Notes 9 : Infinitely divisible and stable laws

Size: px
Start display at page:

Download "Notes 9 : Infinitely divisible and stable laws"

Transcription

1 Notes 9 : Infinitely divisible and stable laws Math Fall 203 Lecturer: Sebastien Roch References: [Dur0, Section 3.7, 3.8], [Shi96, Section III.6]. Infinitely divisible distributions Recall: EX 9. (Normal distribution) Let Z, Z 2 N(0, ) independent then and Z + Z 2 N(0, 2). φ Z +Z 2 (t) = φ Z (t)φ Z2 (t) = e t2, EX 9.2 (Poisson distribution) Similarly, if Y, Y 2 Poi(λ) independent then and Y + Y 2 Poi(2). φ Y +Y 2 (t) = φ Y (t)φ Y2 (t) = exp ( 2λ(e it ) ), DEF 9.3 (Infinitely divisible distributions) A DF F is infinitely divisible if there for all n, there is a DF F n such that Z = d X n, + + X n,n, where Z F and the X n,k s are IID with X n,k F n for all k n. THM 9.4 A DF F can be a limit in distribution of IID triangular arrays if and only if F is infinitely divisible. Z n = X n + + X n,n, Proof: One direction is obvious. If F is infinitely divisible, then we can make Z = d Z n for all n with Z F.

2 Lecture 9: Infinitely divisible and stable laws 2 For the other direction, assume Z n Z. Write Z 2n = (X 2n, + + X 2n,n ) + (X 2n,n+ + + X 2n,2n ) = Y n + Y n. Clearly Y n and Y n are independent and identically distributed. We claim further that they are tight. Indeed P[Y n > y] 2 = P[Y n > y]p[y n > y] P [Z 2n > 2y] and Z n converges to a probability distribution by assumption. Now take a subsequence of {Y n } so that Y nk Y (and hence Y n k Y ) then, using CFs, Y nk + Y n k Y + Y, where Y, Y are independent. Since Z n Z it follows that Z = d Y + Y. EX 9.5 (Normal distribution) To test whether a DF F is infinitely divisible, it suffices to check that (φ F (t)) /n is a CF, n. In the N(0, ) case, which is the CF of a N(0, n). (φ F (t)) /n = e t2 /(2n), EX 9.6 (Poisson distribution) Similarly, in the F Poi(λ) case, is the CF of a Poi(λ/n). (φ F (t)) /n = exp(λ(e it )/n), EX 9.7 (Gamma distribution) Let F be a Gamma(α, β) distribution, that is, with density f(x) = xα e x/β Γ(α)β α x 0, for α, β > 0, and CF Hence φ(t) = (φ(t)) /n = which is the CF of a Gamma(α/n, β). ( iβt) α. ( iβt) α/n,

3 Lecture 9: Infinitely divisible and stable laws 3 It is possible to characterize all infinitely divisble distributions. We quote the following without proof. See Breiman s or Feller s books. THM 9.8 (Lévy-Khinchin Theorem) A DF F is infinitely divisible if and only if φ F (t) is of the form e ψ(t) with ψ(t) = itβ t2 σ 2 + ( 2 + e itx itx ) + x 2 µ(dx), where β R, σ 2 0, and µ is a measure on R with µ({0}) = 0 and x 2 +x 2 µ(dx) < +. (The previous ratio is so any finite measure will work.) EX 9.9 (Normal distribution) Taking β = 0, σ 2 =, and µ 0 gives a N(0, ). EX 9.0 (Poisson distribution) Taking σ 2 = 0, µ({}) = λ, and β = x µ(dx) +x 2 gives a Poi(λ). EX 9. (Compound Poisson distribution) Let W be a RV with CF φ(t). A compound Poisson RV with parameters λ and φ is Z = N W i, where the W i s are IID with CF φ and N Poi(λ). By direct calculation, e λ λ n φ Z (t) = φ(t) n = exp(λ(φ(t) )). n! n=0 i= Z is infinitely divisible for the same reason that the Poisson distribution is. Taking σ 2 = 0, µ({}) = λ PM of Z, and β = x µ(dx) gives φ +x 2 Z. (The previous integral exists for PMs because when x is large the ratio is essentially /x.) 2 Stable laws An important special case of infinitely divisible distributions arises when the triangular array takes the special form X k, n, k,, up to ormalization that depends on n. E.g., the simple form of the CLT. DEF 9.2 A DF F is stable if for all n Z = d n i= W i b n, where Z, {W i } i F and the W i s are independent and > 0, b n R are constants.

4 Lecture 9: Infinitely divisible and stable laws 4 Note that this applies to Gaussians but not to Poisson variables (which are integervalued). THM 9.3 Let F be a DF and Z F. A necessary and sufficient condition for the existence of constants > 0, b n such that Z n = S n b n where S n = n i= X i with X i s IID is that F is stable. Proof: We prove the non-trivial direction. Assume as above. Letting and Then Z n = S n b n S () n = i n S (2) n = n+ i 2n ({ } S n () b n Z 2n = a + n a 2n X i, X i. { S (2) n b n } 2b n b 2n The LHS and both terms in bracket converge weakly. One has to show that the constants converge. LEM 9.4 (Convergence of types) If W n W and there are constants α n > 0, β n so that W n = α n W n + β n W where W and W are nondegenerate, then there are constants α and β so that α n α and β n β. See [D] for proof. It requires an exercise done in homework. Finally there is also a characterization for stable laws. THM 9.5 (Lévy-Khinchin Representation) A DF F is stable if and only if the CF φ F (t) is of the form e ψ(t) with ψ(t) = itβ d t α ( + iκ sgn(t)g(t, α)), where 0 < α 2, β R, d 0, κ, and { tan G(t, α) = 2πα if α, 2 π log t if α =. The parameter α is called the index of the stable law. ).

5 Lecture 9: Infinitely divisible and stable laws 5 EX 9.6 Taking α = 2 gives a Gaussian. Note that a DF is symmetric if and only if or, in other words, φ(t) is real. φ(t) = E[e itx ] = E[e itx ] = φ(t), THM 9.7 (Lévy-Khinchin representation: Symmetric case) A DF F is symmetric and stable if and only if its CF is of the form e d t α where 0 < α 2 and d 0. The parameter α is called the index of the stable law. α = 2 is the Gaussian case. α = is the Cauchy case. 2. Domain of attraction DEF 9.8 (Domain of attraction) A DF F is in the domain of attraction of a DF G if there are constants > 0 and b n such that S n b n where Z G and S n = k n X k, with X k F and independent. DEF 9.9 (Slowly varying function) A function L is slowly varying if for all t > 0 L(tx) lim x + L(x) =. EX 9.20 If L(t) = log t then L(tx) L(x) = log t + log x log x. On the other hand, if L(t) = t ε with ε > 0 then L(tx) L(x) = tε x ε x ε t ε. THM 9.2 Suppose (X n ) n are IID with a distribution that satisfies

6 Lecture 9: Infinitely divisible and stable laws 6. lim x P[X > x]/p[ X > x] = θ [0, ] 2. P[ X > x] = x α L(x), where 0 < α < 2 and L is slowly varying. Let S n = k n X k, = inf{x : P[ X > x] n } (Note that is roughly of order n /α.) and Then where Z has an α-stable distribution. b n = ne[x X ]. S n b n This condition is also necessary. Note also that this extends in some sense the CLT to some infinite variance cases when α = 2. See the infinite variance example in Section 3.4 on [D]. EX 9.22 (Cauchy distribution) Let (X n ) n be IID with a density symmetric about 0 and continuous and positive at 0. Then ( + + ) a Cauchy distribution. n X X n Clearly θ = /2. Moreover P[/X > x] = P[0 < X < x ] = x 0 f(y)dy f(0)/x, and similarly for P[/X < x]. So α =. Clearly b n = 0 by symmetry. Finally 2f(0)n. EX 9.23 (Centering constants) Suppose (X n ) n are IID with for x > P[X > x] = θx α, P[X < x] = ( θ)x α, where 0 < α < 2. In this case = n /α and n /α cn α > b n = n (2θ )αx α dx cn log n α = cn /α α <.

7 Lecture 9: Infinitely divisible and stable laws 7 References [Dur0] Rick Durrett. Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 200. [Shi96] A. N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics. Springer-Verlag, New York, 996.

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

Lecture 19 : Brownian motion: Path properties I

Lecture 19 : Brownian motion: Path properties I Lecture 19 : Brownian motion: Path properties I MATH275B - Winter 2012 Lecturer: Sebastien Roch References: [Dur10, Section 8.1], [Lig10, Section 1.5, 1.6], [MP10, Section 1.1, 1.2]. 1 Invariance We begin

More information

Notes 1 : Measure-theoretic foundations I

Notes 1 : Measure-theoretic foundations I Notes 1 : Measure-theoretic foundations I Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Section 1.0-1.8, 2.1-2.3, 3.1-3.11], [Fel68, Sections 7.2, 8.1, 9.6], [Dur10,

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

Notes 18 : Optional Sampling Theorem

Notes 18 : Optional Sampling Theorem Notes 18 : Optional Sampling Theorem Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapter 14], [Dur10, Section 5.7]. Recall: DEF 18.1 (Uniform Integrability) A collection

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

Lecture Characterization of Infinitely Divisible Distributions

Lecture Characterization of Infinitely Divisible Distributions Lecture 10 1 Characterization of Infinitely Divisible Distributions We have shown that a distribution µ is infinitely divisible if and only if it is the weak limit of S n := X n,1 + + X n,n for a uniformly

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

On the Breiman conjecture

On the Breiman conjecture Péter Kevei 1 David Mason 2 1 TU Munich 2 University of Delaware 12th GPSD Bochum Outline Introduction Motivation Earlier results Partial solution Sketch of the proof Subsequential limits Further remarks

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 Math 736-1 Homework Fall 27 1* (1 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 and let Y be a standard normal random variable. Assume that X and Y are independent. Find the distribution

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

the convolution of f and g) given by

the convolution of f and g) given by 09:53 /5/2000 TOPIC Characteristic functions, cont d This lecture develops an inversion formula for recovering the density of a smooth random variable X from its characteristic function, and uses that

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Notes 5 : More on the a.s. convergence of sums

Notes 5 : More on the a.s. convergence of sums Notes 5 : More o the a.s. covergece of sums Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: Dur0, Sectios.5; Wil9, Sectio 4.7, Shi96, Sectio IV.4, Dur0, Sectio.. Radom series. Three-series

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Notes 13 : Conditioning

Notes 13 : Conditioning Notes 13 : Conditioning Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Sections 0, 4.8, 9, 10], [Dur10, Section 5.1, 5.2], [KT75, Section 6.1]. 1 Conditioning 1.1 Review

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Fall 2011, Professor Whitt. Class Lecture Notes: Thursday, September 15.

IEOR 3106: Introduction to Operations Research: Stochastic Models. Fall 2011, Professor Whitt. Class Lecture Notes: Thursday, September 15. IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2011, Professor Whitt Class Lecture Notes: Thursday, September 15. Random Variables, Conditional Expectation and Transforms 1. Random

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

Lecture 18 : Ewens sampling formula

Lecture 18 : Ewens sampling formula Lecture 8 : Ewens sampling formula MATH85K - Spring 00 Lecturer: Sebastien Roch References: [Dur08, Chapter.3]. Previous class In the previous lecture, we introduced Kingman s coalescent as a limit of

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

Convergence in Distribution

Convergence in Distribution Convergence in Distribution Undergraduate version of central limit theorem: if X 1,..., X n are iid from a population with mean µ and standard deviation σ then n 1/2 ( X µ)/σ has approximately a normal

More information

Math 341: Probability Seventeenth Lecture (11/10/09)

Math 341: Probability Seventeenth Lecture (11/10/09) Math 341: Probability Seventeenth Lecture (11/10/09) Steven J Miller Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public html/341/ Bronfman Science Center Williams

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Stochastic Convergence, Delta Method & Moment Estimators

Stochastic Convergence, Delta Method & Moment Estimators Stochastic Convergence, Delta Method & Moment Estimators Seminar on Asymptotic Statistics Daniel Hoffmann University of Kaiserslautern Department of Mathematics February 13, 2015 Daniel Hoffmann (TU KL)

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

S6880 #7. Generate Non-uniform Random Number #1

S6880 #7. Generate Non-uniform Random Number #1 S6880 #7 Generate Non-uniform Random Number #1 Outline 1 Inversion Method Inversion Method Examples Application to Discrete Distributions Using Inversion Method 2 Composition Method Composition Method

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1 Jim Lambers MAT 69 Fall Semester 2009-0 Lecture 6 Notes These notes correspond to Section 8.3 in the text. The Integral Test Previously, we have defined the sum of a convergent infinite series to be the

More information

2016 Final for Advanced Probability for Communications

2016 Final for Advanced Probability for Communications 06 Final for Advanced Probability for Communications The number of total points is 00 in this exam.. 8 pt. The Law of the Iterated Logarithm states that for i.i.d. {X i } i with mean 0 and variance, [

More information

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions 18.175: Lecture 8 Weak laws and moment-generating/characteristic functions Scott Sheffield MIT 18.175 Lecture 8 1 Outline Moment generating functions Weak law of large numbers: Markov/Chebyshev approach

More information

Probability Theory I: Syllabus and Exercise

Probability Theory I: Syllabus and Exercise Probability Theory I: Syllabus and Exercise Narn-Rueih Shieh **Copyright Reserved** This course is suitable for those who have taken Basic Probability; some knowledge of Real Analysis is recommended( will

More information

18.175: Lecture 14 Infinite divisibility and so forth

18.175: Lecture 14 Infinite divisibility and so forth 18.175 Lecture 14 18.175: Lecture 14 Infinite divisibility and so forth Scott Sheffield MIT 18.175 Lecture 14 Outline Infinite divisibility Higher dimensional CFs and CLTs Random walks Stopping times Arcsin

More information

Fourier Transforms of Measures

Fourier Transforms of Measures Fourier Transforms of Measures Sums of Independent andom Variables We begin our study of sums of independent random variables, S n = X 1 + X n. If each X i is square integrable, with mean µ i = EX i and

More information

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4) :23 /4/2000 TOPIC Characteristic functions This lecture begins our study of the characteristic function φ X (t) := Ee itx = E cos(tx)+ie sin(tx) (t R) of a real random variable X Characteristic functions

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson Math 832 Fall 2013 University of Wisconsin at Madison Instructor: David F. Anderson Pertinent information Instructor: David Anderson Office: Van Vleck 617 email: anderson@math.wisc.edu Office hours: Mondays

More information

Jump-type Levy Processes

Jump-type Levy Processes Jump-type Levy Processes Ernst Eberlein Handbook of Financial Time Series Outline Table of contents Probabilistic Structure of Levy Processes Levy process Levy-Ito decomposition Jump part Probabilistic

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

On Optimal Stopping Problems with Power Function of Lévy Processes

On Optimal Stopping Problems with Power Function of Lévy Processes On Optimal Stopping Problems with Power Function of Lévy Processes Budhi Arta Surya Department of Mathematics University of Utrecht 31 August 2006 This talk is based on the joint paper with A.E. Kyprianou:

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get

If g is also continuous and strictly increasing on J, we may apply the strictly increasing inverse function g 1 to this inequality to get 18:2 1/24/2 TOPIC. Inequalities; measures of spread. This lecture explores the implications of Jensen s inequality for g-means in general, and for harmonic, geometric, arithmetic, and related means in

More information

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010

Ernesto Mordecki 1. Lecture III. PASI - Guanajuato - June 2010 Optimal stopping for Hunt and Lévy processes Ernesto Mordecki 1 Lecture III. PASI - Guanajuato - June 2010 1Joint work with Paavo Salminen (Åbo, Finland) 1 Plan of the talk 1. Motivation: from Finance

More information

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality

Lecture The Sample Mean and the Sample Variance Under Assumption of Normality Math 408 - Mathematical Statistics Lecture 13-14. The Sample Mean and the Sample Variance Under Assumption of Normality February 20, 2013 Konstantin Zuev (USC) Math 408, Lecture 13-14 February 20, 2013

More information

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm

Final Examination. STA 711: Probability & Measure Theory. Saturday, 2017 Dec 16, 7:00 10:00 pm Final Examination STA 711: Probability & Measure Theory Saturday, 2017 Dec 16, 7:00 10:00 pm This is a closed-book exam. You may use a sheet of prepared notes, if you wish, but you may not share materials.

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Math Spring Practice for the Second Exam.

Math Spring Practice for the Second Exam. Math 4 - Spring 27 - Practice for the Second Exam.. Let X be a random variable and let F X be the distribution function of X: t < t 2 t < 4 F X (t) : + t t < 2 2 2 2 t < 4 t. Find P(X ), P(X ), P(X 2),

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Lecture 19 : Chinese restaurant process

Lecture 19 : Chinese restaurant process Lecture 9 : Chinese restaurant process MATH285K - Spring 200 Lecturer: Sebastien Roch References: [Dur08, Chapter 3] Previous class Recall Ewens sampling formula (ESF) THM 9 (Ewens sampling formula) Letting

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

Asymptotic distribution of the sample average value-at-risk in the case of heavy-tailed returns

Asymptotic distribution of the sample average value-at-risk in the case of heavy-tailed returns Asymptotic distribution of the sample average value-at-risk in the case of heavy-tailed returns Stoyan V. Stoyanov Chief Financial Researcher, FinAnalytica Inc., Seattle, USA e-mail: stoyan.stoyanov@finanalytica.com

More information

THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION

THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION THE LINDEBERG-FELLER CENTRAL LIMIT THEOREM VIA ZERO BIAS TRANSFORMATION JAINUL VAGHASIA Contents. Introduction. Notations 3. Background in Probability Theory 3.. Expectation and Variance 3.. Convergence

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

ON THE INFINITE DIVISIBILITY OF PROBABILITY DISTRIBUTIONS WITH DENSITY FUNCTION OF NORMED PRODUCT OF CAUCHY DENSITIES

ON THE INFINITE DIVISIBILITY OF PROBABILITY DISTRIBUTIONS WITH DENSITY FUNCTION OF NORMED PRODUCT OF CAUCHY DENSITIES 26 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES SCIENCE, TECHNOLOGY, ENGINEERING, ART, MATH & EDUCATION JUNE - 2, 26 HAWAII PRINCE HOTEL WAIKIKI, HONOLULU ON THE INFINITE DIVISIBILITY OF PROBABILITY DISTRIBUTIONS

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

S n = x + X 1 + X X n.

S n = x + X 1 + X X n. 0 Lecture 0 0. Gambler Ruin Problem Let X be a payoff if a coin toss game such that P(X = ) = P(X = ) = /2. Suppose you start with x dollars and play the game n times. Let X,X 2,...,X n be payoffs in each

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 2 Transformations and Expectations Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 14, 2015 Outline 1 Distributions of Functions

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Grading: 1, 2, 3, 4, 5 (each 8 pts) e ita R. e itx dµ(x)dt = 1 2T. cos(t(x a))dt dµ(x) T (x a) 1 2T. cos(t(x a))dt =

Grading: 1, 2, 3, 4, 5 (each 8 pts) e ita R. e itx dµ(x)dt = 1 2T. cos(t(x a))dt dµ(x) T (x a) 1 2T. cos(t(x a))dt = Grading:, 2, 3, 4, 5 (each 8 pts Problem : Since e ita =, by Fubini s theorem, I T = e ita ϕ(tdt = e ita e itx dµ(xdt = e it(x a dtdµ(x. Since e it(x a = cos(t(x a + i sin(t(x a and sin(t(x a is an odd

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Notes 20 : Tests of neutrality

Notes 20 : Tests of neutrality Notes 0 : Tests of neutrality MATH 833 - Fall 01 Lecturer: Sebastien Roch References: [Dur08, Chapter ]. Recall: THM 0.1 (Watterson s estimator The estimator is unbiased for θ. Its variance is which converges

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 11 Haijun Li Math 576: Quantitative Risk Management Week 11 1 / 21 Outline 1

More information

1. Compute the c.d.f. or density function of X + Y when X, Y are independent random variables such that:

1. Compute the c.d.f. or density function of X + Y when X, Y are independent random variables such that: Final exam study guide Probability Theory (235A), Fall 2013 The final exam will be held on Thursday, Dec. 5 from 1:35 to 3:00 in 1344 Storer Hall. Please come on time! It will be a closed-book exam. The

More information

IEOR 4703: Homework 2 Solutions

IEOR 4703: Homework 2 Solutions IEOR 4703: Homework 2 Solutions Exercises for which no programming is required Let U be uniformly distributed on the interval (0, 1); P (U x) = x, x (0, 1). We assume that your computer can sequentially

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

A generalization of Strassen s functional LIL

A generalization of Strassen s functional LIL A generalization of Strassen s functional LIL Uwe Einmahl Departement Wiskunde Vrije Universiteit Brussel Pleinlaan 2 B-1050 Brussel, Belgium E-mail: ueinmahl@vub.ac.be Abstract Let X 1, X 2,... be a sequence

More information

Central limit theorem. Paninski, Intro. Math. Stats., October 5, probability, Z N P Z, if

Central limit theorem. Paninski, Intro. Math. Stats., October 5, probability, Z N P Z, if Paninski, Intro. Math. Stats., October 5, 2005 35 probability, Z P Z, if P ( Z Z > ɛ) 0 as. (The weak LL is called weak because it asserts convergence in probability, which turns out to be a somewhat weak

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information