Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n

Size: px
Start display at page:

Download "Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n"

Transcription

1 Solution 1. Let (X 1,..., X n ) be a simple random sample from a distribution with probability density function given by f(x;, β) = 1 ( ) 1 β x β, 0 x, > 0, β < 1. β (i) Find a minimal sufficient statistic for (, β) and give your justification. The joint pdf of X = (X 1,..., X n ) is given by f n (X; β, ) = ( 1 n ) 1 β β X n/β β n i I [0,] (X (n) ). By the factorization theorem, ( n X i, X (n) ) is sufficient. Further, if X = (X 1,..., X n ) and Y = (Y 1,..., Y n ) such that f n (X; β, ) = f n (Y ; β, ) for all β and, we then have ( n ) 1 β ( β n ) 1 β β X i I [0,] (X (n) ) = Y i I [0,] (Y (n) ) for all β and, which implies ( n X i, X (n) ) = ( n Y i, Y (n) ). Hence ( n X i, X (n) ) is minimal sufficient. (ii) Suppose that β is known. Show that X (n) is sufficient and complete for, where X (n) is the largest order statistic, i.e., X (n) = max 1 i n X i. By the factorization theorem, X (n) is sufficient. The pdf of X (n) is given by f X(n) (x) = n ( ) x n/β 1 I[0,](x). β Let h be any Borel function such that Eh(X (n) ) = 0. Then we have h(x)x n/β 1 dx = 0, 0

2 for all. Differentiating both sides w.r.t. yields h() n/β 1 = 0 for all > 0. This imples h 0. Therefore X (n) is complete. (iii) Suppose that is known. Find a sufficient and complete statistic for β and give your justification. The joint pdf of X can be expressed as exp{ 1 β β ln X i ξ(β)}h(x) for some function ξ and h. Hence, it is an exponential family with natural sufficient statistic ln X i. Hence n ln X i is sufficient and complete for η = (1 β)/β. Since η and β are one-to-one, n ln X i is also sufficient and complete for β. (iv) Suppose that is known. Drive the uniformly mimimum variance unbiased estimator (UMVUE) for β. We can compute E ln X i = 1 ln(x)x 1/β 1 dx = ln β. 1/β β 0 Take ˆβ = ln 1 n n ln X i. Since ˆβ is a function of the S&C statistic and is unbiased for β, it is the UMVUE of β. 2. Let (X 1,..., X n ) be a random sample from the exponential distribution E(a, ) with parameter < a <, > 0. The probability density function of the distribution is given by f(x; a, ) = 1 (x a) e I (a, ) (x). Let X = 1 n n X i and X (1) = min 1 i n {X i }.

3 (i) Show that n(x (1) a) 0 in probability. X (1) is distributed as E(a, /n) with mean a + /n and variance (/n) 2. By Chebychev s inequality, P ( n X (1) EX (1) > ɛ) nvar(x (1)) ɛ 2 = 2 nɛ 2 0. Hence n(x (1) EX (1) ) p 0. Note that n(ex (1) ) a) = n 0. Then, by continuous mapping theorem, n(x(1) a) p 0. (ii) Show that X X (1) in probability. By the LLN, X p a +. From (i) X (1) p a. By continuous mapping theorem, X X(1). (iii) Show that n( X a ) Z in distribution, where Z is a standard normal random variable. (iv) Show that It follows directly from CLT since E X = a + and Var( X) = 2 /n. n( X X(1) ) X X (1) Z in distribution as well. From (i), n(x (1) a)/ p 0. By (iii) and Slutsky s theorem n( X X(1) ) n( X a ) n(x(1) a) = d Z. From (ii), X X(1) p. By Slutsky s theorem again, n( X X(1) ) X X (1) Z. 3. Let (X 1,..., X n ) be a random sample from the Gamma distribution Γ(α, γ) where α is known. The probability density function of the distribution is given by f(x; a, ) = 1 Γ(α)γ α xα 1 e x/γ I (0, ) (x).

4 (i) Derive the UMVUE of γ. When α is known, the family is an exponential family and T = n X i is sufficient and complete for γ. Since E(X i ) = αγ, E(T ) = nαγ. Hence ˆγ = 1 T is the nα UMVUE of γ (ii) Let F (t; α, γ) be the cumulative distribution funtion of Γ(α, γ). Derive the UMVUE of F (c; α, γ) where c > 0 is fixed. The UMVUE of F (c; α, γ) is given by P (X 1 c T ) = P ( X 1 T c t T ) = P (X 1 T c t ), since X 1 /T is ancilary and hence independent from T, the sufficient and complete statistic. Note that, by the property of the Gamma distribution, X 1 /T Beta(α, (n 1)α). Hence, the UMVUE is given by ˆF (c; α, γ) = (iii) Derive the UMVUE of at a fixed t > 0. Note that Γ(nα) c/t x α 1 (1 x) (n 1)α 1 dx. Γ(α)Γ((n 1)α) 0 df (t;α,γ), the probability density function, dt d dc P (X 1 c) = d dc EP (X 1 c T ) = E d dc P (X 1 c T ). The UMVUE is given by d dc P (X 1 c T ) = d Γ(nα) dc Γ(α)Γ((n 1)α) = { 1 T c/t 0 x α 1 (1 x) (n 1)α 1 dx Γ(nα) Γ(α)Γ((n 1)α) ( c T )α 1 (1 c T )(n 1)α 1, c < T, 0, c T. 4. Let X = (X 1,..., X n ) be a random sample from a double exponential distribution DE(0, ) with probability density function given by f(x; ) = 1 x e I(, ) (x). 2

5 (i) Derive the variance of the double exponential distribution without using neither integration nor moment generating function. You can use the fact that E X i =. The pdf of the distribution can be expressed in the canonical exponential family form: f(x; η) = e x η +ln(η) 1 2 I (, )(x). where η = 1/. Hence Var( X i ) = Var( X i ) = d2 dη 2 ( ln η) = 1/η 2 = 2. The distribution is symmetric about 0 and hence EX i = 0 and Var(X i ) = EX 2 i = E X i 2 = Var( X i )+ (E X i ) 2 = 2 2. (ii) Find the UMVUE of. Show that the UMVUE of achieves the Cremér-Rao lower bound. Since T = n X i is sufficient and complete for and ET = n, the UMVUE of is given by ˆ = T/n. From the solution of (i), Var(T/n) = 2 /n. On the other hand, the Fisher information number about is I() = Var( d d ln f n(x, ) = Var( T 2 1 ) = n2 4 = n 2. Hence Var(ˆ) = I 1 (). (iii) Let ξ = P (X 1 > t) where t > 0 is fixed. Derive the Fisher information number I(ξ). Find the Cremér-Rao lower bound for unbiased estimators of ξ. Note that ξ = ξ() = 1 2 e t/. The Fisher information I(ξ) about ξ satisfies Hence I() = [ξ ()] 2 t I(ξ) = [ 2 2 e t/ ] 2 I(ξ). t I(ξ) = [ 2 2 e t/ ] 2 n = 4n2 e 2t/ = 2 t 2 n [ξ ln(2ξ)] 2 The C-R lower bound for the unbiased estimators of ξ is give by I 1 (ξ) = [ξ ()] 2 I 1 ().

6 END OF PAPER

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Statistics Ph.D. Qualifying Exam

Statistics Ph.D. Qualifying Exam Department of Statistics Carnegie Mellon University May 7 2008 Statistics Ph.D. Qualifying Exam You are not expected to solve all five problems. Complete solutions to few problems will be preferred to

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Math 362, Problem set 1

Math 362, Problem set 1 Math 6, roblem set Due //. (4..8) Determine the mean variance of the mean X of a rom sample of size 9 from a distribution having pdf f(x) = 4x, < x

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part : Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Review Quiz 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the Cramér Rao lower bound (CRLB). That is, if where { } and are scalars, then

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

STA 4322 Exam I Name: Introduction to Statistics Theory

STA 4322 Exam I Name: Introduction to Statistics Theory STA 4322 Exam I Name: Introduction to Statistics Theory Fall 2013 UF-ID: Instructions: There are 100 total points. You must show your work to receive credit. Read each part of each question carefully.

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Estimation and Detection

Estimation and Detection stimation and Detection Lecture 2: Cramér-Rao Lower Bound Dr. ir. Richard C. Hendriks & Dr. Sundeep P. Chepuri 7//207 Remember: Introductory xample Given a process (DC in noise): x[n]=a + w[n], n=0,,n,

More information

Final Examination. STA 215: Statistical Inference. Saturday, 2001 May 5, 9:00am 12:00 noon

Final Examination. STA 215: Statistical Inference. Saturday, 2001 May 5, 9:00am 12:00 noon Final Examination Saturday, 2001 May 5, 9:00am 12:00 noon This is an open-book examination, but you may not share materials. A normal distribution table, a PMF/PDF handout, and a blank worksheet are attached

More information

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota

Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory. Charles J. Geyer School of Statistics University of Minnesota Stat 5101 Lecture Slides: Deck 7 Asymptotics, also called Large Sample Theory Charles J. Geyer School of Statistics University of Minnesota 1 Asymptotic Approximation The last big subject in probability

More information

Probability and Statistics qualifying exam, May 2015

Probability and Statistics qualifying exam, May 2015 Probability and Statistics qualifying exam, May 2015 Name: Instructions: 1. The exam is divided into 3 sections: Linear Models, Mathematical Statistics and Probability. You must pass each section to pass

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX

Direction: This test is worth 250 points and each problem worth points. DO ANY SIX Term Test 3 December 5, 2003 Name Math 52 Student Number Direction: This test is worth 250 points and each problem worth 4 points DO ANY SIX PROBLEMS You are required to complete this test within 50 minutes

More information

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003

Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Statistics Ph.D. Qualifying Exam: Part I October 18, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Chapter 7. Basic Probability Theory

Chapter 7. Basic Probability Theory Chapter 7. Basic Probability Theory I-Liang Chern October 20, 2016 1 / 49 What s kind of matrices satisfying RIP Random matrices with iid Gaussian entries iid Bernoulli entries (+/ 1) iid subgaussian entries

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

Problem Selected Scores

Problem Selected Scores Statistics Ph.D. Qualifying Exam: Part II November 20, 2010 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. Problem 1 2 3 4 5 6 7 8 9 10 11 12 Selected

More information

Masters Comprehensive Examination Department of Statistics, University of Florida

Masters Comprehensive Examination Department of Statistics, University of Florida Masters Comprehensive Examination Department of Statistics, University of Florida May 10, 2002, 8:00am - 12:00 noon Instructions: 1. You have four hours to answer questions in this examination. 2. There

More information

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators

Estimation theory. Parametric estimation. Properties of estimators. Minimum variance estimator. Cramer-Rao bound. Maximum likelihood estimators Estimation theory Parametric estimation Properties of estimators Minimum variance estimator Cramer-Rao bound Maximum likelihood estimators Confidence intervals Bayesian estimation 1 Random Variables Let

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm

Statistics GIDP Ph.D. Qualifying Exam Theory Jan 11, 2016, 9:00am-1:00pm Statistics GIDP Ph.D. Qualifying Exam Theory Jan, 06, 9:00am-:00pm Instructions: Provide answers on the supplied pads of paper; write on only one side of each sheet. Complete exactly 5 of the 6 problems.

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT Math Camp II Calculus Yiqing Xu MIT August 27, 2014 1 Sequence and Limit 2 Derivatives 3 OLS Asymptotics 4 Integrals Sequence Definition A sequence {y n } = {y 1, y 2, y 3,..., y n } is an ordered set

More information

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf

Qualifying Exam in Probability and Statistics. https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 1: Sample Problems for the Elementary Section of Qualifying Exam in Probability and Statistics https://www.soa.org/files/edu/edu-exam-p-sample-quest.pdf Part 2: Sample Problems for the Advanced Section

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Partial Solutions for h4/2014s: Sampling Distributions

Partial Solutions for h4/2014s: Sampling Distributions 27 Partial Solutions for h4/24s: Sampling Distributions ( Let X and X 2 be two independent random variables, each with the same probability distribution given as follows. f(x 2 e x/2, x (a Compute the

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness Information in Data Sufficiency, Ancillarity, Minimality, and Completeness Important properties of statistics that determine the usefulness of those statistics in statistical inference. These general properties

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002

STAT 450: Final Examination Version 1. Richard Lockhart 16 December 2002 Name: Last Name 1, First Name 1 Stdnt # StudentNumber1 STAT 450: Final Examination Version 1 Richard Lockhart 16 December 2002 Instructions: This is an open book exam. You may use notes, books and a calculator.

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

Lecture 11: Probability, Order Statistics and Sampling

Lecture 11: Probability, Order Statistics and Sampling 5-75: Graduate Algorithms February, 7 Lecture : Probability, Order tatistics and ampling Lecturer: David Whitmer cribes: Ilai Deutel, C.J. Argue Exponential Distributions Definition.. Given sample space

More information

1 General problem. 2 Terminalogy. Estimation. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ).

1 General problem. 2 Terminalogy. Estimation. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ). Estimation February 3, 206 Debdeep Pati General problem Model: {P θ : θ Θ}. Observe X P θ, θ Θ unknown. Estimate θ. (Pick a plausible distribution from family. ) Or estimate τ = τ(θ). Examples: θ = (µ,

More information

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if

Let X be a continuous random variable, < X < f(x) is the so called probability density function (pdf) if University of California, Los Angeles Department of Statistics Statistics 1A Instructor: Nicolas Christou Continuous probability distributions Let X be a continuous random variable, < X < f(x) is the so

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Proof In the CR proof. and

Proof In the CR proof. and Question Under what conditions will we be able to attain the Cramér-Rao bound and find a MVUE? Lecture 4 - Consequences of the Cramér-Rao Lower Bound. Searching for a MVUE. Rao-Blackwell Theorem, Lehmann-Scheffé

More information

Asymptotic Theory. L. Magee revised January 21, 2013

Asymptotic Theory. L. Magee revised January 21, 2013 Asymptotic Theory L. Magee revised January 21, 2013 1 Convergence 1.1 Definitions Let a n to refer to a random variable that is a function of n random variables. Convergence in Probability The scalar a

More information

Lecture 8. October 22, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 8. October 22, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. Lecture 8 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University October 22, 2007 1 2 3 4 5 6 1 Define convergent series 2 Define the Law of Large Numbers

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Information in a Two-Stage Adaptive Optimal Design

Information in a Two-Stage Adaptive Optimal Design Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

A Primer on Asymptotics

A Primer on Asymptotics A Primer on Asymptotics Eric Zivot Department of Economics University of Washington September 30, 2003 Revised: October 7, 2009 Introduction The two main concepts in asymptotic theory covered in these

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

Convergence Concepts of Random Variables and Functions

Convergence Concepts of Random Variables and Functions Convergence Concepts of Random Variables and Functions c 2002 2007, Professor Seppo Pynnonen, Department of Mathematics and Statistics, University of Vaasa Version: January 5, 2007 Convergence Modes Convergence

More information

Inference and Regression

Inference and Regression Inference and Regression Assignment 3 Department of IOMS Professor William Greene Phone:.998.0876 Office: KMC 7-90 Home page:www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/econometrics/econometrics.htm.

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 )

1. Let X and Y be independent exponential random variables with rate α. Find the densities of the random variables X 3, X Y, min(x, Y 3 ) 1 Introduction These problems are meant to be practice problems for you to see if you have understood the material reasonably well. They are neither exhaustive (e.g. Diffusions, continuous time branching

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Continuous r.v. s: cdf s, Expected Values

Continuous r.v. s: cdf s, Expected Values Continuous r.v. s: cdf s, Expected Values Engineering Statistics Section 4.2 Josh Engwer TTU 29 February 2016 Josh Engwer (TTU) Continuous r.v. s: cdf s, Expected Values 29 February 2016 1 / 17 PART I

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Stochastic Convergence, Delta Method & Moment Estimators

Stochastic Convergence, Delta Method & Moment Estimators Stochastic Convergence, Delta Method & Moment Estimators Seminar on Asymptotic Statistics Daniel Hoffmann University of Kaiserslautern Department of Mathematics February 13, 2015 Daniel Hoffmann (TU KL)

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 003, 2018 Page 0 Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring STAT 6385 Survey of Nonparametric Statistics Order Statistics, EDF and Censoring Quantile Function A quantile (or a percentile) of a distribution is that value of X such that a specific percentage of the

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

) k ( 1 λ ) n k. ) n n e. k!(n k)! n

) k ( 1 λ ) n k. ) n n e. k!(n k)! n k ) λ ) k λ ) λk k! e λ ) π/!. e α + α) /α e k ) λ ) k λ )! λ k! k)! ) λ k λ k! λk e λ k! λk e λ. k! ) k λ ) k k + k k k ) k ) k e k λ e k ) k EX EX V arx) X Nα, σ ) Bp) Eα) Πλ) U, θ) X Nα, σ ) E ) X α

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information