Convergence Concepts of Random Variables and Functions

Size: px
Start display at page:

Download "Convergence Concepts of Random Variables and Functions"

Transcription

1 Convergence Concepts of Random Variables and Functions c , Professor Seppo Pynnonen, Department of Mathematics and Statistics, University of Vaasa Version: January 5, 2007

2 Convergence Modes Convergence of real numbers and real valued functions (a) Limit of a sequence of real numbers: Definition 1 The real number a IR is the limit of a sequence {x n }, denoted as lim n x n = a if for any ɛ > 0 there is an integer n(ɛ) such that x n a < ɛ whenever n n(ɛ), where n(ɛ) indicates that it may depend on ɛ. (b) Limit of a sequence of functions: Definition 2 A sequence of real-valued functions {f n } defined on a set S IR converge point wise to a function f : S IR, denoted as lim f n (x) = f(x), if for any ɛ > 0 and x S there is an integer n(ɛ, x) such that f n (x) f(x) < ɛ for each x S, whenever n n(ɛ, x), where n(ɛ, x) indicates that the integer may depend on ɛ and x. If n(ɛ, x) = n(ɛ), and for any ɛ > 0 f n (x) f(x) < ɛ for all x S, whenever n n(ɛ), then {f n } is converging uniformly to f. Note. In the latter case whenever n n(ɛ) the graphs of f n (x) become indistinguishable from f(x). Note. The uniform convergence implies the pointwise convergence, but not vice versa. Example. Let f n (x) = x n if 0 x 1. Then f(x) = lim n f n (x) = { 0 if 0 x < 1, 1 if x = 1. Thus {f n } converge pointwise but not uniformly to the limit function f(x) = 0 for 0 x < 1 and f(x) = 1 for x = 1. 2

3 Definition 3 (Limit of a function) A point c is the limit of a function f(x) as x p lim x p f(x) = c if for any ɛ > 0 there exists a δ > 0 such that f(x) c < ɛ, whenever 0 < x p < δ. Note. f need not be defined at p. Example. It is well known that f(x) = sin x x 1 as x 0. Definition 4 A function f : S IR is continuous at a point p S if f is defined at p, and for all ɛ > 0 there exist a δ > 0 such that f(x) f(p) < ɛ, whenever x p < δ Properties of lim: Theorem 1 Let lim x n = a and f(x) is continuous at a then lim f(x n ) = f(lim x n ) = f(a). Proof. For an arbitrary ɛ > 0 select δ > 0 (which may depend on ɛ) such that f(x) f(a) < ɛ, whenever x a < δ. Because x n a then there exists an n δ such that x n a < δ when n n δ, and hence f(x n ) f(a) < ɛ i.e., lim n f(x n ) = f(a), and the proof is complete. 3

4 Examples: If lim n x n = a 0 then lim 1 x n = 1 lim x n = 1 a lim x n = lim x n = a. Given that lim x n and lim y n exist then for an b, c IR lim(bx n + cy n ) = b lim x n + c lim y n lim x n y n = (lim x n )(lim y n ) provided that lim y n 0. lim x n y n = lim x n lim y n 4

5 Convergence of random variables Suppose next that the sequence X n is a sequence of random variables defined on a probability space (Ω, F, P ). Thus X n : Ω IR are just real valued functions with domain Ω and values X n (ω) IR), and all the convergence concepts defined so far apply as such. These are, however, pretty uninteresting, because they are tied to particular outcome ω. This would be just equivalent to investigate sequences {f n (x)} of real valued functions, and we would loose the new component randomness. Introducing randomness, then the interest in the convergence modes is the probability of those events where the sequence does not converge. If this diminishes to zero it is reasonable to say that a sequence of random variables converges. Definition 5 (Convergence with probability one, w.p.1-convergence or almost sure (a.s.) convergence). A sequence {X n } of random variables converges almost surely to a random variable X, denoted as if for any ɛ > 0 X n a.s. X (or X n X w.p.1) lim P ({ω Ω : X n(ω) X(ω) < ɛ, whenever n k}) = 1. k That is ( ) P lim X n = X = 1. n Note. The sets S k = {ω Ω : X n X < ɛ whenever n k} are an increasing sequence of sets, i.e., S k S k+1, and in set notations can be written as S k = {ω Ω : X k (ω) X(ω) < ɛ and X k+1 (ω) X(ω) < ɛ and } = n=k{ω Ω : X n (ω) X(ω) < ɛ}. Thus lim k P (S k ) = 1 and hence lim k P (S c k) = 0, i.e., for the sets S c k = Ω \ S k = n=k{ω Ω : X n X ɛ}, where the convergence does not occur, the probability diminishes to zero. Note. Confirming almost sure convergence of a sequence is, unfortunately, not an easy exercise. There are many sufficient conditions. One is the so 5

6 called Borel-Cantelli Lemma: Let {X n } be as sequence of random variables. If for every ɛ > 0 P ( X n X ɛ) < then n=1 X n a.s. X. Proof. Now P ( X n X ɛ) 0, and by assumption the sum above converges, which together imply that But then lim P ( X n X ɛ) = 0. k n=k lim k P ( n=k{ X n X < ɛ}) = 1 lim k P ( n=k{ X n X ɛ}) and the proof is complete. 1 lim k n=k P ( X n X ɛ) = 1, Definition 6 A sequence of random variables {X n } converges in probability to random variable X, denoted as plim X n = X or X n P X if for all ɛ > 0 lim P ( X n X ɛ) = 0. n Assume X n a.s X. Obviously, because { X n X ɛ} k=n{ X k X ɛ}, so that lim P ( X n X ɛ) lim P ( n n k=n{ X k X ɛ}) = 0. Thus a.s. convergence implies convergence in probability. The converse does not hold. Example. Let {X n } be a sequence of independent random variables, such that P (X n = 0) = 1 1 n, and P (X n = 1) = 1 n. 6

7 Then for any 1 > ɛ > 0 P ( X n < ɛ) = P (X n = 0) = 1 1 n 1, as n. So X n P 0. Nevertheless, lim k P ( n=k{ X n ɛ}) = 1 lim k P ( n=k{ X n < ɛ}) since n=k (1 1 ) = 0 for all k.1 n Thus X n 0 in probability but not a.s. = 1 lim k n=k P ( X n < ɛ) (by independence) = 1 lim k n=k (1 1 n ) = 1 Definition 7 (Convergence in distribution) A sequence of random variables {X n } in distribution to a random X, denoted as X n D X if lim F n(x) = F (x) n in all continuity points x of F (x), where F n (x) = P (X n x) is the cumulative distribution function (cdf) of X n and F (x) = P (X x) is the cdf of X. If g( ) is a continuous monotonically increasing function. Then if Y n = g(x n ), we have F Yn (y) = P (Y n y) = P (g(x n ) y) = P (X n g 1 (y)) = F Xn (g 1 (y))0. Similarly, if Y = g(x) then 1 n ( k 1 F Y (y) = P (Y y) = P (g(x) y) = P (X g 1 (y)) = F X (g 1 (y)). m=2 m=2 (1 1 m = n ( 1 1 m) ) 1 n m=2 m=2 ( m 1 m ( 1 1 m ) = (n 1)! n! = 1 n 0 as n. Generally n m=k (1 1 m ) ( ) ) = 1 = 1 1 k 1 n = (k 1) 1 n 0 as n. 7

8 If X n D X, then F Yn (y) = F Xn (g 1 (y)) F X (g 1 (y)) = F Y (y) as n. That is g(x n ) D g(x). More generally: D X and g( ) is con- Theorem 2 (Continuous Mapping Theorem) If X n tinuous, then g(x n ) D X. Definition 8 (Convergence in quadratic mean) A sequence of random variables {X n } with E(Xn) 2 < converges in quadratic mean to X (with E(X 2 ) < ), denoted as X n X if lim E(X n X) 2 = 0. n Using the Chebysev inequality we obtain directly that if X n P X. Generally X n X then [X n X] [X n a.s. X] [X n P X] [X n D X] Figure. Relations between convergence modes. Furthermore Theorem 3 Let {X n } and {Y n } be sequences of random variables. (a) If c is a constant then X n c X n P c 8

9 (b) If c is constant then X n c lim E[X n ] = c and lim Var[X n ] = lim E (X n E[X n ]) 2 = 0. (c) If plim X n and plim Y n exist and a and b are constants, then (1) plim (ax n ± by n ) = a plim X n ± b plim Y n, (2) plim (X n Y n ) = (plim X n )(plim Y n ) (3) if plim Y n 0 then plim Xn Y n = plim X n plim Y n. (4) if X n D X and plim X n = plim Y n, then Y n D X (d) If X n D X and plim Y n = c, a constant, then (1) X n ± Y n D X ± c. (2) X n Y n D cx given that c 0. (3) If c = 0, then plim X n Y n = 0. We observe that plim shares the same properties as the usual lim, but the other stochastic convergence concepts do not. Especially (and unfortunately) limit shares very few of these properties. For example X n X and Y n Y does not imply X n + Y n X + Y! (If it did, then by defining Z n = X n Y n one gets Z n 0, and property (c) would make equivalent to plim.) 9

Convergence of Random Variables

Convergence of Random Variables 1 / 15 Convergence of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay March 19, 2014 2 / 15 Motivation Theorem (Weak

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

17. Convergence of Random Variables

17. Convergence of Random Variables 7. Convergence of Random Variables In elementary mathematics courses (such as Calculus) one speaks of the convergence of functions: f n : R R, then lim f n = f if lim f n (x) = f(x) for all x in R. This

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

MATH 140B - HW 5 SOLUTIONS

MATH 140B - HW 5 SOLUTIONS MATH 140B - HW 5 SOLUTIONS Problem 1 (WR Ch 7 #8). If I (x) = { 0 (x 0), 1 (x > 0), if {x n } is a sequence of distinct points of (a,b), and if c n converges, prove that the series f (x) = c n I (x x n

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

At t = T the investors learn the true state.

At t = T the investors learn the true state. 1. Martingales A discrete time introduction Model of the market with the following submodels (i) T + 1 trading dates, t =0, 1,...,T. Mathematics of Financial Derivatives II Seppo Pynnönen Professor of

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li Summer Jump-Start Program for Analysis, 01 Song-Ying Li 1 Lecture 6: Uniformly continuity and sequence of functions 1.1 Uniform Continuity Definition 1.1 Let (X, d 1 ) and (Y, d ) are metric spaces and

More information

The Theory of Statistics and Its Applications

The Theory of Statistics and Its Applications The Theory of Statistics and Its Applications 1 By Dennis D. Cox Rice University c Copyright 2000, 2004 by Dennis D. Cox. May be reproduced for personal use by students in STAT 532 at Rice University.

More information

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence 1 Overview We started by stating the two principal laws of large numbers: the strong

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable?

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable? Name: Instructions. Show all work in the space provided. Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading. No books

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES

CLASSICAL PROBABILITY MODES OF CONVERGENCE AND INEQUALITIES CLASSICAL PROBABILITY 2008 2. MODES OF CONVERGENCE AND INEQUALITIES JOHN MORIARTY In many interesting and important situations, the object of interest is influenced by many random factors. If we can construct

More information

Lecture 2: Convergence of Random Variables

Lecture 2: Convergence of Random Variables Lecture 2: Convergence of Random Variables Hyang-Won Lee Dept. of Internet & Multimedia Eng. Konkuk University Lecture 2 Introduction to Stochastic Processes, Fall 2013 1 / 9 Convergence of Random Variables

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Analysis Qualifying Exam

Analysis Qualifying Exam Analysis Qualifying Exam Spring 2017 Problem 1: Let f be differentiable on R. Suppose that there exists M > 0 such that f(k) M for each integer k, and f (x) M for all x R. Show that f is bounded, i.e.,

More information

Immerse Metric Space Homework

Immerse Metric Space Homework Immerse Metric Space Homework (Exercises -2). In R n, define d(x, y) = x y +... + x n y n. Show that d is a metric that induces the usual topology. Sketch the basis elements when n = 2. Solution: Steps

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

Convergence of Random Variables

Convergence of Random Variables 1 / 13 Convergence of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay April 8, 2015 2 / 13 Motivation Theorem (Weak

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li. 1 Lecture 7: Equicontinuity and Series of functions

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li. 1 Lecture 7: Equicontinuity and Series of functions Summer Jump-Start Program for Analysis, 0 Song-Ying Li Lecture 7: Equicontinuity and Series of functions. Equicontinuity Definition. Let (X, d) be a metric space, K X and K is a compact subset of X. C(K)

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Economics 620, Lecture 8: Asymptotics I

Economics 620, Lecture 8: Asymptotics I Economics 620, Lecture 8: Asymptotics I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 8: Asymptotics I 1 / 17 We are interested in the properties of estimators

More information

1 Probability theory. 2 Random variables and probability theory.

1 Probability theory. 2 Random variables and probability theory. Probability theory Here we summarize some of the probability theory we need. If this is totally unfamiliar to you, you should look at one of the sources given in the readings. In essence, for the major

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

The Heine-Borel and Arzela-Ascoli Theorems

The Heine-Borel and Arzela-Ascoli Theorems The Heine-Borel and Arzela-Ascoli Theorems David Jekel October 29, 2016 This paper explains two important results about compactness, the Heine- Borel theorem and the Arzela-Ascoli theorem. We prove them

More information

Probability and Measure

Probability and Measure Probability and Measure Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Convergence of Random Variables 1. Convergence Concepts 1.1. Convergence of Real

More information

Math Bootcamp 2012 Miscellaneous

Math Bootcamp 2012 Miscellaneous Math Bootcamp 202 Miscellaneous Factorial, combination and permutation The factorial of a positive integer n denoted by n!, is the product of all positive integers less than or equal to n. Define 0! =.

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

1 Probability space and random variables

1 Probability space and random variables 1 Probability space and random variables As graduate level, we inevitably need to study probability based on measure theory. It obscures some intuitions in probability, but it also supplements our intuition,

More information

Part II Probability and Measure

Part II Probability and Measure Part II Probability and Measure Theorems Based on lectures by J. Miller Notes taken by Dexter Chua Michaelmas 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Riesz Representation Theorems

Riesz Representation Theorems Chapter 6 Riesz Representation Theorems 6.1 Dual Spaces Definition 6.1.1. Let V and W be vector spaces over R. We let L(V, W ) = {T : V W T is linear}. The space L(V, R) is denoted by V and elements of

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

Definitions & Theorems

Definitions & Theorems Definitions & Theorems Math 147, Fall 2009 December 19, 2010 Contents 1 Logic 2 1.1 Sets.................................................. 2 1.2 The Peano axioms..........................................

More information

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ

Hence, (f(x) f(x 0 )) 2 + (g(x) g(x 0 )) 2 < ɛ Matthew Straughn Math 402 Homework 5 Homework 5 (p. 429) 13.3.5, 13.3.6 (p. 432) 13.4.1, 13.4.2, 13.4.7*, 13.4.9 (p. 448-449) 14.2.1, 14.2.2 Exercise 13.3.5. Let (X, d X ) be a metric space, and let f

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 27 The Central Limit Theorem Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3000, R.O.C. Identically distributed summands 27- Central

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006

Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006 Advanced Calculus: MATH 410 Professor David Levermore 28 November 2006 1. Uniform Continuity Uniform continuity is a very useful concept. Here we introduce it in the context of real-valued functions with

More information

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs)

LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) OCTOBER 6, 2014 LECTURE 3 RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS (CDFs) 1 Random Variables Random experiments typically require verbal descriptions, and arguments involving events are often

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT

Math Camp II. Calculus. Yiqing Xu. August 27, 2014 MIT Math Camp II Calculus Yiqing Xu MIT August 27, 2014 1 Sequence and Limit 2 Derivatives 3 OLS Asymptotics 4 Integrals Sequence Definition A sequence {y n } = {y 1, y 2, y 3,..., y n } is an ordered set

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

SDS : Theoretical Statistics

SDS : Theoretical Statistics SDS 384 11: Theoretical Statistics Lecture 1: Introduction Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin https://psarkar.github.io/teaching Manegerial Stuff

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

9 Sequences of Functions

9 Sequences of Functions 9 Sequences of Functions 9.1 Pointwise convergence and uniform convergence Let D R d, and let f n : D R be functions (n N). We may think of the functions f 1, f 2, f 3,... as forming a sequence of functions.

More information

Review of Probability Theory II

Review of Probability Theory II Review of Probability Theory II January 9-3, 008 Exectation If the samle sace Ω = {ω, ω,...} is countable and g is a real-valued function, then we define the exected value or the exectation of a function

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Probability A exam solutions

Probability A exam solutions Probability A exam solutions David Rossell i Ribera th January 005 I may have committed a number of errors in writing these solutions, but they should be ne for the most part. Use them at your own risk!

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems

Entrance Exam, Real Analysis September 1, 2017 Solve exactly 6 out of the 8 problems September, 27 Solve exactly 6 out of the 8 problems. Prove by denition (in ɛ δ language) that f(x) = + x 2 is uniformly continuous in (, ). Is f(x) uniformly continuous in (, )? Prove your conclusion.

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

Topic 7: Convergence of Random Variables

Topic 7: Convergence of Random Variables Topic 7: Convergence of Ranom Variables Course 003, 2016 Page 0 The Inference Problem So far, our starting point has been a given probability space (S, F, P). We now look at how to generate information

More information

Constructing Approximations to Functions

Constructing Approximations to Functions Constructing Approximations to Functions Given a function, f, if is often useful to it is often useful to approximate it by nicer functions. For example give a continuous function, f, it can be useful

More information

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria

Weak convergence. Amsterdam, 13 November Leiden University. Limit theorems. Shota Gugushvili. Generalities. Criteria Weak Leiden University Amsterdam, 13 November 2013 Outline 1 2 3 4 5 6 7 Definition Definition Let µ, µ 1, µ 2,... be probability measures on (R, B). It is said that µ n converges weakly to µ, and we then

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X.

Definition 6.1. A metric space (X, d) is complete if every Cauchy sequence tends to a limit in X. Chapter 6 Completeness Lecture 18 Recall from Definition 2.22 that a Cauchy sequence in (X, d) is a sequence whose terms get closer and closer together, without any limit being specified. In the Euclidean

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations

Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Introduction to Empirical Processes and Semiparametric Inference Lecture 13: Entropy Calculations Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Spectral representations and ergodic theorems for stationary stochastic processes

Spectral representations and ergodic theorems for stationary stochastic processes AMS 263 Stochastic Processes (Fall 2005) Instructor: Athanasios Kottas Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes Theory and methods

More information

Lecture Notes for MA 623 Stochastic Processes. Ionut Florescu. Stevens Institute of Technology address:

Lecture Notes for MA 623 Stochastic Processes. Ionut Florescu. Stevens Institute of Technology  address: Lecture Notes for MA 623 Stochastic Processes Ionut Florescu Stevens Institute of Technology E-mail address: ifloresc@stevens.edu 2000 Mathematics Subject Classification. 60Gxx Stochastic Processes Abstract.

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1. Chapter 1 Metric spaces 1.1 Metric and convergence We will begin with some basic concepts. Definition 1.1. (Metric space) Metric space is a set X, with a metric satisfying: 1. d(x, y) 0, d(x, y) = 0 x

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information