Probabilistic Graphical Models

Size: px
Start display at page:

Download "Probabilistic Graphical Models"

Transcription

1 School of Computer Science Probabilistic Graphical Models Variational Inference III: Variational Principle I Junming Yin Lecture 16, March 19, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4 X 4 1

2 What have we learned so far Free energy based approaches Direct approximation of Gibbs free energy: Bethe free energy and loop BP Restricting the family of approximation distribution: mean field method Convex duality based approaches 1. Exponential Families 2. Indicator Sufficient Statistics Convex Duality Inference Computing Mean Parameters Variational Principle 2

3 Computing Mean Parameter: Bernoulli A single Bernoulli random variable X θ p(x; θ) =exp{θx A(θ)},x {0, 1},A(θ) = log(1 + e θ ) Inference = Computing the mean parameter µ(θ) =E θ [X] =p(x = 1; θ) = eθ 1+e θ Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation 3

4 Conjugate Dual Function f(θ) Given any function, its conjugate dual function is: f (µ) =sup θ θ f(x) {θ, µ f(θ)} xy θµ θ x µ (0, f (y)) Conjugate dual is always a convex function: pointwise supremum of a class of linear functions 4

5 Dual of the Dual is the Original Under some technical condition on (convex and lower semicontinuous), the dual of dual is itself: f =(f ) f f(θ) =sup µ {θ, µ f (µ)} For log partition function A(θ) =sup{θ, µ A (µ)}, µ µ θ Ω The dual variable has a natural interpretation as mean parameters 5

6 ˆ Computing Mean Parameter: Bernoulli The conjugate Stationary condition If µ (0, 1), θ(µ) = log The variational form: A (µ) := sup µθ log[1 + exp(θ)]. θ R µ = eθ 1+e θ (µ = A(θ)) µ 1 µ,a (µ) =µ log(µ)+(1 µ) log(1 µ) If µ [0, 1], A (µ) =+ 8 < We have A µ log µ + (1 µ) log(1 µ) if µ [0, 1] (µ) = : + otherwise.. A(θ) = max µ [0,1] µ θ A (µ). The optimum is achieved at µ(θ) =. This is the mean! 1+e θ eθ 6

7 Remark The last few identities are not coincidental but rely on a deep theory in general exponential family The dual function is the negative entropy function The mean parameter is restricted Solving the optimization returns the mean parameter Next step: develop this framework for general exponential families/graphical models 7

8 Computation of Conjugate Dual Given an exponential family d { p(x 1,...,x m ; θ) =exp θ i φ i (x) A(θ) The dual function A (µ) := sup θ Ω The stationary condition: Derivatives of A yields mean parameters A (θ) =E θ [φ i (X)] = φ i (x)p(x; θ) dx θ i The stationary condition becomes Question: for which µ R d does it have a solution θ(µ)? i=1 { µ, θ A(θ)} µ A(θ) = 0. µ = E θ [φ(x)] 8

9 Computation of Conjugate Dual Let s assume there is a solution θ(µ) such that µ = E θ(u) [φ(x)] The dual has the form A (µ) = θ(µ),µ A(θ(µ)) = E θ(µ) [θ(µ), φ(x) A(θ(µ)] = E θ(µ) [log p(x; θ(µ)] The entropy is defined as H(p(x)) = p(x) log p(x) dx So the dual is A (µ) = H(p(x; θ(µ)) when there is a solution θ(µ) Question: for which µ R d does it have a solution θ(µ)? 9

10 Marginal Polytope For any distribution p(x) and a set of sufficient statistics, define a vector of mean parameters µ i = E p [φ i (X)] = φ i (x)p(x) dx p(x) is not necessarily an exponential family The set of all realizable mean parameters M := {µ R d p s.t. E p [φ(x)] = µ}. It is a convex set e that a great deal hinges on the answers to For discrete exponential families, this is called marginal polytope 10

11 Convex Polytope Convex hull representation Half-plane representation Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints 11

12 Example: Ising Model ( ) Sufficient statistics: Mean parameters: ( φ(x) := x s,s V ; x s x t, (s,t) E ) R V + E. ciated µ s = mean E p [X s ]=P[X parameters s = 1] correspond for all s V, and to particular µ st = E p [X s X t ]=P[(X s,x t ) = (1,1)] for all (s,t) E. Two-node Ising model Convex hull representation { } } conv{(0,0,0),(1,0,0),(0,1,0),(1,1,1)}, Half-plane representation µ 1 µ 12 µ 2 µ 12 µ µ 12 µ 1 + µ 2 Exercise: three-node Ising model X 1 X 2 12

13 Example: Discrete MRF Sufficient statistics: I j (x s ) for s = 1,... n, j X s I jk (x s, x t ) for(s, t) E, (j, k) X s X t Mean parameters are marginal probabilities: Marginal Polytope µ s;j = E p [I j (X s )] = P[X s = j] j X s, µ st;jk = edge E p [I st;jk ( (X ) s,x, t )] we = have P[X s = j,x t = k] (j,k) X s X t. (3.3 M(G) ={µ R d p with marginals µ s;j,µ st;jk } For tree graphical models, the number of half-planes (facet complexity) grows only linearly in the graph size For general graphs, it is extremely difficult to characterize the marginal polytope 13

14 Variational Principle (Theorem 3.4) The dual function takes the form A (µ) = { H(pθ(µ) ) if µ M + if µ/ M. θ(µ) satisfies µ = E θ(u) [φ(x)] The log partition function has the variational form A(θ) = sup{θ T µ A (µ)} µ M For all θ Ω, the above optimization problem is attained uniquely at µ(θ) M o that satisfies µ(θ) =E θ [φ(x)] 14

15 Example: Two-node Ising Model The distribution p(x; θ) exp{θ 1 x 1 + θ 2 x 2 + θ 12 x 12 } X 1 X 2 The marginal polytope is characterized by µ 1 µ 12 µ 2 µ 12 µ 12 0 The dual has an explicit form 1+µ 12 µ 1 + µ 2 A (µ) =µ 12 log µ 12 +(µ 1 µ 12 ) log(µ 1 µ 12 )+(µ 2 µ 12 ) log(µ 2 µ 12 ) +(1 + µ 12 µ 1 µ 2 ) log(1 + µ 12 µ 1 µ 2 ) The variational problem The optimum is attained at µ 1 (θ) = A(θ) = max {θ 1µ 1 + θ 2 µ 2 + θ 12 µ 12 A (µ)} {µ 1,µ 2,µ 12 } M exp{θ 1 } +exp{θ 1 + θ 2 + θ 12 } 1+exp{θ 1 } +exp{θ 2 } +exp{θ 1 + θ 2 + θ 12 } 15

16 Challenges In general graphical models, the marginal polytope can be very difficult to characterize explicitly The dual function is implicitly defined: Inverse mapping is nontrivial Evaluating the entropy requires high-dimensional integration (summation) 16

17 Variational Inference Variational formulation A(θ) = sup{θ T µ A (µ)} µ M General idea of variational inference for graphical models: Approximate the function to be optimized, i.e., the entropy term (Bethe- Kikuchi, sum-product) Restrict the set over which the optimization takes place to a subset, i.e., the marginal polytope (mean field methods) 17

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013

Probabilistic Graphical Models. Theory of Variational Inference: Inner and Outer Approximation. Lecture 15, March 4, 2013 School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Junming Yin Lecture 15, March 4, 2013 Reading: W & J Book Chapters 1 Roadmap Two

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2017 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Maria Ryskina, Yen-Chia Hsu 1 Introduction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference IV: Variational Principle II Junming Yin Lecture 17, March 21, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3 X 3 Reading: X 4

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Variational Inference II: Mean Field Method and Variational Principle Junming Yin Lecture 15, March 7, 2012 X 1 X 1 X 1 X 1 X 2 X 3 X 2 X 2 X 3

More information

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar

Discrete Markov Random Fields the Inference story. Pradeep Ravikumar Discrete Markov Random Fields the Inference story Pradeep Ravikumar Graphical Models, The History How to model stochastic processes of the world? I want to model the world, and I like graphs... 2 Mid to

More information

Graphical models and message-passing Part II: Marginals and likelihoods

Graphical models and message-passing Part II: Marginals and likelihoods Graphical models and message-passing Part II: Marginals and likelihoods Martin Wainwright UC Berkeley Departments of Statistics, and EECS Tutorial materials (slides, monograph, lecture notes) available

More information

Semidefinite relaxations for approximate inference on graphs with cycles

Semidefinite relaxations for approximate inference on graphs with cycles Semidefinite relaxations for approximate inference on graphs with cycles Martin J. Wainwright Electrical Engineering and Computer Science UC Berkeley, Berkeley, CA 94720 wainwrig@eecs.berkeley.edu Michael

More information

Probabilistic and Bayesian Machine Learning

Probabilistic and Bayesian Machine Learning Probabilistic and Bayesian Machine Learning Day 4: Expectation and Belief Propagation Yee Whye Teh ywteh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit University College London http://www.gatsby.ucl.ac.uk/

More information

A new class of upper bounds on the log partition function

A new class of upper bounds on the log partition function Accepted to IEEE Transactions on Information Theory This version: March 25 A new class of upper bounds on the log partition function 1 M. J. Wainwright, T. S. Jaakkola and A. S. Willsky Abstract We introduce

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 9: Variational Inference Relaxations Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 24/10/2011 (EPFL) Graphical Models 24/10/2011 1 / 15

More information

CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches

CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches CSE 254: MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches A presentation by Evan Ettinger November 11, 2005 Outline Introduction Motivation and Background

More information

Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting

Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting Inconsistent parameter estimation in Markov random fields: Benefits in the computation-limited setting Martin J. Wainwright Department of Statistics, and Department of Electrical Engineering and Computer

More information

Fisher Information in Gaussian Graphical Models

Fisher Information in Gaussian Graphical Models Fisher Information in Gaussian Graphical Models Jason K. Johnson September 21, 2006 Abstract This note summarizes various derivations, formulas and computational algorithms relevant to the Fisher information

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Exact MAP estimates by (hyper)tree agreement

Exact MAP estimates by (hyper)tree agreement Exact MAP estimates by (hyper)tree agreement Martin J. Wainwright, Department of EECS, UC Berkeley, Berkeley, CA 94720 martinw@eecs.berkeley.edu Tommi S. Jaakkola and Alan S. Willsky, Department of EECS,

More information

MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches

MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches Martin Wainwright Tommi Jaakkola Alan Willsky martinw@eecs.berkeley.edu tommi@ai.mit.edu willsky@mit.edu

More information

Symbolic Variable Elimination in Discrete and Continuous Graphical Models. Scott Sanner Ehsan Abbasnejad

Symbolic Variable Elimination in Discrete and Continuous Graphical Models. Scott Sanner Ehsan Abbasnejad Symbolic Variable Elimination in Discrete and Continuous Graphical Models Scott Sanner Ehsan Abbasnejad Inference for Dynamic Tracking No one previously did this inference exactly in closed-form! Exact

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Junction Tree, BP and Variational Methods

Junction Tree, BP and Variational Methods Junction Tree, BP and Variational Methods Adrian Weller MLSALT4 Lecture Feb 21, 2018 With thanks to David Sontag (MIT) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Variational algorithms for marginal MAP

Variational algorithms for marginal MAP Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Variational algorithms for marginal MAP Alexander Ihler UC Irvine CIOG Workshop November 2011 Work with Qiang

More information

Robustness and duality of maximum entropy and exponential family distributions

Robustness and duality of maximum entropy and exponential family distributions Chapter 7 Robustness and duality of maximum entropy and exponential family distributions In this lecture, we continue our study of exponential families, but now we investigate their properties in somewhat

More information

High dimensional Ising model selection

High dimensional Ising model selection High dimensional Ising model selection Pradeep Ravikumar UT Austin (based on work with John Lafferty, Martin Wainwright) Sparse Ising model US Senate 109th Congress Banerjee et al, 2008 Estimate a sparse

More information

Lecture 9: PGM Learning

Lecture 9: PGM Learning 13 Oct 2014 Intro. to Stats. Machine Learning COMP SCI 4401/7401 Table of Contents I Learning parameters in MRFs 1 Learning parameters in MRFs Inference and Learning Given parameters (of potentials) and

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 11 CRFs, Exponential Family CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due today Project milestones due next Monday (Nov 9) About half the work should

More information

High dimensional ising model selection using l 1 -regularized logistic regression

High dimensional ising model selection using l 1 -regularized logistic regression High dimensional ising model selection using l 1 -regularized logistic regression 1 Department of Statistics Pennsylvania State University 597 Presentation 2016 1/29 Outline Introduction 1 Introduction

More information

Dual Decomposition for Marginal Inference

Dual Decomposition for Marginal Inference Dual Decomposition for Marginal Inference Justin Domke Rochester Institute of echnology Rochester, NY 14623 Abstract We present a dual decomposition approach to the treereweighted belief propagation objective.

More information

Tightness of LP Relaxations for Almost Balanced Models

Tightness of LP Relaxations for Almost Balanced Models Tightness of LP Relaxations for Almost Balanced Models Adrian Weller University of Cambridge AISTATS May 10, 2016 Joint work with Mark Rowland and David Sontag For more information, see http://mlg.eng.cam.ac.uk/adrian/

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Learning and Evaluating Boltzmann Machines

Learning and Evaluating Boltzmann Machines Department of Computer Science 6 King s College Rd, Toronto University of Toronto M5S 3G4, Canada http://learning.cs.toronto.edu fax: +1 416 978 1455 Copyright c Ruslan Salakhutdinov 2008. June 26, 2008

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models Features (Ising,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 9: Expectation Maximiation (EM) Algorithm, Learning in Undirected Graphical Models Some figures courtesy

More information

Learning in graphical models & MC methods Fall Cours 8 November 18

Learning in graphical models & MC methods Fall Cours 8 November 18 Learning in graphical models & MC methods Fall 2015 Cours 8 November 18 Enseignant: Guillaume Obozinsi Scribe: Khalife Sammy, Maryan Morel 8.1 HMM (end) As a reminder, the message propagation algorithm

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Convex Functions. Pontus Giselsson

Convex Functions. Pontus Giselsson Convex Functions Pontus Giselsson 1 Today s lecture lower semicontinuity, closure, convex hull convexity preserving operations precomposition with affine mapping infimal convolution image function supremum

More information

Concavity of reweighted Kikuchi approximation

Concavity of reweighted Kikuchi approximation Concavity of reweighted ikuchi approximation Po-Ling Loh Department of Statistics The Wharton School University of Pennsylvania loh@wharton.upenn.edu Andre Wibisono Computer Science Division University

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25

Approximate inference, Sampling & Variational inference Fall Cours 9 November 25 Approimate inference, Sampling & Variational inference Fall 2015 Cours 9 November 25 Enseignant: Guillaume Obozinski Scribe: Basile Clément, Nathan de Lara 9.1 Approimate inference with MCMC 9.1.1 Gibbs

More information

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds

CS Lecture 8 & 9. Lagrange Multipliers & Varitional Bounds CS 6347 Lecture 8 & 9 Lagrange Multipliers & Varitional Bounds General Optimization subject to: min ff 0() R nn ff ii 0, h ii = 0, ii = 1,, mm ii = 1,, pp 2 General Optimization subject to: min ff 0()

More information

Graphs with Cycles: A Summary of Martin Wainwright s Ph.D. Thesis

Graphs with Cycles: A Summary of Martin Wainwright s Ph.D. Thesis Graphs with Cycles: A Summary of Martin Wainwright s Ph.D. Thesis Constantine Caramanis November 6, 2002 This paper is a (partial) summary of chapters 2,5 and 7 of Martin Wainwright s Ph.D. Thesis. For

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE

March 25, 2010 CHAPTER 2: LIMITS AND CONTINUITY OF FUNCTIONS IN EUCLIDEAN SPACE March 25, 2010 CHAPTER 2: LIMIT AND CONTINUITY OF FUNCTION IN EUCLIDEAN PACE 1. calar product in R n Definition 1.1. Given x = (x 1,..., x n ), y = (y 1,..., y n ) R n,we define their scalar product as

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m Convex analysts may give one of two

More information

Fundamentals of Statistics

Fundamentals of Statistics Chapter 2 Fundamentals of Statistics This chapter discusses some fundamental concepts of mathematical statistics. These concepts are essential for the material in later chapters. 2.1 Populations, Samples,

More information

Expectation Consistent Free Energies for Approximate Inference

Expectation Consistent Free Energies for Approximate Inference Expectation Consistent Free Energies for Approximate Inference Manfred Opper ISIS School of Electronics and Computer Science University of Southampton SO17 1BJ, United Kingdom mo@ecs.soton.ac.uk Ole Winther

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks Stefano Ermon, Aditya Grover Stanford University Lecture 10 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 10 1 / 17 Selected GANs https://github.com/hindupuravinash/the-gan-zoo

More information

Inference as Optimization

Inference as Optimization Inference as Optimization Sargur Srihari srihari@cedar.buffalo.edu 1 Topics in Inference as Optimization Overview Exact Inference revisited The Energy Functional Optimizing the Energy Functional 2 Exact

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

topics about f-divergence

topics about f-divergence topics about f-divergence Presented by Liqun Chen Mar 16th, 2018 1 Outline 1 f-gan: Training Generative Neural Samplers using Variational Experiments 2 f-gans in an Information Geometric Nutshell Experiments

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Bayesian Learning in Undirected Graphical Models

Bayesian Learning in Undirected Graphical Models Bayesian Learning in Undirected Graphical Models Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London, UK http://www.gatsby.ucl.ac.uk/ Work with: Iain Murray and Hyun-Chul

More information

Lecture 4 February 2

Lecture 4 February 2 4-1 EECS 281B / STAT 241B: Advanced Topics in Statistical Learning Spring 29 Lecture 4 February 2 Lecturer: Martin Wainwright Scribe: Luqman Hodgkinson Note: These lecture notes are still rough, and have

More information

Variational Algorithms for Marginal MAP

Variational Algorithms for Marginal MAP Variational Algorithms for Marginal MAP Qiang Liu Department of Computer Science University of California, Irvine Irvine, CA, 92697 qliu1@ics.uci.edu Alexander Ihler Department of Computer Science University

More information

arxiv: v1 [math.fa] 16 Jun 2011

arxiv: v1 [math.fa] 16 Jun 2011 arxiv:1106.3342v1 [math.fa] 16 Jun 2011 Gauge functions for convex cones B. F. Svaiter August 20, 2018 Abstract We analyze a class of sublinear functionals which characterize the interior and the exterior

More information

When does a mixture of products contain a product of mixtures?

When does a mixture of products contain a product of mixtures? When does a mixture of products contain a product of mixtures? Jason Morton Penn State May 19, 2014 Algebraic Statistics 2014 IIT Joint work with Guido Montufar Supported by DARPA FA8650-11-1-7145 Jason

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 16 Undirected Graphs Undirected Separation Inferring Marginals & Conditionals Moralization Junction Trees Triangulation Undirected Graphs Separation

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Information Geometric view of Belief Propagation

Information Geometric view of Belief Propagation Information Geometric view of Belief Propagation Yunshu Liu 2013-10-17 References: [1]. Shiro Ikeda, Toshiyuki Tanaka and Shun-ichi Amari, Stochastic reasoning, Free energy and Information Geometry, Neural

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

Learning with Submodular Functions: A Convex Optimization Perspective

Learning with Submodular Functions: A Convex Optimization Perspective Foundations and Trends R in Machine Learning Vol. 6, No. 2-3 (2013) 145 373 c 2013 F. Bach DOI: 10.1561/2200000039 Learning with Submodular Functions: A Convex Optimization Perspective Francis Bach INRIA

More information

Lecture notes on the ellipsoid algorithm

Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Handout 1 18.433: Combinatorial Optimization May 14th, 007 Michel X. Goemans Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Lecture 1: Background on Convex Analysis

Lecture 1: Background on Convex Analysis Lecture 1: Background on Convex Analysis John Duchi PCMI 2016 Outline I Convex sets 1.1 Definitions and examples 2.2 Basic properties 3.3 Projections onto convex sets 4.4 Separating and supporting hyperplanes

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

Using Graphs to Describe Model Structure. Sargur N. Srihari

Using Graphs to Describe Model Structure. Sargur N. Srihari Using Graphs to Describe Model Structure Sargur N. srihari@cedar.buffalo.edu 1 Topics in Structured PGMs for Deep Learning 0. Overview 1. Challenge of Unstructured Modeling 2. Using graphs to describe

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

UNIVERSITY OF CALIFORNIA, IRVINE. Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking

UNIVERSITY OF CALIFORNIA, IRVINE. Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking UNIVERSITY OF CALIFORNIA, IRVINE Variational Message-Passing: Extension to Continuous Variables and Applications in Multi-Target Tracking DISSERTATION submitted in partial satisfaction of the requirements

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Estimating Latent Variable Graphical Models with Moments and Likelihoods

Estimating Latent Variable Graphical Models with Moments and Likelihoods Estimating Latent Variable Graphical Models with Moments and Likelihoods Arun Tejasvi Chaganty Percy Liang Stanford University June 18, 2014 Chaganty, Liang (Stanford University) Moments and Likelihoods

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Growth Rate of Spatially Coupled LDPC codes

Growth Rate of Spatially Coupled LDPC codes Growth Rate of Spatially Coupled LDPC codes Workshop on Spatially Coupled Codes and Related Topics at Tokyo Institute of Technology 2011/2/19 Contents 1. Factor graph, Bethe approximation and belief propagation

More information

7. Lecture notes on the ellipsoid algorithm

7. Lecture notes on the ellipsoid algorithm Massachusetts Institute of Technology Michel X. Goemans 18.433: Combinatorial Optimization 7. Lecture notes on the ellipsoid algorithm The simplex algorithm was the first algorithm proposed for linear

More information

10708 Graphical Models: Homework 2

10708 Graphical Models: Homework 2 10708 Graphical Models: Homework 2 Due Monday, March 18, beginning of class Feburary 27, 2013 Instructions: There are five questions (one for extra credit) on this assignment. There is a problem involves

More information

Introduction to Functional Analysis

Introduction to Functional Analysis Introduction to Functional Analysis Carnegie Mellon University, 21-640, Spring 2014 Acknowledgements These notes are based on the lecture course given by Irene Fonseca but may differ from the exact lecture

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 28th, 2013 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the introductory

More information