INF Shape descriptors

Size: px
Start display at page:

Download "INF Shape descriptors"

Transcription

1 Shape descriptors Anne Solberg Mandatory exercise1 termprojecti 009 final.pdf / t / / t t/ifi/inf4300/h09/ d i i t i /INF4300 t ti l df Deadline Friday October 9, 009. Task: classify handwritten numerals as good as possible: 10 classes, 000 samples from each class Data: 14 moment features, 6 Fourier features, 4 Zernike features. 1. Divide iid available data into training i and test sets.. Study feature selection: 1. Find the best Fourier features. Find the best moment features 3. Find the best Zernike features 4. Create a set of combined features 3. Select a classifier, train it to the selected features. 4. Evaluate classifier perfomance.

2 Shape representationvs. shape descriptors Shaperepresentation representation: storing and representing objects. Shape descriptors: methods for characterizing object shapes. The resulting feature values should be useful for discrimination between different object types. Remark: Gonzales and Woods (Chapter 11) is not a very good source for this topic. Curriculum: Lecture foils. A better book on shape description is M. Nixon and A. Aguado, Feature extraction & Image Processing 3 What is a good feature for character recognition? Features computed from different object representing the same symbol (object class) should be similar. Features computed from objects from different classes should be different. Visualize the feature values in scatter plots. Challenge yourself : Which features from today s lecture do you think from their definition are good for character recognition? Try to compute them and produce scatter plots do they still seem useful? What is the limitation ofusing scatterplots compared to using a n dimensional feature vector? 4

3 A D scatter plot is a plot of feature values for two different features. Each object s feature values are plotted in the position given by the features values, and with a class label telling its object class. Matlab: gscatter(feature1, feature, labelvector) Classification (next lectures) will be done based on more than two features, but this is difficult to visualize. Features with good class separation are show clusters for eachclass, butdifferent clusters should ideally be separated. Scatter plots Feature : major axis length Feature 1: minor axis length 5 Descriptors from the contour of the object Boundary length/perimeter Area Curvature Diameter/major/minor axis Eccentricity Bending energy Basis expansion (Fourier) last week 6

4 Descriptors fromthecontour Boundary length/perimeter t Simple to derive from chain code Count 1 for each horz vert move, and for each diagonal move Distance measure differs when using 8 or 4 neighborhood Area Straight forward implementation: traverse all object pixels. Can also be calculated from the boundary by Greens theorem Surface integral equals boundary integral Simple to implement, follow the contour, x and dy follow from pixels in the sequence Complexity (very simple measure) C=P /A (P=Perimeter, A=Area) For the curious: learn how area and perimeter is computed from chain codes: 7 Descriptors fromthecontour Curvature In the continous case, curvature is the rate of change of slope. In the discrete case, difficult because boundary is locally ragged. Use difference between slopes of adjacent boundary segments to describe curvature at point of segment intersection. Curvature can be calculated from chain code. 8

5 Discretecomputation computation of curvature Trace the boundary and insert vertices at a given distance (e.g. 3 pixels apart). Compute local curvature c i as the difference between the directions of two edge segments joining a vertex: r r ci = d i d i 11 Curvature feature: sum all local curvature measures along the border. A rectangular n sided polygon will have sum of angles of π. More complex regions get higher curvature. v i : edge segment i d^t-1 : unit vectors of edge segments d t-1 and dt c i : local l curvature at point i 9 Contour based features Diameter = Major Mj axis (a) () Longest distance of a line segment connecting two points on the perimeter Minor axis (b) Computed along a direction perpendicular to the major axis. Largest length possible between two border points in the given direction. Eccentricity of the contour (a/b) 10

6 Features computed from the object Bounding box features Features from projection histograms Topological features Statistical moments computed from the objects 11 Some object features Area Area of convex hull Extent = Area/(Area of bounding box) Solidity = Area/Convex Area Compactness or circularity 1 for a circular disk, <1 otherwise 4π area perimeter 1

7 Bounding box features Center of mass Regular bounding box Width of boundingbox box Height of bounding box Object-oriented bounding box If the object s orientation is known, a bounding box can also be oriented along this direction. Computation of object orientation: later. Regular bounding box 13 Topologic features This is a groupofwarpof invariant integer features Some is based on the object skeleton Features: Number of holes in the object (H) Number of terminations (one line from a point) Number of breakpoints or corners (two lines from a point) Number of branching points (three lines from a point) Number of crossings (more than three lines from a point) Number of components (C) Euler number, E=C H Number of connected components holes Symmetry Region with two holes Regions with three connected components 14

8 1D Vertical projection Projection onto the vertical axis Histogram for each row Image binary region pixels For each row in the region, count the number of object pixels. 15 Projections 1D horizontal projection of the region: p h( x) = f ( x, y) y 1D vertical projection of the region: p v ( y ) = f ( x, y ) x Can be made scale independent by using a fixed number of bins and normalizing thehistograms. 16

9 Use of projection histograms Divide the object into different regions and compute projection histogramsfor each region. How can we use this to separate 6 and 9? The histograms can also be used as features directly. 17 Use of projection histograms Check if a page pg with text is rotated x 14 x Detecting lines, connected objects or single symbols

10 Moments Borrow ideas from physics and statistics. For a given intensity distribution g(x, y) we define moments m pq by For sampled (and bounded) intensity distributions f (x, y) f(x,y) is a grey level image A moment m pq is of order p + q. grey-level image 19 Momentsfrombinary images For binary images, where f (x, y) = 1 object pixel f (x, y) = 0 background pixel Area Center of mass / tyngdepunkt 0

11 Grayscale moments In gray scale images, where f(x,y) [0,...,G 1] we may regard f(x,y) as a discrete D probability distribution over (x,y) For probability distributions, we should have And if this is not the case we can normalize by Central moments These are position invariant moments where The total intensity and the center of mass are given by This corresponds to computing ordinary moments after having translated the object so that center of mass is in origo. Central moments are independent of position, but are not scaling or rotation invariant. What is μ 00 for a binary object?

12 Moments of inertia/variance Treghetsmoment The two second order central moments measure the spread of points around the centre of mass From physics: moment of inertia about an axis: how much energy is required to rotate the object about this axis: Statisticans like to call these measurements variance, while physicists will use the term moments of inertia. The cross moment of intertia is given by and this is what statisticianscallcall covariance or correlation. Orientation of the object can be derived from these moments, which means that they are not invariant to rotation. 3 Moments of inertia for simple shapes Rectangular object: 4/3a 3 b Square: 4/3a 4 b Elliptical object: Moment of inertias: π/4a 3 b and π/4ab 3 Circle with radius R: π/4r 4 a a b 4

13 Object orientation Orientation is defined as the angle (relative to the x axis) of the axis through the center of mass that gives the lowest moment of inertia. Orientation, θ, with respect to the x axis is found by minimizing the sum I( θ ) = ( β β ) α β f ( α, β ) α = x cosθ + y sinθ, β = y cosθ xsinθ α and β are the rotated coordinates axes, rotated by θ. 5 Object rotation Inserting for α and β we get: I( θ ) = [( y y) cosθ ( x x)sinθ ] f ( x, y) x y I ( θ ) We require that = 0 and after some math get: θ 1 1 tan μ θ = 11 μ0 μ0 where θ 0, π / if μ [ ] > 0, andθ [ π /, π ] if μ < 0,

14 We require that x y x y = x μ11 μ μ The computations... I ( θ ) = 0 θ and get: [( y y)cos ( x x)sinθ ] [ ( y y)sinθ ( x x)cosθ ] f ( x, y) θ = 0 f ( x, y) y ( ) 0 [( x x)( y y) ( cos θ sin θ )] f ( x, y) sinθ = cos θ sin [( x x) ( y y) ] tanθ = θ 1 tan θ 11 = 0 sinθ cosθ tan θ 7 Bounding rectangle Image oriented bounding box: The smallest rectangle around the object, having sides that are parallell to the edges of the image. Found by searching for min and max x and y within the object (xmin, ymin, xmax, ymax) Object oriented bounding box: Smalles rectangle around the object, having one side parallell to the orientation of the object (θ). The transformation α = x cosθ + y sinθ, β = y cosθ xsinθ is applied to all pixels in the object (or its boundary). Then search for α min, β min, α max, β max 8

15 Fitting an ellipse The best fitting ellipse hasthe same second order central moments as the object. Assume that the ellipse has semimajor and semiminor axes (a,b). For anellipse given by ( x / a) + ( y / b) = 1 the largest second order central moment is given by I I 0 = 0 b a a a x a x ( ) dx 4 b x a 1 x = x a a x + sin a 8 8 a 4 b a π π π 3 I 0 = + = a b a 8 4 The smallest moment of inertia is I min a a π == a b If we have found the orientation θ of the object, as well as the center of mass ( x, y). We can find the smallest and largest moment of inertia: I ' min ' I max = x = x [ ( y y)cosθ ( x x)sinθ ] y [ ( y y )sin θ ( x x)cos θ ] This gives the two semi axes of the best fitting ellipse 4 a = π 1/ 4 y 1/8 ' 3 4 ' ( I ) 4 1/ ( I ) max ' min I, b = π min ' max I 3 1/8 30

16 What if we want scale invariance? Changing the scale of f(x,y) by (α,β) gives a new image: ( x / α, / β ) f ( x, y) = f y The transformed central moments μ 1+ p 1+ q pq = α β If α=β, Scale invariant central moments are given by the normalization: μ pq η pq μ pq p + q =, γ = + 1, p + q γ ( μ 00 ) 31 Hu s moments:a set of moments invariant to translation, scalingandand rotation 3

17 Using momentsas shape features The central moments are not used directly as shape descriptors. Mj Major and minor axis are useful shape descriptors. Object orientation is normally not used directly, but to estimate rotation. The set of Hu moments can be used as shape descriptors. (Start with the first four as the last half are often zero for simple objects). 33 Moments that are invariant to general affine transforms 34

18 For the curious student: What about using another basis? So you want something that works, even if it is difficult to understand??? Just as the contour can be represented on a Fourier basis, regions can be mapped on a orthogonal set of complex (two dimensional) polynomials The Zernike basis ( stolen from physics) has been very popular in OCR The basis functions, so you normally need fewer moments for good reconstruction. The Zernike moment of order n is: where We project the image inside the unit circle, since We must map the image coordinates so they are inside a circle. Rescale the symbol so that it is within a smaller square in a larger quadratic image array m is an integer such that n m is even and m<n. The magnitudes A nm are rotation invariant. 35 Zernike moments The Zernike moments are projections of the input image onto a space spanned by the orthogonal V functions where j = 1, n 0, m n, n m is even, and 36

19 Zernike moments The image within ihi the unit circle may be reconstructed to an arbitrary precision ii by where the second sum is taken over all m n, such that n m is even. 37 Zernike moments Zernike software (matlab): do?objectid=797&objecttype=file (We have only tried an older version of this ) 38

20 Zernike reconstruction examples Original symbol, followed by reconstructed symbol with Zernike moments of order Now back to something you can understand: A small example of shape features 40

21 Which numbers are well and bad separated? 41 Two correlatedfeatures 4

22 43 44

Representing regions in 2 ways:

Representing regions in 2 ways: Representing regions in 2 ways: Based on their external characteristics (its boundary): Shape characteristics Based on their internal characteristics (its region): Both Regional properties: color, texture,

More information

Computer Assisted Image Analysis

Computer Assisted Image Analysis Computer Assisted Image Analysis Lecture 0 - Object Descriptors II Amin Allalou amin@cb.uu.se Centre for Image Analysis Uppsala University 2009-04-27 A. Allalou (Uppsala University) Object Descriptors

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

Region Description for Recognition

Region Description for Recognition Region Description for Recognition For object recognition, descriptions of regions in an image have to be compared with descriptions of regions of meaningful objects (models). The general problem of object

More information

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A Time : 3 hours 0 Mathematics July 006 Marks : 00 Pg Instructions :. Answer all questions.. Write your answers according to the instructions given below with the questions. 3. Begin each section on a new

More information

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science

Calculus III. George Voutsadakis 1. LSSU Math 251. Lake Superior State University. 1 Mathematics and Computer Science Calculus III George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 251 George Voutsadakis (LSSU) Calculus III January 2016 1 / 76 Outline 1 Parametric Equations,

More information

Morphological image processing

Morphological image processing INF 4300 Digital Image Analysis Morphological image processing Fritz Albregtsen 09.11.2017 1 Today Gonzalez and Woods, Chapter 9 Except sections 9.5.7 (skeletons), 9.5.8 (pruning), 9.5.9 (reconstruction)

More information

Master of Intelligent Systems - French-Czech Double Diploma. Hough transform

Master of Intelligent Systems - French-Czech Double Diploma. Hough transform Hough transform I- Introduction The Hough transform is used to isolate features of a particular shape within an image. Because it requires that the desired features be specified in some parametric form,

More information

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They

More information

Basic Concepts of. Feature Selection

Basic Concepts of. Feature Selection Basic Concepts of Pattern Recognition and Feature Selection Xiaojun Qi -- REU Site Program in CVMA (2011 Summer) 1 Outline Pattern Recognition Pattern vs. Features Pattern Classes Classification Feature

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Digital Image Processing Chapter 11 Representation and Description

Digital Image Processing Chapter 11 Representation and Description Digital Image Processing Chapter 11 Representation and Description Last Updated: July 20, 2003 Preview 11.1 Representation 11.1.1 Chain Codes Chain codes are used to represent a boundary by a connected

More information

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing 09.11.2011 Anne Solberg Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, 9.5.9 and 9.6.4 Repetition of binary dilatation, erosion, opening, closing Binary region processing: connected

More information

Simple Co-ordinate geometry problems

Simple Co-ordinate geometry problems Simple Co-ordinate geometry problems 1. Find the equation of straight line passing through the point P(5,2) with equal intercepts. 1. Method 1 Let the equation of straight line be + =1, a,b 0 (a) If a=b

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Information About Ellipses

Information About Ellipses Information About Ellipses David Eberly, Geometric Tools, Redmond WA 9805 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions SECTION.1 Linear and Quadratic Functions Chapter Polynomial and Rational Functions Section.1: Linear and Quadratic Functions Linear Functions Quadratic Functions Linear Functions Definition of a Linear

More information

Designing Information Devices and Systems I Discussion 2A

Designing Information Devices and Systems I Discussion 2A EECS 16A Spring 218 Designing Information Devices and Systems I Discussion 2A 1. Visualizing Matrices as Operations This problem is going to help you visualize matrices as operations. For example, when

More information

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9.

Math 259 Winter Solutions to Homework # We will substitute for x and y in the linear equation and then solve for r. x + y = 9. Math 59 Winter 9 Solutions to Homework Problems from Pages 5-5 (Section 9.) 18. We will substitute for x and y in the linear equation and then solve for r. x + y = 9 r cos(θ) + r sin(θ) = 9 r (cos(θ) +

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

Maths Higher Prelim Content

Maths Higher Prelim Content Maths Higher Prelim Content Straight Line Gradient of a line A(x 1, y 1 ), B(x 2, y 2 ), Gradient of AB m AB = y 2 y1 x 2 x 1 m = tanθ where θ is the angle the line makes with the positive direction of

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

Fundamentals of Engineering (FE) Exam Mathematics Review

Fundamentals of Engineering (FE) Exam Mathematics Review Fundamentals of Engineering (FE) Exam Mathematics Review Dr. Garey Fox Professor and Buchanan Endowed Chair Biosystems and Agricultural Engineering October 16, 2014 Reference Material from FE Review Instructor

More information

Feature Extraction Using Zernike Moments

Feature Extraction Using Zernike Moments Feature Extraction Using Zernike Moments P. Bhaskara Rao Department of Electronics and Communication Engineering ST.Peter's Engineeing college,hyderabad,andhra Pradesh,India D.Vara Prasad Department of

More information

MockTime.com. (b) (c) (d)

MockTime.com. (b) (c) (d) 373 NDA Mathematics Practice Set 1. If A, B and C are any three arbitrary events then which one of the following expressions shows that both A and B occur but not C? 2. Which one of the following is an

More information

Topic 3 Part 1 [449 marks]

Topic 3 Part 1 [449 marks] Topic 3 Part [449 marks] a. Find all values of x for 0. x such that sin( x ) = 0. b. Find n n+ x sin( x )dx, showing that it takes different integer values when n is even and when n is odd. c. Evaluate

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz

(c) n (d) n 2. (a) (b) (c) (d) (a) Null set (b) {P} (c) {P, Q, R} (d) {Q, R} (a) 2k (b) 7 (c) 2 (d) K (a) 1 (b) 3 (c) 3xyz (d) 27xyz 318 NDA Mathematics Practice Set 1. (1001)2 (101)2 (110)2 (100)2 2. z 1/z 2z z/2 3. The multiplication of the number (10101)2 by (1101)2 yields which one of the following? (100011001)2 (100010001)2 (110010011)2

More information

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT100 is a fast-paced and thorough tour of precalculus mathematics, where the choice of topics is primarily motivated by the conceptual and technical knowledge

More information

TARGET QUARTERLY MATHS MATERIAL

TARGET QUARTERLY MATHS MATERIAL Adyar Adambakkam Pallavaram Pammal Chromepet Now also at SELAIYUR TARGET QUARTERLY MATHS MATERIAL Achievement through HARDWORK Improvement through INNOVATION Target Centum Practising Package +2 GENERAL

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks A Correlation of Pearson 2013 to the Common Core State Standards for A Correlation of Pearson Introduction This document demonstrates how Pearson 2013 meets the standards of the Mathematics, PAARC Model

More information

Conic Sections: THE ELLIPSE

Conic Sections: THE ELLIPSE Conic Sections: THE ELLIPSE An ellipse is the set of all points,such that the sum of the distance between, and two distinct points is a constant. These two distinct points are called the foci (plural of

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Learning Objectives These show clearly the purpose and extent of coverage for each topic.

Learning Objectives These show clearly the purpose and extent of coverage for each topic. Preface This book is prepared for students embarking on the study of Additional Mathematics. Topical Approach Examinable topics for Upper Secondary Mathematics are discussed in detail so students can focus

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

1 Lecture 24: Linearization

1 Lecture 24: Linearization 1 Lecture 24: Linearization 1.1 Outline The linearization of a function at a point a. Linear approximation of the change in f. Error, absolute error. Examples 1.2 Linearization Functions can be complicated.

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

x and y, called the coordinates of the point.

x and y, called the coordinates of the point. P.1 The Cartesian Plane The Cartesian Plane The Cartesian Plane (also called the rectangular coordinate system) is the plane that allows you to represent ordered pairs of real numbers by points. It is

More information

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS

REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS REQUIRED MATHEMATICAL SKILLS FOR ENTERING CADETS The Department of Applied Mathematics administers a Math Placement test to assess fundamental skills in mathematics that are necessary to begin the study

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Area Formulas. Linear

Area Formulas. Linear Math Vocabulary and Formulas Approximate Area Arithmetic Sequences Average Rate of Change Axis of Symmetry Base Behavior of the Graph Bell Curve Bi-annually(with Compound Interest) Binomials Boundary Lines

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

MATH Spring 2010 Topics per Section

MATH Spring 2010 Topics per Section MATH 101 - Spring 2010 Topics per Section Chapter 1 : These are the topics in ALEKS covered by each Section of the book. Section 1.1 : Section 1.2 : Ordering integers Plotting integers on a number line

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

CS 4495 Computer Vision Binary images and Morphology

CS 4495 Computer Vision Binary images and Morphology CS 4495 Computer Vision Binary images and Aaron Bobick School of Interactive Computing Administrivia PS6 should be working on it! Due Sunday Nov 24 th. Some issues with reading frames. Resolved? Exam:

More information

Exercises involving contour integrals and trig integrals

Exercises involving contour integrals and trig integrals 8::9::9:7 c M K Warby MA364 Complex variable methods applications Exercises involving contour integrals trig integrals Let = = { e it : π t π }, { e it π : t 3π } with the direction of both arcs corresponding

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

EECS490: Digital Image Processing. Lecture #26

EECS490: Digital Image Processing. Lecture #26 Lecture #26 Moments; invariant moments Eigenvector, principal component analysis Boundary coding Image primitives Image representation: trees, graphs Object recognition and classes Minimum distance classifiers

More information

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation.

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation. Algebra II Vocabulary Alphabetical Listing Absolute Maximum: The highest point over the entire domain of a function or relation. Absolute Minimum: The lowest point over the entire domain of a function

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

Bonus Section II: Solving Trigonometric Equations

Bonus Section II: Solving Trigonometric Equations Fry Texas A&M University Math 150 Spring 2017 Bonus Section II 260 Bonus Section II: Solving Trigonometric Equations (In your text this section is found hiding at the end of 9.6) For what values of x does

More information

Science Insights: An International Journal

Science Insights: An International Journal Available online at http://www.urpjournals.com Science Insights: An International Journal Universal Research Publications. All rights reserved ISSN 2277 3835 Original Article Object Recognition using Zernike

More information

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative,

The fundamental theorem of calculus for definite integration helped us to compute If has an anti-derivative, Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 47 : Fundamental Theorems of Calculus for Line integrals [Section 47.1] Objectives In this section you will learn

More information

2009 Math Olympics Level II Solutions

2009 Math Olympics Level II Solutions Saginaw Valley State University 009 Math Olympics Level II Solutions 1. f (x) is a degree three monic polynomial (leading coefficient is 1) such that f (0) 3, f (1) 5 and f () 11. What is f (5)? (a) 7

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION, SKILLS AND TRAINING MATHEMATICS 12 GENERAL INSTRUCTIONS

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION, SKILLS AND TRAINING MATHEMATICS 12 GENERAL INSTRUCTIONS INSERT STUDENT I.D. NUMBER (PEN) STICKER IN THIS SPACE JANUARY 1997 PROVINCIAL EXAMINATION MINISTRY OF EDUCATION, SKILLS AND TRAINING MATHEMATICS 12 GENERAL INSTRUCTIONS 1. Insert the stickers with your

More information

SOLUTIONS OF 2012 MATH OLYMPICS LEVEL II T 3 T 3 1 T 4 T 4 1

SOLUTIONS OF 2012 MATH OLYMPICS LEVEL II T 3 T 3 1 T 4 T 4 1 SOLUTIONS OF 0 MATH OLYMPICS LEVEL II. If T n = + + 3 +... + n and P n = T T T 3 T 3 T 4 T 4 T n T n for n =, 3, 4,..., then P 0 is the closest to which of the following numbers? (a).9 (b).3 (c) 3. (d).6

More information

Precalculus Summer Assignment 2015

Precalculus Summer Assignment 2015 Precalculus Summer Assignment 2015 The following packet contains topics and definitions that you will be required to know in order to succeed in CP Pre-calculus this year. You are advised to be familiar

More information

8th Grade Math Definitions

8th Grade Math Definitions 8th Grade Math Definitions Absolute Value: 1. A number s distance from zero. 2. For any x, is defined as follows: x = x, if x < 0; x, if x 0. Acute Angle: An angle whose measure is greater than 0 and less

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

MHCA Math Summer Packet 2015

MHCA Math Summer Packet 2015 Directions: MHCA Math Summer Packet 2015 For students entering PreCalculus Honors You are to complete all the problems assigned in this packet by Friday, September 4 th. If you don t turn in your summer

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

MATHEMATICS Math I. Number and Quantity The Real Number System

MATHEMATICS Math I. Number and Quantity The Real Number System MATHEMATICS Math I The high school mathematics curriculum is designed to develop deep understanding of foundational math ideas. In order to allow time for such understanding, each level focuses on concepts

More information

Preparation Mathematics 10 for

Preparation Mathematics 10 for Preparation Mathematics 0 for 208-9 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

Mathematical Morphology and Distance Transforms

Mathematical Morphology and Distance Transforms Mathematical Morphology and Distance Transforms Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University About the teacher PhD student at CBA Background in

More information

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R. Multivariable Calculus Lecture # Notes This lecture completes the discussion of the cross product in R and addresses the variety of different ways that n mathematical objects can be described via equations,

More information

Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian. Lotfi Hermi, University of Arizona

Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian. Lotfi Hermi, University of Arizona Lecture 2: Recognizing Shapes Using the Dirichlet Laplacian Lotfi Hermi, University of Arizona based on joint work with M. A. Khabou and M. B. H. Rhouma Summary of Today s Session: Properties of Feature

More information

Higher Mathematics Course Notes

Higher Mathematics Course Notes Higher Mathematics Course Notes Equation of a Line (i) Collinearity: (ii) Gradient: If points are collinear then they lie on the same straight line. i.e. to show that A, B and C are collinear, show that

More information

Scope and Sequence: National Curriculum Mathematics from Haese Mathematics (7 10A)

Scope and Sequence: National Curriculum Mathematics from Haese Mathematics (7 10A) Scope and Sequence: National Curriculum Mathematics from Haese Mathematics (7 10A) Updated 06/05/16 http://www.haesemathematics.com.au/ Note: Exercises in red text indicate material in the 10A textbook

More information

Conic Sections Session 2: Ellipse

Conic Sections Session 2: Ellipse Conic Sections Session 2: Ellipse Toh Pee Choon NIE Oct 2017 Toh Pee Choon (NIE) Session 2: Ellipse Oct 2017 1 / 24 Introduction Problem 2.1 Let A, F 1 and F 2 be three points that form a triangle F 2

More information

TEST CODE: MIII (Objective type) 2010 SYLLABUS

TEST CODE: MIII (Objective type) 2010 SYLLABUS TEST CODE: MIII (Objective type) 200 SYLLABUS Algebra Permutations and combinations. Binomial theorem. Theory of equations. Inequalities. Complex numbers and De Moivre s theorem. Elementary set theory.

More information

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY 2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY The following are topics that you will use in Geometry and should be retained throughout the summer. Please use this practice to review the topics you

More information

PHYS 211 Lecture 21 - Moments of inertia 21-1

PHYS 211 Lecture 21 - Moments of inertia 21-1 PHYS 211 Lecture 21 - Moments of inertia 21-1 Lecture 21 - Moments of inertia Text: similar to Fowles and Cassiday, Chap. 8 As discussed previously, the moment of inertia I f a single mass m executing

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 (37) If a bug walks on the sphere x 2 + y 2 + z 2 + 2x 2y 4z 3 = 0 how close and how far can it get from the origin? Solution: Complete

More information

Enhanced Fourier Shape Descriptor Using Zero-Padding

Enhanced Fourier Shape Descriptor Using Zero-Padding Enhanced ourier Shape Descriptor Using Zero-Padding Iivari Kunttu, Leena Lepistö, and Ari Visa Tampere University of Technology, Institute of Signal Processing, P.O. Box 553, I-330 Tampere inland {Iivari.Kunttu,

More information

MAT1035 Analytic Geometry

MAT1035 Analytic Geometry MAT1035 Analytic Geometry Lecture Notes R.A. Sabri Kaan Gürbüzer Dokuz Eylül University 2016 2 Contents 1 Review of Trigonometry 5 2 Polar Coordinates 7 3 Vectors in R n 9 3.1 Located Vectors..............................................

More information

PETERS TOWNSHIP HIGH SCHOOL

PETERS TOWNSHIP HIGH SCHOOL PETERS TOWNSHIP HIGH SCHOOL COURSE SYLLABUS: ALGEBRA 1 ACADEMIC Course Overview and Essential Skills This course is a study of the language, concepts, and techniques of Algebra that will prepare students

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

b = 2, c = 3, we get x = 0.3 for the positive root. Ans. (D) x 2-2x - 8 < 0, or (x - 4)(x + 2) < 0, Therefore -2 < x < 4 Ans. (C)

b = 2, c = 3, we get x = 0.3 for the positive root. Ans. (D) x 2-2x - 8 < 0, or (x - 4)(x + 2) < 0, Therefore -2 < x < 4 Ans. (C) SAT II - Math Level 2 Test #02 Solution 1. The positive zero of y = x 2 + 2x is, to the nearest tenth, equal to (A) 0.8 (B) 0.7 + 1.1i (C) 0.7 (D) 0.3 (E) 2.2 ± Using Quadratic formula, x =, with a = 1,

More information

2.1 Identifying Patterns

2.1 Identifying Patterns I. Foundations for Functions 2.1 Identifying Patterns: Leaders' Notes 2.1 Identifying Patterns Overview: Objective: s: Materials: Participants represent linear relationships among quantities using concrete

More information

Feature Extraction and Image Processing

Feature Extraction and Image Processing Feature Extraction and Image Processing Second edition Mark S. Nixon Alberto S. Aguado :*авш JBK IIP AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Class 11 Maths Chapter 15. Statistics

Class 11 Maths Chapter 15. Statistics 1 P a g e Class 11 Maths Chapter 15. Statistics Statistics is the Science of collection, organization, presentation, analysis and interpretation of the numerical data. Useful Terms 1. Limit of the Class

More information