STA205 Probability: Week 8 R. Wolpert

Size: px
Start display at page:

Download "STA205 Probability: Week 8 R. Wolpert"

Transcription

1 INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and independent trials in which E occurs. Similarly the expectation of a random variable X is taken to be its asymptotic average, the limit as n of the average of n repeated, similar, and independent replications of X. As statisticians trying to make inference about the underlying probability distribution f(x θ) governing observed random variables X i, this suggests that we should be interested in the probability distribution for large n of quantities like the average of the RV s, Xn 1 n n i=1 X i. Three of the most celebrated theorems of probability theory concern this sum. For independent random variables X i, all with the same probability distribution satisfying E X i 3 <, set µ = EX i, σ = E X i µ, and S n = n i=1 X i. The three main results are: Laws of Large Numbers: Central Limit Theorem: Law of the Iterated Logarithm: S n nµ σn S n nµ σ n 0 (i.p. and a.s.) = N(0,1) (i.d.) lim sup ± S n nµ n σ n log log n = 1.0 (a.s.) Together these three give a clear picture of how quickly and in what sense 1 n S n tends to µ. We begin with the Law of Large Numbers (LLN), in its weak form (asserting convergence i.p.) and in its strong form (convergence a.s.). There are several versions of both theorems. The simplest requires the X i to be IID and L ; stronger results allow us to weaken (but not eliminate) the independence requirement, permit non-identical distributions, and consider what happens if the RV s are only L 1 (or worse!) instead of L. The text covers these things well; to complement it I am going to: (1) Prove the simplest version, and with it the Borel-Cantelli theorems; and () Show what happens with Cauchy random variables, which don t satisfy the requirements (the LLN fails).

2 I. Weak version, non-iid, L : µ i = EX i, σ ij = E[X i µ i ][X j µ j ] A. Y n = (S n Σµ i )/n satisfies EY n = 0, EYn = 1 n Σ i n σ ii + n Σ i<j n σ ij ; 1. If σ ii M and σ ij 0 or σ ij < Mr i j, r < 1, Chebychev = Y n 0, i.p.. (pairwise) IID L is OK II. Strong version, non-iid, L : EX i = 0, EXi M, EX ix j 0. A. P[ S n > nǫ] < Mn = M n ǫ nǫ 1. P[ S n > n ǫ] < M, Σ n ǫ n P[ S n > n ǫ] < Mπ 6ǫ. Borel-Cantelli: P[ S n > n ǫ i.o.] = 0, 1 S n n 0 a.s. 3. D n = max n <k<(n+1) S k S n, EDn ne S (n+1) S n 4n M 4. Chebychev: P[D n > n ǫ] < 4n M n 4 ǫ, D n 0 a.s. B. S k /k S n +D n n 0 a.s., QED 1. Bernoulli RV s, normal number theorem, Monte Carlo integration. III. Weak version, pairwise-iid, L 1 A. Equivalent sequences: n P[X n Y n ] < 1. [X n Y n ] < a.s.. n i=1 [X n i], a n i=1 [X i] converge iff n i=1 [Y n i], a n i=1 [Y i] both converge 3. Y n = X n 1 [ Xn n] IV. Counterexamples: Cauchy, A. X i dx = P[ S π[1+x ] n /n ǫ] π tan 1 (ǫ) 1, WLLN fails. B. P[X i = ±n] = c n, n 1; X i / L 1, and S n /n 0 i.p. or a.s. C. P[X i = ±n] = c n log n, n > 1; X i / L 1, but S n /n 0 i.p. and not a.s. D. Medians: for ANY RV s X n X i.p., then m n m if m is unique. Page

3 Let X i be iid standard Cauchy RV s, with and characteristic function P[X 1 t] = E e iωx 1 = so S n /n has characteristic function t dx π[1 + x ] = π arctan(t) e iωx E e iωs n/n = Ee i ω n [X 1+ +X n ] = dx π[1 + x ] = e ω, ( ) n Ee i ω n X 1 = (e ω n ) n = e ω and S n /n also has the standard Cauchy distribution with P[S n /n t] = arctan(t); in π particular, S n /n does not converge almost surely, or even in probability. A LAW OF LARGE NUMBERS FOR CORRELATED SEQUENCES In many applications we would like a Law of Large Numbers for sequences of random variables that are not independent; for example, in Markov Chain Monte Carlo integration, we have a stationary Markov chain {X t } (this means that the distribution of X t is the same for all t and that the conditional distribution of X u for u > t, given {X s s t}, depends only on X t ) and want to estimate the population mean E[φ(X t )] for some function φ( ) by the sample mean E[φ(X t )] 1 T φ(x t ). t=1 Even though they are identically distributed, the random variables Y t φ(x t ) won t be independent if the X t aren t independent, so the LLN we already have doesn t quite apply. A sequence of random variables Y t is called stationary if each Y t has the same probability distribution and, moreover, each finite set (Y t1 +h,y t +h,...,y tk +h) has a joint distribution that doesn t depend on h. The sequence is called L if each Y t has a finite variance σ (and hence also a well-defined mean µ); by stationarity it also follows that the covariance γ st = E[(Y s µ)(y t µ)] is finite and depends only on the absolute difference t s. Theorem. If a stationary L sequence has a summable covariance, i.e., satisfies t= γ st c <, then 1 E[Y t ] = lim Y t. T T Proof. Let S T be the sum of the first T Y t s and set (as usual) ȲT S T /T. The variance of S T is E[(S T Tµ) ] = s=1 t=1 t=1 E[(X s µ)(x t µ)] s=1 t= T c, Page 3 γ st

4 so ȲT had variance V[ȲT] c/t and by Chebychev s inequality P[ ȲT µ > ǫ] E[(ȲT µ) ] ǫ = E[(S T Tµ) ] T ǫ T c T ǫ = c 0 as T. Tǫ A strong LLN follows with a bit more work, just as for iid random variables. Examples 1. IID: If X t are independent and identically distributed, and if Y t = φ(x t ) has finite variance σ, then Y t { has a well-defined finite mean µ and ȲT µ. σ if s = t Here γ st = 0 if s t, so c = σ <.. AR 1 : If Z t are iid N(0,1) for < t <, µ R, σ > 0, 1 < ρ < 1, and X t µ + σ ρ s Z t s s=0 = ρx t 1 + α + σz t, ( ) σ where α = (1 ρ)µ, then the X t are identically distributed (all with the N(µ, ) distribution) but not independent (since γ st = σ 1 ρ 1 ρ ρ s t 0); this is called an autoregressive process (because of equation (*), expressing X t as a regression of previous X s s) of order one (because only one earlier X s appears in (*)), and is about the simplest non-iid sequence occuring in applications. Since the covariance is summable, t= γ st = σ 1 ρ 1 + ρ 1 ρ = σ (1 ρ ) <, we again have X T µ as T.. Geometric Ergodicity: If for some 0 < ρ < 1 and c > 0 we have γ st cρ s t for a Markov chain Y t the chain is called Geometrically Ergodic (because cρ t is a geometric sequence), and the same argument as for AR 1 shows that Ȳt converges; Meyn & Tweedie (1993), Tierney (1994), and others have given conditions for MCMC chains to be Geometric Ergodic, and hence for the almost-sure convergence of sample averages to population means. 3. General Ergodicity: Consider the three sequences of random variables on (Ω,F,P) with Ω = (0,1] and F = B(Ω), each with X 0 (ω) = ω: 1. X n+1 X n (mod 1);. X n+1 X n + α (mod 1) (Does it matter if α is rational?); 3. X n+1 4X n (1 X n ). For each, find a probability measure P (equivalently find a distribution for X 0 ) such that the X n are all identically distributed; the sequence is called ergodic if each E F left invariant by the transformation T that takes X n to X n+1, E = T 1 (E), is trivial in the sense that P[E] = 0 or P[E] = 1. The Ergodic Theorem asserts that X n converges almost-surely to a T-invariant limit X as n ; since only constants are T-invariant for ergodic sequences, it follows that X n µ = EX n. The conditions here are weaker than those for the usual LLN; in all three cases above, for example, each X n is completely determined by X 0 so there is complete dependence! Page 4

5 Stable Limit Laws Let S n = X X n be the partial sum of iid random variables. IF the random variables are all square integrable, THEN the Central Limit Theorem applies and necessarily S n µ = No(0,1). nσ But what if each X n is not square integrable? We have already seen CLT fail for Cauchy variables X j. Denote by F(x) = P[X n x] the common CDF of the {X n }. Theorem (Stable Limit Law). There exist constants A n > 0 and B n R and a distribution µ for which the S n A n B n = µ if and only if there are constants 0 < α, M 0, and M + 0, with M + M + > 0, such that the following limits hold for every ξ > 0 as x + : F( x) P[X x] 1. = M 1 F(x) P[X > x] M + ;. M + > 0 1 F(xξ) 1 F(x) ξ α M > 0 F( xξ) F( x) ξ α. In this case the limit is the Stable Distribution with index α, with characteristic function E[e iωy ] = e iδω γ ω α [1 iβ tan πα sgn(ω)], where β = M+ M +M + and γ = (M + M + ). The sequence A n must be essentially A n n 1/α (more precisely, the sequence C n = n 1/α A n is slowly changing in the sense that C cn 1 = lim n C n for every c > 0); thus partial sums converge to stable distributions at rate n 1/α, more slowly (much more slowly, if α is close to one) than in the L (Gaussian) case of the central limit theorem. Note that the Cauchy distribution is the special case of (α,β,γ,δ) = (1,0,1,0) and the Normal distribution is the special case of (α,β,γ,δ) = (,0,σ /,µ). Although each Stable distribution has an absolutely continuous distribution with continuous probability density function f(y), these two cases and the inverse gamma distribution with α = 1/ and β = ±1 are the only ones where the p.d.f. can be given in closed form. Moments are easy enough to compute; for α < the Stable distribution only has finite moments of order p < α and, in particular, none of them has a finite variance. The Cauchy has finite moments of order p < 1 but does not have a well-defined mean. Condition. says that each tail must be fall off like a power (sometimes called Pareto tails), and the powers must be identical; Condition 1. gives the tail ratio. In a common special case, M = 0; for example, random variables X n with the Pareto distribution (often used to model income) given by P[X n > t] = (k/t) α for t k will have a stable limit for their partial sums if α <, and (by CLT) a normal limit if α. You can find out more details reading Chapter 9 of Breiman s book. Page 5

Probability and Measure

Probability and Measure Probability and Measure Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Convergence of Random Variables 1. Convergence Concepts 1.1. Convergence of Real

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

Fourier Transforms of Measures

Fourier Transforms of Measures Fourier Transforms of Measures Sums of Independent andom Variables We begin our study of sums of independent random variables, S n = X 1 + X n. If each X i is square integrable, with mean µ i = EX i and

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

7 Convergence in R d and in Metric Spaces

7 Convergence in R d and in Metric Spaces STA 711: Probability & Measure Theory Robert L. Wolpert 7 Convergence in R d and in Metric Spaces A sequence of elements a n of R d converges to a limit a if and only if, for each ǫ > 0, the sequence a

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

Simulation - Lectures - Part III Markov chain Monte Carlo

Simulation - Lectures - Part III Markov chain Monte Carlo Simulation - Lectures - Part III Markov chain Monte Carlo Julien Berestycki Part A Simulation and Statistical Programming Hilary Term 2018 Part A Simulation. HT 2018. J. Berestycki. 1 / 50 Outline Markov

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

STA 711: Probability & Measure Theory Robert L. Wolpert

STA 711: Probability & Measure Theory Robert L. Wolpert STA 711: Probability & Measure Theory Robert L. Wolpert 6 Independence 6.1 Independent Events A collection of events {A i } F in a probability space (Ω,F,P) is called independent if P[ i I A i ] = P[A

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

1 Sequences of events and their limits

1 Sequences of events and their limits O.H. Probability II (MATH 2647 M15 1 Sequences of events and their limits 1.1 Monotone sequences of events Sequences of events arise naturally when a probabilistic experiment is repeated many times. For

More information

The Central Limit Theorem: More of the Story

The Central Limit Theorem: More of the Story The Central Limit Theorem: More of the Story Steven Janke November 2015 Steven Janke (Seminar) The Central Limit Theorem:More of the Story November 2015 1 / 33 Central Limit Theorem Theorem (Central Limit

More information

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n Large Sample Theory In statistics, we are interested in the properties of particular random variables (or estimators ), which are functions of our data. In ymptotic analysis, we focus on describing the

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

An Introduction to Laws of Large Numbers

An Introduction to Laws of Large Numbers An to Laws of John CVGMI Group Contents 1 Contents 1 2 Contents 1 2 3 Contents 1 2 3 4 Intuition We re working with random variables. What could we observe? {X n } n=1 Intuition We re working with random

More information

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y.

2. Variance and Covariance: We will now derive some classic properties of variance and covariance. Assume real-valued random variables X and Y. CS450 Final Review Problems Fall 08 Solutions or worked answers provided Problems -6 are based on the midterm review Identical problems are marked recap] Please consult previous recitations and textbook

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

MA Advanced Econometrics: Applying Least Squares to Time Series

MA Advanced Econometrics: Applying Least Squares to Time Series MA Advanced Econometrics: Applying Least Squares to Time Series Karl Whelan School of Economics, UCD February 15, 2011 Karl Whelan (UCD) Time Series February 15, 2011 1 / 24 Part I Time Series: Standard

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 7: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on the same probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω,

More information

Economics 241B Review of Limit Theorems for Sequences of Random Variables

Economics 241B Review of Limit Theorems for Sequences of Random Variables Economics 241B Review of Limit Theorems for Sequences of Random Variables Convergence in Distribution The previous de nitions of convergence focus on the outcome sequences of a random variable. Convergence

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

lim F n(x) = F(x) will not use either of these. In particular, I m keeping reserved for implies. ) Note:

lim F n(x) = F(x) will not use either of these. In particular, I m keeping reserved for implies. ) Note: APPM/MATH 4/5520, Fall 2013 Notes 9: Convergence in Distribution and the Central Limit Theorem Definition: Let {X n } be a sequence of random variables with cdfs F n (x) = P(X n x). Let X be a random variable

More information

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence

Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham NC 778-5 - Revised April,

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Convergence in Distribution

Convergence in Distribution Convergence in Distribution Undergraduate version of central limit theorem: if X 1,..., X n are iid from a population with mean µ and standard deviation σ then n 1/2 ( X µ)/σ has approximately a normal

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

17. Convergence of Random Variables

17. Convergence of Random Variables 7. Convergence of Random Variables In elementary mathematics courses (such as Calculus) one speaks of the convergence of functions: f n : R R, then lim f n = f if lim f n (x) = f(x) for all x in R. This

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

1 Probability theory. 2 Random variables and probability theory.

1 Probability theory. 2 Random variables and probability theory. Probability theory Here we summarize some of the probability theory we need. If this is totally unfamiliar to you, you should look at one of the sources given in the readings. In essence, for the major

More information

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017 Probability Notes Compiled by Paul J. Hurtado Last Compiled: September 6, 2017 About These Notes These are course notes from a Probability course taught using An Introduction to Mathematical Statistics

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence

IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence IEOR 6711: Stochastic Models I Fall 2013, Professor Whitt Lecture Notes, Thursday, September 5 Modes of Convergence 1 Overview We started by stating the two principal laws of large numbers: the strong

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Statistics 252 Mathematical Statistics Lecture Notes Winter 2005 Michael Kozdron kozdron@math.uregina.ca www.math.uregina.ca/ kozdron Contents 1 The Basic Idea of Statistics: Estimating

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

Tail inequalities for additive functionals and empirical processes of. Markov chains

Tail inequalities for additive functionals and empirical processes of. Markov chains Tail inequalities for additive functionals and empirical processes of geometrically ergodic Markov chains University of Warsaw Banff, June 2009 Geometric ergodicity Definition A Markov chain X = (X n )

More information

Lecture 2: Review of Basic Probability Theory

Lecture 2: Review of Basic Probability Theory ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak, scribe: R. Nowak Lecture 2: Review of Basic Probability Theory Probabilistic models will be used throughout the course to represent

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Lecture 4: Two-point Sampling, Coupon Collector s problem

Lecture 4: Two-point Sampling, Coupon Collector s problem Randomized Algorithms Lecture 4: Two-point Sampling, Coupon Collector s problem Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized Algorithms

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Tom Salisbury

Tom Salisbury MATH 2030 3.00MW Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions Tom

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics The candidates for the research course in Statistics will have to take two shortanswer type tests

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Lecture 6 Basic Probability

Lecture 6 Basic Probability Lecture 6: Basic Probability 1 of 17 Course: Theory of Probability I Term: Fall 2013 Instructor: Gordan Zitkovic Lecture 6 Basic Probability Probability spaces A mathematical setup behind a probabilistic

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

2 n k In particular, using Stirling formula, we can calculate the asymptotic of obtaining heads exactly half of the time:

2 n k In particular, using Stirling formula, we can calculate the asymptotic of obtaining heads exactly half of the time: Chapter 1 Random Variables 1.1 Elementary Examples We will start with elementary and intuitive examples of probability. The most well-known example is that of a fair coin: if flipped, the probability of

More information

Disjointness and Additivity

Disjointness and Additivity Midterm 2: Format Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley Midterm 2: Format 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Lecture 3: Statistical sampling uncertainty

Lecture 3: Statistical sampling uncertainty Lecture 3: Statistical sampling uncertainty c Christopher S. Bretherton Winter 2015 3.1 Central limit theorem (CLT) Let X 1,..., X N be a sequence of N independent identically-distributed (IID) random

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

CHAPTER 3: LARGE SAMPLE THEORY

CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 1 CHAPTER 3: LARGE SAMPLE THEORY CHAPTER 3 LARGE SAMPLE THEORY 2 Introduction CHAPTER 3 LARGE SAMPLE THEORY 3 Why large sample theory studying small sample property is usually

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

11. Further Issues in Using OLS with TS Data

11. Further Issues in Using OLS with TS Data 11. Further Issues in Using OLS with TS Data With TS, including lags of the dependent variable often allow us to fit much better the variation in y Exact distribution theory is rarely available in TS applications,

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information