March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

Size: px
Start display at page:

Download "March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS"

Transcription

1 March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help to explain why the sample sum is often a sufficient and complete statistic. 1. Introduction Let Θ R be an open interval that is possibly infinite. We say that a family of pdfs {f θ } θ Θ is of exponential class if f(x; θ) = h(x) exp(η(θ)k(x) A(θ)) for some functions η and A which depend on θ and some functions k and h 0 which only depend on x and not on θ. Thus we are assuming that the support of f θ does not depend on θ and the family has common support S. Notice that since f is a pdf, if it is a density for a continuous random variable, then right away we know that ( ) A(θ) = log h(x) exp(η(θ)k(x))dx, and similarly in the discrete case ( ) A(θ) = log h(x) exp(η(θ)k(x). By taking and x s(x) := exp(log(h(x))) q(θ) := A(θ) we can also write as some other texts: ( ) f(x; θ) = exp η(θ)k(x) + s(x) + q(θ) 1[x S]. Furthermore, we say that an exponential family is regular if η is a non-constant continuous function of θ; in the continuous case, we also require that k (x) is not identically zero and h to be a continuous function; in the discrete case, we require that k(x) is not a constant function. Let us remark that if k is the constant function, then exp(η(θ)k(x) A(θ)) is equal to a constant for all θ, and there is really only one pdf in the family. Many familiar families pdfs both discrete and continuous are of (regular) exponential class.

2 2 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Exercise 1. Fix an integer n 1. Let p (0, 1). Show that Binomial family given by ( ) n f p (x) = p x (1 p) n x x is of exponential class Solution. Write ( ) n f p (x) = exp ( x log(p) + (n x) log(1 p) ) x ( ) n ( ) = exp log( p 1 p x )x + n log(1 p) Take h(x) = ( ) n x, η(p) = log( p ), k(x) = x, and A(θ) = n log(1 p). 1 p Recall that a continuous random variable X is said to have a gamma distribution with parameters α > 0 and β > 0 if it has a pdf given by { 1 β f(x; α, β) = α Γ(α) xα 1 e x/β if x > 0, 0 otherwise; Exercise 2. Fix α > 0. Show that the family of gamma distributions given by {f( ; α, β)} β>0 is of exponential class. Solution. Set h(x) = 1 Γ(α) xα 1 1[x > 0], η(β) = 1/β, k(x) = x, and A(β) = α log(β). Theorem 3. Let X = (X 1,..., X n ) be a random sample from a family of regular exponential class, where Then the sum given by f(x 1 ; θ) = h(x 1 ) exp(η(θ)k(x 1 ) A(θ)). T = t(x) := k(x i ) is a sufficient and complete statistic; in particular, the family of pdfs corresponding to T is also of regular exponential class. Proof of Theorem 3 (sufficiency). Observe that ( ) n L(x; θ) = exp η(θ)t(x) na(θ) h(x i ). Hence set ( ) g(t(x); θ) := exp η(θ)t(x) na(θ)

3 and THE EXPONENTIAL CLASS OF DISTRIBUTIONS 3 H(x) := n h(x i ) and the result follows from the Neyman factorization theorem. Proposition 4. Let X be a random variable with pdf from a regular exponential class given by f(x; θ) = h(x) exp(η(θ)k(x) A(θ)). Then provided all the derivatives exists, and E θ k(x) = A (θ)/η (θ) Var θ (k(x)) = 1 η (θ) 3 (η (θ)a (θ) A (θ)η (θ)). Proof of Proposition 4 (continuous case). We use the same trick as we did with Fisher information, differentiate, with respect to θ, the identity 1 = f(x; θ)dx. (1) We can bring the derivative inside the integral since the support of f is independent of θ. This gives 0 = f(x; θ) [ η (θ)k(x) A (θ) ] dx. (2) Note that E θ k(x) = k(x)f(x; θ)dx. Some rearranging, and using (1) gives the desired result for the expectation. For the variance, we differentiate the identity (2) with respect to θ, and obtain 0 = f(x; θ) [ η (θ)k(x) A (θ) ] + f(x; θ) [ η (θ)k(x) A (θ) ] 2 dx We recognize from (2) that so that 0 = = E θ [η (θ)k(x) A (θ)] = 0, f(x; θ) [ η (θ)k(x) A (θ) ] dx + Var θ [η (θ)k(x) A (θ)] f(x; θ) [ η (θ)k(x) A (θ) ] dx + η (θ) 2 Var θ k(x).

4 4 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Some algebra and the previous identity give η (θ) 2 Var θ k(x) = A (θ) η (θ)e θ k(x) = A (θ) η (θ) A (θ) η (θ), from which the desired result follows. Proposition 5 (Additive property). Let X = (X 1,..., X n ) be a random sample from a family of regular exponential class, where Let f(x 1 ; θ) = h(x 1 ) exp(η(θ)k(x 1 ) A(θ)). T = t(x) := Then the pdf of T has the form k(x i ). g(t; θ) = r(t) exp ( η(θ)t na(θ) ), where r(t) does not depend on θ, so that in particular, the family of pdfs corresponding to T is of regular exponential class. Proof of Proposition 5 (discrete case). Suppose x is such that t(x) = t, then n n P(X = x) = f(x i ; θ) = exp[η(θ)t na(θ)] h(x i ). For each t, let S t := {x : t(x) = t}. Set We have that r(t) = x S t n h(x i ). P(T = t) = r(t) exp[η(θ)t na(θ)]. The proof of Proposition 5 in the continuous case is a bit harder. Proposition 6. A family of pdfs that is of regular exponential class of the form: f(x; θ) = h(x) exp(η(θ)x A(θ)) is complete. Thus in Proposition 6 we require that k(x) = x.

5 THE EXPONENTIAL CLASS OF DISTRIBUTIONS 5 Sketch Proof of Proposition 6 (continuous case). Suppose that family is given by f(x; θ) = h(x) exp(η(θ)x A(θ)) where θ Θ. Let u be so that u(x)h(x) exp(η(θ)x A(θ))dx = 0 for all θ Θ. Let v(x) = u(x)h(x), then we have that v(x) exp(η(θ)x) = 0 for all θ Θ. Recall that η is a continuous function, and as a consequence of the intermediate value property, continuous functions map closed intervals to closed intervals. Since η is not a constant, we have that ˆv(s) := v(x) exp(sx) = 0 for all s [a, b], where a < b. Here, we appeal to the theory of Laplace transforms to obtain that v = 0; since h is non-zero on the support of f, we can conclude that u = 0. Proof of Theorem 3. We already proved the sufficiency of T, the rest follow from Propositions 5 and 6, and the fact that the pdf of T has the form required by Proposition An example from the Beta family Exercise 7 (Beta(θ, 1)). Let X = (X 1,..., X n ) be a random sample, where X 1 has pdf f(x 1 ; θ) := 1[x 1 (0, 1)]θx θ 1 1, where θ > 0. Show that G := (X 1 X 2 X n ) 1/n is a complete and sufficient statistic for θ. Solution. We can rewrite f as f(x 1 ; θ) = 1[x 1 (0, 1)] exp[(θ 1) log(x 1 ) + log(x 1 )]. Thus we have η(θ) = θ 1 and k(x 1 ) = log(x 1 ), and by Theorem 3, we know that T = log(x i ) is sufficient and complete. Recall that any 1-1 function of a sufficient statistic is again sufficient, so G = exp(t/n) is also sufficient. It is also clear that 1-1 function of a complete statistic must also be complete.

6 6 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Exercise 8. Referring to Exercise 7, show that the mle for θ is given by n Z := n log(x i). Exercise 9. referring to Exercise 8, let Y i := log(x i ). Show that Y i Γ(1, 1/θ). Exercise 10. Show that EZ = θ( n n 1 ). Exercise 11. Referring to Exercise 7, find the MVUE for θ. Exercise 12. Let W Γ(α, β). Let a > 0. Assume that α > a. Show that EW a Γ(α a) = β a Γ(α). Exercise 13. Show that the variance of the MVUE in Exercise 11 is θ 2 /(n 2). Exercise 14. Referring to Exercise 7, show that Fisher information of X 1 is given by I(θ) = θ 2. Thus the MVUE is not efficient. 3. Another example Exercise 15. Let X = (X 1,..., X n ) be a random sample from the distribution θ f θ (x 1 ) = (1 + x 1 ) 1[x 1+θ 1 > 0]. (a) Find the Cramer-Rao lower bound for an unbiased estimator of θ. (b) Find the Cramer-Rao lower bound for an unbiased estimator of 1/θ. (c) Find the mle for θ. (d) Show that there is an efficient estimator of 1/θ. (e) Show that there does not exist an efficient estimator for θ. Solution. (a) We have that for x 1 > 0, l(x 1 ; θ) = log(θ) (1 + θ) log(1 + x 1 ); l (x 1 ; θ) = 1/θ log(1 + x 1 ); l (x 1 ; θ) = 1/θ 2. Hence I(θ) = 1/θ 2 and if Y is an unbiased estimator for θ, then Var θ (Y ) θ2 n. (b) If Z is an unbiased estimator for g(θ) = 1/θ, then we have that Var θ (Z) (g (θ)) 2 ni(θ) = 1 nθ 2.

7 THE EXPONENTIAL CLASS OF DISTRIBUTIONS 7 (c) If x (0, ) n, we have that l(x; θ) = log(θ) (1 + θ) log(1 + x i ); (d) Let l (x; θ) = 1/θ log(1 + x i ); setting this to 0 and solving for θ, we obtain that mle is given by ( 1. W := n log(1 + X i )) W = log(1 + X i ). We want to compute the distribution for W. Let Y i := log(1+x i ). We have that P(Y 1 z) = P(X 1 e z 1) = e z 1 0 θ (1 + x 1 ) 1+θ dx 1. The fundamental theorem of calculus and the chain rule give that pdf for Y 1 is given by f Y1 (z) = θ e z+zθ ez = θe zθ ; thus Y i are independent exponential random variables with mean 1/θ and we know that W Γ(n, 1/θ). In particular, we have that E(W ) = n/θ and Var(W ) = nθ 2. Hence from the previous calculations, we know that W /n is an efficient estimator for 1/θ. Another way to proceeds would be to note that f θ (x 1 ) = θ (1 + x 1 ) 1[x 1+θ 1 > 0] = 1[x 1 > 0] exp[ (1 + θ) log(1 + x 1 ) + log(θ)]; hence we are dealing with a family of exponential class with: η(θ) = (1 + θ), k(x 1 ) = log(1 + x 1 ), and A(θ) = log(θ). By our theory, we know that W is a complete and sufficient statistic; in particular, we can compute its mean and variance of Y 1 using Proposition 4.

8 8 THE EXPONENTIAL CLASS OF DISTRIBUTIONS (e) By the Lehmann-Scheffe theorem, it suffices to find an unbiased estimator for θ that is a function of W, since our theory on the exponential family, gives that W is both sufficient and complete. By a previous calculation, in Section 2, we already know what to do: just consider Z = n 1 n W ; we know that Z is unbiased, and Var θ (Z) = θ2 n 2. End of Midterm 2 coverage

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Abstract. The Rao-Blacwell theorem told us how to improve an estimator. We will discuss conditions on when the Rao-Blacwellization of an estimator

More information

1. (Regular) Exponential Family

1. (Regular) Exponential Family 1. (Regular) Exponential Family The density function of a regular exponential family is: [ ] Example. Poisson(θ) [ ] Example. Normal. (both unknown). ) [ ] [ ] [ ] [ ] 2. Theorem (Exponential family &

More information

Sufficiency 1. Sufficiency. Math Stat II

Sufficiency 1. Sufficiency. Math Stat II Sufficiency 1 Sufficiency Sufficiency 2 Outline for Sufficiency 1. Measures of Quality of Estimators 2. A sufficient Statistic for a Parameter 3. Properties of a Sufficient Statistic 4. Completeness and

More information

ECE 275B Homework # 1 Solutions Version Winter 2015

ECE 275B Homework # 1 Solutions Version Winter 2015 ECE 275B Homework # 1 Solutions Version Winter 2015 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

ECE 275B Homework # 1 Solutions Winter 2018

ECE 275B Homework # 1 Solutions Winter 2018 ECE 275B Homework # 1 Solutions Winter 2018 1. (a) Because x i are assumed to be independent realizations of a continuous random variable, it is almost surely (a.s.) 1 the case that x 1 < x 2 < < x n Thus,

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Classical Estimation Topics

Classical Estimation Topics Classical Estimation Topics Namrata Vaswani, Iowa State University February 25, 2014 This note fills in the gaps in the notes already provided (l0.pdf, l1.pdf, l2.pdf, l3.pdf, LeastSquares.pdf). 1 Min

More information

STA 260: Statistics and Probability II

STA 260: Statistics and Probability II Al Nosedal. University of Toronto. Winter 2017 1 Properties of Point Estimators and Methods of Estimation 2 3 If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition

More information

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee

Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee Stochastic Processes Methods of evaluating estimators and best unbiased estimators Hamid R. Rabiee 1 Outline Methods of Mean Squared Error Bias and Unbiasedness Best Unbiased Estimators CR-Bound for variance

More information

INTRODUCTION TO BAYESIAN METHODS II

INTRODUCTION TO BAYESIAN METHODS II INTRODUCTION TO BAYESIAN METHODS II Abstract. We will revisit point estimation and hypothesis testing from the Bayesian perspective.. Bayes estimators Let X = (X,..., X n ) be a random sample from the

More information

Mathematical statistics

Mathematical statistics October 18 th, 2018 Lecture 16: Midterm review Countdown to mid-term exam: 7 days Week 1 Chapter 1: Probability review Week 2 Week 4 Week 7 Chapter 6: Statistics Chapter 7: Point Estimation Chapter 8:

More information

Patterns of Scalable Bayesian Inference Background (Session 1)

Patterns of Scalable Bayesian Inference Background (Session 1) Patterns of Scalable Bayesian Inference Background (Session 1) Jerónimo Arenas-García Universidad Carlos III de Madrid jeronimo.arenas@gmail.com June 14, 2017 1 / 15 Motivation. Bayesian Learning principles

More information

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized.

BEST TESTS. Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. BEST TESTS Abstract. We will discuss the Neymann-Pearson theorem and certain best test where the power function is optimized. 1. Most powerful test Let {f θ } θ Θ be a family of pdfs. We will consider

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

STAT215: Solutions for Homework 1

STAT215: Solutions for Homework 1 STAT25: Solutions for Homework Due: Wednesday, Jan 30. (0 pt) For X Be(α, β), Evaluate E[X a ( X) b ] for all real numbers a and b. For which a, b is it finite? (b) What is the MGF M log X (t) for the

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

MIT Spring 2016

MIT Spring 2016 Dr. Kempthorne Spring 2016 1 Outline Building 1 Building 2 Definition Building Let X be a random variable/vector with sample space X R q and probability model P θ. The class of probability models P = {P

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others.

Unbiased Estimation. Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. Unbiased Estimation Binomial problem shows general phenomenon. An estimator can be good for some values of θ and bad for others. To compare ˆθ and θ, two estimators of θ: Say ˆθ is better than θ if it

More information

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 )

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 ) Answers to the 8th problem set The likelihood ratio with which we worked in this problem set is: Λ(x) = f(x θ = θ 1 ) L(θ 1 ) =. f(x θ = θ 0 ) L(θ 0 ) With a lower-case x, this defines a function. With

More information

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources STA 732: Inference Notes 10. Parameter Estimation from a Decision Theoretic Angle Other resources 1 Statistical rules, loss and risk We saw that a major focus of classical statistics is comparing various

More information

6 Classic Theory of Point Estimation

6 Classic Theory of Point Estimation 6 Classic Theory of Point Estimation Point estimation is usually a starting point for more elaborate inference, such as construction of confidence intervals. Centering a confidence interval at a point

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

DA Freedman Notes on the MLE Fall 2003

DA Freedman Notes on the MLE Fall 2003 DA Freedman Notes on the MLE Fall 2003 The object here is to provide a sketch of the theory of the MLE. Rigorous presentations can be found in the references cited below. Calculus. Let f be a smooth, scalar

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci

Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by speci Definition 1.1 (Parametric family of distributions) A parametric distribution is a set of distribution functions, each of which is determined by specifying one or more values called parameters. The number

More information

Stat 411 Lecture Notes 03 Likelihood and Maximum Likelihood Estimation

Stat 411 Lecture Notes 03 Likelihood and Maximum Likelihood Estimation Stat 411 Lecture Notes 03 Likelihood and Maximum Likelihood Estimation Ryan Martin www.math.uic.edu/~rgmartin Version: August 19, 2013 1 Introduction Previously we have discussed various properties of

More information

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That

Statistics. Lecture 2 August 7, 2000 Frank Porter Caltech. The Fundamentals; Point Estimation. Maximum Likelihood, Least Squares and All That Statistics Lecture 2 August 7, 2000 Frank Porter Caltech The plan for these lectures: The Fundamentals; Point Estimation Maximum Likelihood, Least Squares and All That What is a Confidence Interval? Interval

More information

Proof In the CR proof. and

Proof In the CR proof. and Question Under what conditions will we be able to attain the Cramér-Rao bound and find a MVUE? Lecture 4 - Consequences of the Cramér-Rao Lower Bound. Searching for a MVUE. Rao-Blackwell Theorem, Lehmann-Scheffé

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

Fundamentals of Statistics

Fundamentals of Statistics Chapter 2 Fundamentals of Statistics This chapter discusses some fundamental concepts of mathematical statistics. These concepts are essential for the material in later chapters. 2.1 Populations, Samples,

More information

Course arrangements. Foundations of Statistical Inference

Course arrangements. Foundations of Statistical Inference Course arrangements Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 013 Lectures M. and Th.10 SPR1 weeks 1-8 Classes Weeks 3-8 Friday 1-1, 4-5, 5-6

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Conjugate Priors, Uninformative Priors

Conjugate Priors, Uninformative Priors Conjugate Priors, Uninformative Priors Nasim Zolaktaf UBC Machine Learning Reading Group January 2016 Outline Exponential Families Conjugacy Conjugate priors Mixture of conjugate prior Uninformative priors

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

5.2 Fisher information and the Cramer-Rao bound

5.2 Fisher information and the Cramer-Rao bound Stat 200: Introduction to Statistical Inference Autumn 208/9 Lecture 5: Maximum likelihood theory Lecturer: Art B. Owen October 9 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota

Stat 5102 Lecture Slides Deck 3. Charles J. Geyer School of Statistics University of Minnesota Stat 5102 Lecture Slides Deck 3 Charles J. Geyer School of Statistics University of Minnesota 1 Likelihood Inference We have learned one very general method of estimation: method of moments. the Now we

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

A Few Notes on Fisher Information (WIP)

A Few Notes on Fisher Information (WIP) A Few Notes on Fisher Information (WIP) David Meyer dmm@{-4-5.net,uoregon.edu} Last update: April 30, 208 Definitions There are so many interesting things about Fisher Information and its theoretical properties

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 7 Maximum Likelihood Estimation 7. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Stat 512 Homework key 2

Stat 512 Homework key 2 Stat 51 Homework key October 4, 015 REGULAR PROBLEMS 1 Suppose continuous random variable X belongs to the family of all distributions having a linear probability density function (pdf) over the interval

More information

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem

Last Lecture. Biostatistics Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator. Related Theorems. Rao-Blackwell Theorem Last Lecture Biostatistics 62 - Statistical Inference Lecture 14 Obtaining Best Unbiased Estimator Hyun Min Kang February 28th, 213 For single-parameter exponential family, is Cramer-Rao bound always attainable?

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Monday, September 26, 2011 Lecture 10: Exponential families and Sufficient statistics Exponential Families Exponential families are important parametric families

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 8 Maximum Likelihood Estimation 8. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

SOLUTION FOR HOMEWORK 7, STAT p(x σ) = (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2.

SOLUTION FOR HOMEWORK 7, STAT p(x σ) = (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2. SOLUTION FOR HOMEWORK 7, STAT 6332 1. We have (for a general case) Denote p (x) p(x σ)/ σ. Then p(x σ) (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2. p (x σ) p(x σ) 1 (x µ)2 +. σ σ 3 Then E{ p (x σ) p(x σ) } σ 2 2σ

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 450: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Example: Why does t-statistic have t distribution? Ingredients: Sample X 1,...,X n from

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Lecture 1: Introduction

Lecture 1: Introduction Principles of Statistics Part II - Michaelmas 208 Lecturer: Quentin Berthet Lecture : Introduction This course is concerned with presenting some of the mathematical principles of statistical theory. One

More information

Statistics 581, Problem Set 8 Solutions Wellner; 11/22/2018

Statistics 581, Problem Set 8 Solutions Wellner; 11/22/2018 Statistics 581, Problem Set 8 Solutions Wellner; 11//018 1. (a) Show that if θ n = cn 1/ and T n is the Hodges super-efficient estimator discussed in class, then the sequence n(t n θ n )} is uniformly

More information

Actuarial models. Proof. We know that. which is. Furthermore, S X (x) = Edward Furman Risk theory / 72

Actuarial models. Proof. We know that. which is. Furthermore, S X (x) = Edward Furman Risk theory / 72 Proof. We know that which is S X Λ (x λ) = exp S X Λ (x λ) = exp Furthermore, S X (x) = { x } h X Λ (t λ)dt, 0 { x } λ a(t)dt = exp { λa(x)}. 0 Edward Furman Risk theory 4280 21 / 72 Proof. We know that

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Chapter 1. Statistical Spaces

Chapter 1. Statistical Spaces Chapter 1 Statistical Spaces Mathematical statistics is a science that studies the statistical regularity of random phenomena, essentially by some observation values of random variable (r.v.) X. Sometimes

More information

Fisher Information & Efficiency

Fisher Information & Efficiency Fisher Information & Efficiency Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 1 Introduction Let f(x θ) be the pdf of X for θ Θ; at times we will also consider a

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

MATH4427 Notebook 2 Fall Semester 2017/2018

MATH4427 Notebook 2 Fall Semester 2017/2018 MATH4427 Notebook 2 Fall Semester 2017/2018 prepared by Professor Jenny Baglivo c Copyright 2009-2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger) 8 HENRIK HULT Lecture 2 3. Some common distributions in classical and Bayesian statistics 3.1. Conjugate prior distributions. In the Bayesian setting it is important to compute posterior distributions.

More information

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk

Theory and Applications of Stochastic Systems Lecture Exponential Martingale for Random Walk Instructor: Victor F. Araman December 4, 2003 Theory and Applications of Stochastic Systems Lecture 0 B60.432.0 Exponential Martingale for Random Walk Let (S n : n 0) be a random walk with i.i.d. increments

More information

Example: An experiment can either result in success or failure with probability θ and (1 θ) respectively. The experiment is performed independently

Example: An experiment can either result in success or failure with probability θ and (1 θ) respectively. The experiment is performed independently Chapter 3 Sufficient statistics and variance reduction Let X 1,X 2,...,X n be a random sample from a certain distribution with p.m/d.f fx θ. A function T X 1,X 2,...,X n = T X of these observations is

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question A1 a) The marginal cdfs of F X,Y (x, y) = [1 + exp( x) + exp( y) + (1 α) exp( x y)] 1 are F X (x) = F X,Y (x, ) = [1

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

LECTURE 2 NOTES. 1. Minimal sufficient statistics.

LECTURE 2 NOTES. 1. Minimal sufficient statistics. LECTURE 2 NOTES 1. Minimal sufficient statistics. Definition 1.1 (minimal sufficient statistic). A statistic t := φ(x) is a minimial sufficient statistic for the parametric model F if 1. it is sufficient.

More information

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium November 12, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm

Midterm Examination. STA 215: Statistical Inference. Due Wednesday, 2006 Mar 8, 1:15 pm Midterm Examination STA 215: Statistical Inference Due Wednesday, 2006 Mar 8, 1:15 pm This is an open-book take-home examination. You may work on it during any consecutive 24-hour period you like; please

More information

Lecture 4: UMVUE and unbiased estimators of 0

Lecture 4: UMVUE and unbiased estimators of 0 Lecture 4: UMVUE and unbiased estimators of Problems of approach 1. Approach 1 has the following two main shortcomings. Even if Theorem 7.3.9 or its extension is applicable, there is no guarantee that

More information

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 STA 73: Inference Notes. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 1 Testing as a rule Fisher s quantification of extremeness of observed evidence clearly lacked rigorous mathematical interpretation.

More information

Lecture 4. Continuous Random Variables and Transformations of Random Variables

Lecture 4. Continuous Random Variables and Transformations of Random Variables Math 408 - Mathematical Statistics Lecture 4. Continuous Random Variables and Transformations of Random Variables January 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 4 January 25, 2013 1 / 13 Agenda

More information

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise.

p y (1 p) 1 y, y = 0, 1 p Y (y p) = 0, otherwise. 1. Suppose Y 1, Y 2,..., Y n is an iid sample from a Bernoulli(p) population distribution, where 0 < p < 1 is unknown. The population pmf is p y (1 p) 1 y, y = 0, 1 p Y (y p) = (a) Prove that Y is the

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

Parametric Inference

Parametric Inference Parametric Inference Moulinath Banerjee University of Michigan April 14, 2004 1 General Discussion The object of statistical inference is to glean information about an underlying population based on a

More information

Chapters 9. Properties of Point Estimators

Chapters 9. Properties of Point Estimators Chapters 9. Properties of Point Estimators Recap Target parameter, or population parameter θ. Population distribution f(x; θ). { probability function, discrete case f(x; θ) = density, continuous case The

More information

Theory of Statistical Tests

Theory of Statistical Tests Ch 9. Theory of Statistical Tests 9.1 Certain Best Tests How to construct good testing. For simple hypothesis H 0 : θ = θ, H 1 : θ = θ, Page 1 of 100 where Θ = {θ, θ } 1. Define the best test for H 0 H

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

1 Probability Model. 1.1 Types of models to be discussed in the course

1 Probability Model. 1.1 Types of models to be discussed in the course Sufficiency January 18, 016 Debdeep Pati 1 Probability Model Model: A family of distributions P θ : θ Θ}. P θ (B) is the probability of the event B when the parameter takes the value θ. P θ is described

More information

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness

Information in Data. Sufficiency, Ancillarity, Minimality, and Completeness Information in Data Sufficiency, Ancillarity, Minimality, and Completeness Important properties of statistics that determine the usefulness of those statistics in statistical inference. These general properties

More information

Notes 9 : Infinitely divisible and stable laws

Notes 9 : Infinitely divisible and stable laws Notes 9 : Infinitely divisible and stable laws Math 733 - Fall 203 Lecturer: Sebastien Roch References: [Dur0, Section 3.7, 3.8], [Shi96, Section III.6]. Infinitely divisible distributions Recall: EX 9.

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Review and continuation from last week Properties of MLEs

Review and continuation from last week Properties of MLEs Review and continuation from last week Properties of MLEs As we have mentioned, MLEs have a nice intuitive property, and as we have seen, they have a certain equivariance property. We will see later that

More information

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2)

Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Lectures on Machine Learning (Fall 2017) Hyeong In Choi Seoul National University Lecture 4: Exponential family of distributions and generalized linear model (GLM) (Draft: version 0.9.2) Topics to be covered:

More information