia Databases Texture-Based Image Retrieval Low Level Features Tamura Measure, Random Field Model High-Level Features Fourier-Transform, Wavelets Wolf-Tilo Balke Silviu Homoceanu

More information

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Previous Lecture Texture-Based Image Retrieval Low

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 7 Sept 11 th, 2018 Pranav Mantini Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Today Review Binary Image Processing Opening and Closing Skeletonization

More information

Binary Image Analysis

Binary Image Analysis Binary Image Analysis Binary image analysis consists of a set of image analysis operations that are used to produce or process binary images, usually images of 0 s and 1 s. 0 represents the background

More information

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis 4 Shape-based Features Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Multiresolution Analysis

More information

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters Sobel Filters Note that smoothing the image before applying a Sobel filter typically gives better results. Even thresholding the Sobel filtered image cannot usually create precise, i.e., -pixel wide, edges.

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Digital Signal Processing

Digital Signal Processing 1 PART 1: SUMMARY OF THEORY Digital Signal Processing Image Processing: Introduction to Morphological Processing 1 Part 1: Summary of Theory 1.1 Image (digital) 1.1.1 Concept and types An image I is a

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

Chapter III: Opening, Closing

Chapter III: Opening, Closing Chapter III: Opening, Closing Opening and Closing by adjunction Algebraic Opening and Closing Top-Hat Transformation Granulometry J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology III.

More information

Machine vision. Summary # 4. The mask for Laplacian is given

Machine vision. Summary # 4. The mask for Laplacian is given 1 Machine vision Summary # 4 The mask for Laplacian is given L = 0 1 0 1 4 1 (6) 0 1 0 Another Laplacian mask that gives more importance to the center element is L = 1 1 1 1 8 1 (7) 1 1 1 Note that the

More information

Edge Detection. Image Processing - Computer Vision

Edge Detection. Image Processing - Computer Vision Image Processing - Lesson 10 Edge Detection Image Processing - Computer Vision Low Level Edge detection masks Gradient Detectors Compass Detectors Second Derivative - Laplace detectors Edge Linking Image

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

Machine vision, spring 2018 Summary 4

Machine vision, spring 2018 Summary 4 Machine vision Summary # 4 The mask for Laplacian is given L = 4 (6) Another Laplacian mask that gives more importance to the center element is given by L = 8 (7) Note that the sum of the elements in the

More information

Foundation for Neutrosophic Mathematical Morphology

Foundation for Neutrosophic Mathematical Morphology EMAN.M.EL-NAKEEB 1, H. ELGHAWALBY 2, A.A.SALAMA 3, S.A.EL-HAFEEZ 4 1,2 Port Said University, Faculty of Engineering, Physics and Engineering Mathematics Department, Egypt. E-mails: emanmarzouk1991@gmail.com,

More information

Chapter VIII : Thinnings

Chapter VIII : Thinnings Chapter VIII : Thinnings Hit-or-Miss Thinning thickening Homotopy Homotopy and Connectivity Homotopic Thinnings and Thickenings J. Serra Ecole des Mines de Paris ( 2000 ) Course on Math. Morphology VIII.

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

MORPHOLOGICAL IMAGE ANALYSIS III

MORPHOLOGICAL IMAGE ANALYSIS III MORPHOLOGICAL IMAGE ANALYSIS III Secondary inary Morphological Operators A set operator Ψ( ) which is: Increasing; i.e., Ψ( ) Ψ( ) Anti-extensive; i.e., Ψ( ) 1 2 1 2 Idempotent; i.e., ΨΨ ( ( )) = Ψ( )

More information

repetition, part ii Ole-Johan Skrede INF Digital Image Processing

repetition, part ii Ole-Johan Skrede INF Digital Image Processing repetition, part ii Ole-Johan Skrede 24.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo today s lecture Coding and

More information

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation.

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation. : Definition Importance Detection of Discontinuities: 9 R = wi z i= 1 i Point Detection: 1. A Mask 2. Thresholding R T Line Detection: A Suitable Mask in desired direction Thresholding Line i : R R, j

More information

Image Gradients and Gradient Filtering Computer Vision

Image Gradients and Gradient Filtering Computer Vision Image Gradients and Gradient Filtering 16-385 Computer Vision What is an image edge? Recall that an image is a 2D function f(x) edge edge How would you detect an edge? What kinds of filter would you use?

More information

3.8 Combining Spatial Enhancement Methods 137

3.8 Combining Spatial Enhancement Methods 137 3.8 Combining Spatial Enhancement Methods 137 a b FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites,

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

ECE661: Homework 6. Ahmed Mohamed October 28, 2014

ECE661: Homework 6. Ahmed Mohamed October 28, 2014 ECE661: Homework 6 Ahmed Mohamed (akaseb@purdue.edu) October 28, 2014 1 Otsu Segmentation Algorithm Given a grayscale image, my implementation of the Otsu algorithm follows these steps: 1. Construct a

More information

Differential Attribute Profiles in Remote Sensing

Differential Attribute Profiles in Remote Sensing Differential Attribute Profiles in Remote Sensing Georgios K. Ouzounis DigitalGlobe, Inc. 1601 Dry Creek Drive, Suite 260, Longmont, CO 80503, USA. Image: Dubai July 5, 2011 50cm Contents Overview Connected

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

Part II : Connection

Part II : Connection Indian Statistical Institute System Science and Informatics Unit Bengalore, India Bengalore, 19-22 October 2010 ESIEE University of Paris-Est France Part II : Connection - Set case - Function case Jean

More information

Mathematical Morphology

Mathematical Morphology Mathematical Morphology Isabelle Bloch http://www.tsi.enst.fr/ bloch Ecole Nationale Supérieure des Télécommunications - CNRS UMR 5141 LTCI Paris - France Mathematical Morphology p.1/84 A few references

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD

SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD SOUTH AFRICAN TERTIARY MATHEMATICS OLYMPIAD. Determine the following value: 7 August 6 Solutions π + π. Solution: Since π

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference III: Variational Principle I Junming Yin Lecture 16, March 19, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n- 1,, a 2, a 1, a 0, be real numbers with a n 0. The function defined by f (x) a

More information

Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California

Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California Fourier Analysis and Imaging Ronald Bracewell L.M. Terman Professor of Electrical Engineering Emeritus Stanford University Stanford, California 4u Springer Contents fa 1 PREFACE INTRODUCTION xiii 1 11

More information

Non-convex optimization. Issam Laradji

Non-convex optimization. Issam Laradji Non-convex optimization Issam Laradji Strongly Convex Objective function f(x) x Strongly Convex Objective function Assumptions Gradient Lipschitz continuous f(x) Strongly convex x Strongly Convex Objective

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processig Biary dilatio ad erosio Set-theoretic iterpretatio Opeig, closig, morphological edge detectors Hit-miss filter Morphological filters for gray-level images Cascadig dilatios

More information

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example Local enhancement Local Enhancement Median filtering Local Enhancement Sometimes Local Enhancement is Preferred. Malab: BlkProc operation for block processing. Left: original tire image. 0/07/00 Local

More information

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member

R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Chapter R Review of basic concepts * R1: Sets A set is a collection of objects sets are written using set brackets each object in onset is called an element or member Ex: Write the set of counting numbers

More information

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news Edge Detection Introduction to Computer Vision CS / ECE 8B Thursday, April, 004 Edge detection (HO #5) Edge detection is a local area operator that seeks to find significant, meaningful changes in image

More information

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003 Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 13, No. 10 (2003 2739 2824 c World Scientific Publishing Company DESIGNING CNN GENES MAKOTO ITOH Department of Information and

More information

Lesson 2.1: Quadratic Functions

Lesson 2.1: Quadratic Functions Quadratic Functions: Lesson 2.1: Quadratic Functions Standard form (vertex form) of a quadratic function: Vertex: (h, k) Algebraically: *Use completing the square to convert a quadratic equation into standard

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione dei Segnali Multi-dimensionali e

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008 Lecture 6: Edge Detection CAP 5415: Computer Vision Fall 2008 Announcements PS 2 is available Please read it by Thursday During Thursday lecture, I will be going over it in some detail Monday - Computer

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine.

Kjersti Aas Line Eikvil Otto Milvang. Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway. sharp reexes was a challenge. machine. Automatic Can Separation Kjersti Aas Line Eikvil Otto Milvang Norwegian Computing Center, P.O. Box 114 Blindern, N-0314 Oslo, Norway e-mail: Kjersti.Aas@nr.no Tel: (+47) 22 85 25 00 Fax: (+47) 22 69 76

More information

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ]

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] CEE 615: Digital Image Processing Spatial Enhancements 1 Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] Template (Windowing) Operations Template (window, box, kernel)

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Wavelets and Multiresolution Processing () Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Contents Image pyramids Subband coding

More information

Colorado School of Mines Image and Multidimensional Signal Processing

Colorado School of Mines Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Department of Electrical Engineering and Computer Science Spatial Filtering Main idea Spatial filtering Define a neighborhood of a pixel

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 11 Oct 3 rd, 2017 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review: 2D Discrete Fourier Transform If I is an image of size N then Sin

More information

Solutions to Sample Problems for Midterm

Solutions to Sample Problems for Midterm Solutions to Sample Problems for Midterm Problem 1. The dual of a proposition is defined for which contains only,,. It is For a compound proposition that only uses,, as operators, we obtained the dual

More information

Flux Invariants for Shape

Flux Invariants for Shape Flux Invariants for Shape avel Dimitrov James N. Damon Kaleem Siddiqi School of Computer Science Department of Mathematics McGill University University of North Carolina, Chapel Hill Montreal, Canada Chapel

More information

INF Shape descriptors

INF Shape descriptors 3.09.09 Shape descriptors Anne Solberg 3.09.009 1 Mandatory exercise1 http://www.uio.no/studier/emner/matnat/ifi/inf4300/h09/undervisningsmateriale/inf4300 termprojecti 009 final.pdf / t / / t t/ifi/inf4300/h09/

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Multi-dimensional signal processing Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

High School Math Contest

High School Math Contest High School Math Contest University of South Carolina February 4th, 017 Problem 1. If (x y) = 11 and (x + y) = 169, what is xy? (a) 11 (b) 1 (c) 1 (d) 4 (e) 48 Problem. Suppose the function g(x) = f(x)

More information

at Some sort of quantization is necessary to represent continuous signals in digital form

at Some sort of quantization is necessary to represent continuous signals in digital form Quantization at Some sort of quantization is necessary to represent continuous signals in digital form x(n 1,n ) x(t 1,tt ) D Sampler Quantizer x q (n 1,nn ) Digitizer (A/D) Quantization is also used for

More information

Chapter XXII The Covariance

Chapter XXII The Covariance Chapter XXII The Covariance Geometrical Covariogram Random Version : -Sets -Functions - Properties of the covariance Intrinsic Theory : - Variogram J. Serra Ecole des Mines de Paris ( 2000 ) Course on

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

Chapter VI. Set Connection and Numerical Functions

Chapter VI. Set Connection and Numerical Functions Chapter VI Set Connection and Numerical Functions Concepts : -> Extension to functions -> Connected operators -> Numerical Geodesy -> Leveling and self-duality Applications : -> Extrema analysis -> Contour

More information

Image Acquisition and Sampling Theory

Image Acquisition and Sampling Theory Image Acquisition and Sampling Theory Electromagnetic Spectrum The wavelength required to see an object must be the same size of smaller than the object 2 Image Sensors 3 Sensor Strips 4 Digital Image

More information

Chapter 4 Image Enhancement in the Frequency Domain

Chapter 4 Image Enhancement in the Frequency Domain Chapter 4 Image Enhancement in the Frequency Domain Yinghua He School of Computer Science and Technology Tianjin University Background Introduction to the Fourier Transform and the Frequency Domain Smoothing

More information

Image Assessment San Diego, November 2005

Image Assessment San Diego, November 2005 Image Assessment San Diego, November 005 Pawel A. Penczek The University of Texas Houston Medical School Department of Biochemistry and Molecular Biology 6431 Fannin, MSB6.18, Houston, TX 77030, USA phone:

More information

Aperture Photometry in Band Limited. Data. Robert Lupton. March 4, Band limited data, that is, data that has non-zero Fourier components in

Aperture Photometry in Band Limited. Data. Robert Lupton. March 4, Band limited data, that is, data that has non-zero Fourier components in Aperture Photometry in Band Limited Data Robert Lupton March 4, 996 Band Limited Data Band limited data, that is, data that has non-zero Fourier components in only a restricted part of k-space jkj < k,

More information

Biomedical Image Analysis. Segmentation by Thresholding

Biomedical Image Analysis. Segmentation by Thresholding Biomedical Image Analysis Segmentation by Thresholding Contents: Thresholding principles Ridler & Calvard s method Ridler TW, Calvard S (1978). Picture thresholding using an iterative selection method,

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

Transformation of functions

Transformation of functions Transformation of functions Translations Dilations (from the x axis) Dilations (from the y axis) Reflections (in the x axis) Reflections (in the y axis) Summary Applying transformations Finding equations

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering August 2 nd, 2010 Outline PART II Pseudodifferential

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Chapter 7 Wavelets and Multiresolution Processing

Chapter 7 Wavelets and Multiresolution Processing Chapter 7 Wavelets and Multiresolution Processing Background Multiresolution Expansions Wavelet Transforms in One Dimension Wavelet Transforms in Two Dimensions Image Pyramids Subband Coding The Haar

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013

Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Stanford University CS366: Graph Partitioning and Expanders Handout 13 Luca Trevisan March 4, 2013 Lecture 13 In which we construct a family of expander graphs. The problem of constructing expander graphs

More information

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They

More information

Gradient-domain image processing

Gradient-domain image processing Gradient-domain image processing http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 10 Course announcements Homework 3 is out. - (Much) smaller

More information

Only Intervals Preserve the Invertibility of Arithmetic Operations

Only Intervals Preserve the Invertibility of Arithmetic Operations Only Intervals Preserve the Invertibility of Arithmetic Operations Olga Kosheleva 1 and Vladik Kreinovich 2 1 Department of Electrical and Computer Engineering 2 Department of Computer Science University

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

2.2 BEGINS: POLYNOMIAL

2.2 BEGINS: POLYNOMIAL CHAPTER 2.2 HIGHER DEGREE POLY S 2.2 BEGINS: POLYNOMIAL Graphs of Polynomial Functions Polynomial functions are continuous. What this means to us is that the graphs of polynomial functions have no breaks,

More information

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS UNIT MATHEMATICAL METHODS 01 MASTER CLASS PROGRAM WEEK 11 EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION 1 MULTIPLE CHOICE QUESTIONS QUESTION 1 QUESTION QUESTION

More information

Section 10 Metals: Electron Dynamics and Fermi Surfaces

Section 10 Metals: Electron Dynamics and Fermi Surfaces Electron dynamics Section 10 Metals: Electron Dynamics and Fermi Surfaces The next important subject we address is electron dynamics in metals. Our consideration will be based on a semiclassical model.

More information

Intro to harmonic analysis on groups Risi Kondor

Intro to harmonic analysis on groups Risi Kondor Risi Kondor Any (sufficiently smooth) function f on the unit circle (equivalently, any 2π periodic f ) can be decomposed into a sum of sinusoidal waves f(x) = k= c n e ikx c n = 1 2π f(x) e ikx dx 2π 0

More information

UNIT 4: RATIONAL AND RADICAL EXPRESSIONS. 4.1 Product Rule. Objective. Vocabulary. o Scientific Notation. o Base

UNIT 4: RATIONAL AND RADICAL EXPRESSIONS. 4.1 Product Rule. Objective. Vocabulary. o Scientific Notation. o Base UNIT 4: RATIONAL AND RADICAL EXPRESSIONS M1 5.8, M2 10.1-4, M3 5.4-5, 6.5,8 4.1 Product Rule Objective I will be able to multiply powers when they have the same base, including simplifying algebraic expressions

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı& Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering March 15 th, 2010 Outline PART II Pseudodifferential(ψDOs)

More information